首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rice is a staple food for about 50 percent of the world’s population. Potassium (K) is absorbed in large amounts by rice plants and adequate amounts of this element are fundamental to improve productivity and maintain sustainability of the cropping systems. A greenhouse experiment was conducted to determine the adequate rate of K for lowland rice grown on a Brazilian Inceptisol. The K rates used were 0, 50, 100, 200, 400, and 600 mg K kg?1 soil. Most of the growth, yield, and yield components were significantly and quadratically increased with increasing K levels. Based on a quadratic equation, maximum grain yield was obtained with the addition of 371 mg K kg?1 soil. Maximum plant height and shoot dry weight were obtained at 414 and 398 mg K kg?1 soil, respectively. Root growth (maximum length and dry weight) was also significantly increased in a quadratic fashion with the increasing K rate in the growth medium. Maximum root length was achieved at 58 mg K kg?1 whereas maximum root dry weight was obtained with the addition of 394 mg K kg?1 soil. Plant height, shoot dry weight, 1000-grain weight, root length, and root dry weight were significantly associated with grain yield. Hence, manipulation of these growth and yield components with the addition of K fertilizer can improve yield of lowland rice in varzea soils of central part of Brazil. Potassium uptake increased significantly in a quadratic fashion with increasing K rate. However, K-use efficiency (mg grain per mg K applied) decreased significantly with increasing K rate in a quadratic fashion. Maximum grain yield was obtained with 117 mg kg?1 Mehlich 1–extractable K, base saturation of 53 percent, Mg saturation of 9 percent, K saturation of 2 percent, and Ca/Mg ratio of 4.  相似文献   

2.
ABSTRACT

Rice is a staple food for more than 50% of the world's population and nitrogen (N) is one of the most yield limiting nutrients in lowland rice ecosystems. A field experiment was conducted for two consecutive years to evaluate dry matter production and grain yield of 12 lowland rice genotypes (BRS Jaçanã, CNAi 8860, BRS Fronteira, CNAi 8879, CNAi 8880, CNAi 8886, CNAi 8885, CNAi 8569, BRSGO Guará, BRS Alvorada, BRS Jaburu, and BRS Biguá) at five N rates (0, 50, 100, 150, and 200 kg ha? 1). Genotypes showed significant variation in grain yield and shoot dry weight. Genotype BRSGO Guará was highest yielding, whereas genotype BRS Jaburu was lowest yielding and the remaining genotypes were intermediate in grain yielding potential. Grain yield and shoot dry weight were having significant quadratic increase with increasing N rates in the range of 0 to 200 kg ha? 1. However, 90% of the maximum yield is often considered as an economical rate, which was 120 kg for shoot dry weight and 136 kg N ha? 1 for grain yield. Shoot dry matter was having significant positive quadratic association with grain yield across 12 genotypes.  相似文献   

3.
Lowland rice is a staple food for more than 50% of the world's population and phosphorus (P) deficiency is one of the main constraints in rice production in tropical lowlands. A field experiment was conducted for two years consecutive with the objective to evaluate 12 lowland rice genotypes for P use efficiency. The P rates used were 0, 22, 44, 66, and 88 kg P ha?1 (0, 50, 100, 150 and 200 kg P2O5 ha?1) applied to an Inceptisol. The genotypes used were BRS Jaçanã, CNAi 8860, BRS Fronteira, CNAi 8879, CNAi 8880, CNAi 8886, CNAi 8885, CNAi 8569, BRSGO Guará, BRS Alvorada, BRS Jaburu and BRS Biguá. There were significant and quadratic responses of genotypes to phosphorus fertilization. Adequate P rates for maximum grain yield varied from genotype to genotype. However, across 12 genotypes, maximum grain yield was obtained with the application of 54 kg P ha?1. Genotype BRS Jaçanã was most efficient and genotype CNAi 8569 was most inefficient in P use efficiency. Shoot dry weight and panicle number was also increased significantly and quadratically with increasing P rates in the range of 0 to 88 kg P ha?1. These two plant parameters were positively associated with grain yield. Agronomic efficiency (kg grain produced per kg P applied) was significantly decreased with increasing P rates in the range of 22 to 88 kg P ha?1.  相似文献   

4.
Rice is important crop for world population, including Brazil. Nitrogen (N) is one of the most yield limiting nutrients in rice production under all agro-ecological conditions. A greenhouse experiment was conducted to evaluate N responses to 12 lowland rice genotypes. Soil used in the experiment was a Gley humic according to Brazilian soil classification system and Inceptisol according to USA soil taxonomy classification. The N rates used were 0 mg kg?1 (low) and 300 mg kg?1 (high) of soil. Plant height, straw yield, grain yield, panicle density, 1000 grain weight, and root dry weight were significantly increased with the addition of N fertilization. These growth, yield, and yield components were also significantly influenced by genotype treatment. Grain yield had significant linear or quadratic association with shoot dry weight, panicle number and 1000 grain weight Based on grain efficiency index genotypes were classified as efficient, moderately efficient and inefficient in N use. The N efficient genotypes were ‘BRS Tropical’, ‘BRS Jaçanã’, ‘BRA 02654’, ‘BRA 051077’, ‘BRA 051083’, ‘BRA 051108’, ‘BRA 051130’ and ‘BRA 051250’. Remaining genotypes fall into moderately efficient group. None of the genotypes were grouped as inefficient in N use efficiency.  相似文献   

5.
ABSTRACT

Nitrogen is one of the most yield–limiting nutrients in lowland rice in Brazil. A field experiment was conducted for two consecutive years to evaluate nitrogen (N) uptake by five lowland rice genotypes and its association with grain yield. The nitrogen rate used was 0, 50, 100, 150, and 200 kg ha?1. The genotypes evaluated were CNAi 8886, CNAi 8569, BRSGO Guará, BRS Jaburu, and BRS Biguá. Grain yield and dry matter yield of shoot were significantly influenced by N rate. However, response varied from genotypes to genotypes. Genotype BRSGO Guará, BRS Bigua, and BRS Jaburu were having linear response, whereas genotypes CNAi 8886 and CNAi 8569 were having quadratic response with the N application rate in the range of 0 to 200 kg ha?1. Overall, genotypes BRSGO Guará and CNAi 8886 were the best because they produced higher yield at low as well as at higher N rates. Nitrogen uptake in shoot was having quadratic relationship with grain yield, whereas nitrogen uptake in the grain was linearly associated with grain yield.  相似文献   

6.
Phosphorus deficiency is main constraints for lowland rice production in various rice producing regions of the world. A greenhouse experiment was conducted using lowland (Inceptisol) soil with the objective to determine response of seven lowland rice (Oryza sativa L.) genotypes to phosphorus fertilization and to evaluate their phosphorus (P) use efficiency. Phosphorus treatments included control (0 mg P kg?1) and 200 mg P kg?1 of soil. Plant height and shoot dry weight were significantly (P < 0.001) influenced by P treatments. Phosphorus X genotypes interaction was significant for shoot dry weight, indicating different response of genotypes under two P levels. At low P level, none of the genotypes produced grain yield, indicating original P level in the soil was too low for lowland rice yield. However, genotypes differed significantly in grain yield at high P level. Panicle number, panicle length, and thousand grains weight had a significant quadratic association with grain yield. However, spikelet sterility had a significant linear negative association with grain yield. The P use efficiency expressed as agronomic efficiency (AE), physiological efficiency (PE), agro-physiological efficiency (AP), apparent recovery efficiency (ARE), and utilization (UE) were significantly different among genotypes. These efficiencies were having significantly positive association with grain yield, with exception to ARE, indicating improving grain yield with improved P use efficiencies in rice.  相似文献   

7.
Rice is staple food for more than 50% of the world's population. Nitrogen (N) is one of the most yield-limiting nutrients for lowland rice production around the world. Two field experiments were conducted at two locations for two consecutive years to evaluate N-use efficiency of 12 lowland rice genotypes. Growth, grain yield, and yield components were significantly influenced by N as well as genotype treatments. Location?×?year?×?genotype and location?×?year?×?N interactions were significant for most of the growth, yield, and yield components, indicating influence of these factors on yield and yield components. Overall, the most N-efficient genotypes measured in terms of grain yield were BRA 031032, BRA 031044, and BRA 02654 and the most inefficient genotypes were BRS Jaçana, BRS Fronteira, and BRA 02674. Genotypes had linear and quadratic responses to added N in the range of 0 to 200 kg ha?1. Nitrogen significantly influenced plant height, shoot dry weight, panicle number, and 1000-grain weights. Nitrogen-use efficiency (kg grain per kg N applied) varied from 33 to 49 kg grain per kg N applied, with an average value of 40 kg grain per kg N applied. The genotype BRA 031044 produced the greatest N-use efficiency, and the lowest N-use efficient genotype was BRS Fronteira. There was a significant linear association between N-use efficiency and grain yield.  相似文献   

8.
Phosphorus (P) deficiency is one of the most yield limiting factors for crop production in South American soils. Upland rice (Oryza sativa L.) is an important crop in South American cropping systems, including Brazil. A field experiment was conducted with the objective to evaluate 20 upland rice genotypes for phosphorus (P) use efficiency. The P rate used was low (0 kg P ha?1) and high [87 kg P ha?1 or 200 kg phosphorus pentoxide (P2O5) ha?1]. Plant height, shoot dry weight, grain yield, panicle number, 1000 grain weight, spikelet sterility, and grain harvest index were significantly influenced by P and genotype treatments. The P X genotype interaction was significant for grain yield, indicating that genotypes responded differently under two P rates. Overall, grain yield increased by 12% with the addition of P fertilization. Based on grain yield efficiency index, genotypes were classified into efficient, moderately efficient, and inefficient group. The genotypes that were classified as efficient in P use were BRA032048, BRA042094, BRA02601, BRA032051, BRA032033, BRA052015, BRA042156, BRA01600, BRA01506, BRA052023 and BRA042160. The inefficient genotypes in P us efficiency were BRS Primavera, BRA052045, BRA01596, and BRS Sertaneja. Grain harvest index had a significant positive association with grain yield and spikelet sterility had a significant negative association with grain yield, as expected. Average, P-use efficiency of five genotypes was about 17 kg kg?1 (kg grain yield per kg P applied).  相似文献   

9.

Phosphorus (P) deficiency is one of the most yield limiting factors in crop production in Brazilian Oxisols. A greenhouse experiment was conducted to evaluate 20 upland rice genotypes at low (25 mg P kg?1) and high (200 mg P kg?1) P levels applied to a Brazilian Oxisol. Grain yield and yield components were significantly influenced by P level and genotype treatments. There was a significant interaction between P level and genotype treatments in relation to grain yield, indicating genotypes responded differently under two P levels. Based on grain yield efficiency index (GYEI), genotypes were classified into efficient, moderately efficient and inefficient groups. The efficient genotypes in utilizing P were ‘BRA052053’, ‘BRS Primavera’, ‘BRA052015’, ‘BRA052023’, ‘BRA01506’, ‘BRA052045’, ‘BRA032033’, ‘BRA01596’ and ‘BRA052034’. Remaining genotypes were classified as moderately efficient in P use efficiency. None of the genotypes were fall into inefficient group. Grain yield was significantly and positively related with shoot dry weight, panicle number, grain harvest index, 1000-grain weight and had a negative and significant correlation with spikelet sterility. Grain weight was having maximum contribution in total rice plant weight comparing to root and shoot, indicating improvement in harvest index of modern Brazilian upland rice cultivars by breeding.  相似文献   

10.
Nitrogen (N) is one of the most yield limiting nutrients in lowland rice production. Improving N use efficiency is essential to reduce cost of crop production and environmental pollution. A greenhouse experiment was conducted with the objective to compare conventional and polymer coated urea for lowland rice production. Grain yield, straw yield, panicle density, maximum root length, and root dry weight were significantly increased in a quadratic fashion with the increase of N rate from 0 to 400 mg kg?1 soil. Nitrogen source X N rate interactions for most of these traits were not significant, indicating that lowland rice responded similarly to change in N rates of two N sources. Based on regression equations, maximum grain yield was obtained with the application of 258 mg N kg?1 soil and maximum straw yield was obtained with the addition of 309 mg N kg?1 soil. Nitrogen use efficiency (grain yield per unit of N applied) was maximum for polymer coated urea compared to conventional urea. Root length and root dry weight improved at an adequate N rate, indicating importance of N fertilization in the absorption of water and nutrients and consequently yield. Polymer coated urea had higher soil exchangeable calcium (Ca) and magnesium (Mg), Ca saturation, Mg saturation, base saturation, and effective cation exchange capacity compared to conventional urea. There was a highly significant decrease in soil exchangeable potassium (K) with increasing N rates at harvest of rice plants.  相似文献   

11.
Dry bean is an important legume worldwide, and potassium (K) deficiency is one of the important constraints for bean production in most of the bean growing regions. A greenhouse experiment was conducted with the objective to evaluate fifteen dry bean genotypes grown on a Brazilian lowland (Inceptisol) United States Soil Taxonomy classification and Gley humic Brazilian Soil Classification system), locally known as “Varzea” soil. The K rate used was 0 mg kg?1 (low, natural soil level) and 200 mg kg?1 (high, applied as fertilizer). Straw yield, seed yield, pods per plant, seeds per pod, 100 seed weight, and seed harvest index were significantly increased with the addition of K fertilizer. These traits were also significantly influenced by genotypic treatment. Similarly, root length and root dry weight were also influenced significantly by K and genotype treatments. The K X genotype interactions for most of these traits were also significant, indicating variation in these traits with the variation in K level. Based on seed yield efficiency index (SYEI), genotypes were classified as efficient, moderately efficient, and inefficient in K use efficiency. Maximum grain yield was obtained with 74 mg K kg?1 extracted by Mehlich 1 extracting solution. Similarly, K saturation required for maximum grain yield was 1.1%.  相似文献   

12.
Rice, dry bean, corn, and soybean are important food crops. Phosphorus (P) deficiency is one of the most yield-limiting factors for these crops grown on highly weathered Brazilian Oxisols. Four greenhouse experiments were conducted to determine P requirements of these four crops. The P levels used were 0, 50, 100, 200, and 400 mg kg?1. Growth, yield, and yield components evaluated of four crop species were significantly increased with the application of P fertilization. Most of the responses were quadratic in fashion when the P was applied in the range of 0 to 400 mg kg?1. Maximum grain yield of upland rice was obtained with the application of 238 mg P kg?1 of soil, maximum dry bean grain yield was obtained with the application of 227 mg P kg?1 of soil, and maximum grain yield of soybean was obtained with the application of 224 mg P kg?1 of soil. Maximum shoot growth of corn was obtained with the addition of 323 mg P kg?1 of soil. Most of the growth and yield components had significant positive association with grain yield or shoot dry weight. Phosphorus concentration and uptake were greater in the grain compared to straw in upland rice and dry bean plants. Overall, P-use efficiencies decreased with increasing P rates.  相似文献   

13.
The use of cultivar with nutrient-use efficiency is an important strategy in the management of plant nutritional status, particularly potassium (K), because its high demand and the progressive impoverishment caused by the use of inadequate amounts cause frequent deficiency symptoms observed in soybean [Glycine max (L.) Merrill] crops. This study was conducted in greenhouse conditions in a completely randomized design with four replicates in an Typic Quartzipsamment soil aimed to assess the effect of applying two rates of K (50 and 200 mg kg?1) on growth, shoot dry weight yield (SDWY) and seed yield (SY), nutritional status, yield components, and efficiency of K use in eleven cultivars of different characteristics and growth habits. The SDWY, SY, number of seeds per pod, number of pods, and estimated 100-seed weight showed significant interaction between cultivar and the K rates, with greater values at the rate 200 mg K kg?1. Similarly, the concentration of nitrogen (N), phosphorus (P), K, calcium (Ca), magnesium (Mg), sulfur (S), boron (B), copper (Cu), iron (Fe), manganese (Mn), and zinc (Zn) in leaves and grains varied according to the K rates and in the cultivar. The most K-use efficient cultivars were BMX Magna RR, BRS 232, BRS 284, BRS 294RR, NA 5909RR, and Vmax RR, whereas FTS Campo Mourão RR was inefficient. Regarding response to fertilization, the cultivars Vmax RR, BMX Magna RR, NA 5909RR, BRS 284, and BRS 294RR were found to be efficient and responsive, whereas the cultivar FTS Campo Mourão RR, BRS 232, BMX Potência RR, BRS 295RR, TMG 1066RR, and TMG 1067RR are inefficient and responsive to K application in the soil.  相似文献   

14.
Dry bean is important pulse for the diet of South American population and results related to comparison of genetically modified and conventional dry bean genotypes to soil fertility are limited. A greenhouse experiment was conducted to compare genetically modified and conventional dry bean genotypes to soil fertility. Genotypes evaluated were Olathe Pinto, Olathe 5.1 (genetically modified), BRS Pontal, BRS Pontal 5.1 (genetically modified), Pérola and Pérola 5.1 (genetically modified). Fertility levels were 1 g fertilizer (5-30-15) kg?1 soil (low fertility level) and 2 g fertilizer (5-30-15) per kg soil (high fertility level). These fertility levels were designated as low and high, respectively. Grain yield, number of pods per plants, and seed per pod were significantly increased with the increase in soil fertility. Shoot dry weight, seed per pod, and 100 seed weight were also significantly influenced by genotype treatment. Fertility X genotypes interaction was significant for maximum root length and root dry weight, indicating genotypes responded differently at two fertility levels in relations to these two traits. Shoot dry weight, number of pods per plant, and grain harvest index had significant association with grain yield, indicating that increase in these three traits grain yield can be increased. Grain yield efficiency index (GYEI) was having significant linear association with grain yield. Hence, on the basis of GYEI, genotypes were classified as efficient (E), moderately efficient (ME), and inefficient in nutrient use. Three conventional genotypes (Olathe Pinto, BRS Pontal and Pérola) and one genetically modified genotype (Olathe Pinto 5.1) were classified as moderately efficient and two genetically modified genotypes (Pérola 5.1 and BRS Pontal 5.1) were classified as efficient. None of the genotypes fall into the inefficient group.  相似文献   

15.
Dry bean is an important legume crop for Latin American people and nitrogen is one of the most yields limiting nutrients for bean crop. A greenhouse experiment was conducted to evaluate nitrogen (N) use efficiency of 20 dry bean genotypes. Genotypes were grown on an Oxisol and two N levels used were without N application (low level) and an application of 400 mg N kg?1 (high level). Shoot dry weight, grain yield and yield components, N concentration and uptake in shoot and grain were significantly affected by N and genotype treatments. Grain yield had a highly significant (P < 0.01) association with shoot dry weight, pod number, grains per pod and 100 grain weight. Among the 20 genotypes tested, Perola, CNFR 7847, CNFR 7865, CNFP 7777 and CNFM 6911 were found to produce reasonably good yield at low N rate as well as responded well to applied N. Whereas, some genotypes like BRS Radiante, CNFP 7624, CNFM 7875, CNFM 7886, CNFC 7813, CNFC 7827, CNFP 7677 and CNFP 7775 produced very good yields at higher N rate but very low yields at lower N rate. Hence, these genotypes are good for farmers using higher technology. Nitrogen concentration and uptake were higher in dry bean grains compared with shoot and 63% of N accumulated at zero N rate and 75% N accumulated at 400 mg N rate were translocated to grain across 20 genotypes. Nitrogen uptake efficiencies were having highly significant (P < 0.01) quadratic relationship with grain yield. This indicates that improving N uptake in dry bean plants can increase grain yield.  相似文献   

16.
Dry bean is an important legume for human consumption worldwide. Low soil fertility, including zinc (Zn) deficiency, is one of the main factors limiting yield of this legume in South America, including Brazil. The objective of this study was to evaluate 30 dry bean genotypes for zinc (Zn)–use efficiency. The Zn rates used were 0 mg Zn kg?1 (low) and 20 mg Zn kg?1 (high) of soil. Grain yield, straw yield, number of pods, hundred-seed weight, number of seeds per pod, maximum root length, and rood dry weight were significantly affected by Zn and genotype treatments. The Zn × genotype interactions were also significant for growth, yield, and yield components, indicating that some genotypes were highly responsive to the Zn application while others were not. Based on seed yield efficiency index (SYEI), genotypes were classified as efficient, moderately efficient, and inefficient in Zn-use efficiency. Most efficient genotypes were CNFP 10104, BRS Agreste, BRS 7762 Supreme, CNFC 10429, BRS Estilo, CNFC 10467, BRS Esplendor, and BRS Pitamaba. The most inefficient genotype was BRS Executive. Remaining genotypes were moderately efficient in Zn-use efficiency.  相似文献   

17.
Potassium (K) is an essential nutrient for higher plants. Information on K uptake and use efficiency of upland rice under Brazilian conditions is limited. A greenhouse experiment was conducted with the objective to evaluate influence of K on yield, K uptake, and use efficiency of six upland rice genotypes grown on Brazilian Oxisol. The K rate used was zero (natural soil level) and 200 mg K kg–1 of soil. Shoot dry weight and grain yield were significantly influenced by K level and genotype treatments. However, K × genotype interactions were not significant, indicating similar responses of genotypes at two K levels for shoot dry weight and grain yield. Genotypes produced grain yield in the order of BRS Primavera > BRA 01596 > BRSMG Curinga > BRS 032033 > BRS Bonança > BRA 02582. Potassium concentration in shoot was about sixfold greater compared to grain, across two K levels and six genotypes. However, K utilization efficiency ratio (KUER) (mg shoot or grain yield / mg K uptake in shoot or root) was about 6.5 times greater in grain compared to shoot, across two K level and six genotypes. Potassium uptake in shoot and grain and KUER were significantly and positively associated with grain yield. Soil calcium (Ca), K, base saturation, acidity saturation, Ca saturation, K saturation, Ca/K ratio, and magnesium (Mg)/K ratio were significantly influenced by K application rate.  相似文献   

18.
Manganese (Mn) deficiency in upland rice grown after common bean or soybean, which received adequate rate of liming on highly weathered Oxisols, is observed. A greenhouse experiment was conducted to evaluate Mn‐use efficiency of 10 promising upland rice genotypes. The genotypes were grown on an Oxisol at 0 mg Mn kg?1 (natural soil Mn level) and 20 mg Mn kg?1 of soil applied as manganese sulfate. Grain yield, panicle number, and grain harvest index (GHI) were significantly (P < 0.01) influenced by genotype. However, shoot dry weight was significantly affected by Mn as well as genotype treatments. Manganese uptake in the shoot as well as in the grain was also affected by genotype treatment. On the basis of Mn‐use efficiency (mg grain weight/mg Mn accumulated in shoot and grain), genotypes were classified as efficient and responsive (ER), efficient and nonresponsive (ENR), nonefficient and responsive (NER), and nonefficient and nonresponsive (NENR). Genotypes Carisma, CNA8540, and IR42 were classified as ER, and genotypes CNA8557 and Maravilha were classified as ENR. Genotype Caipo was in the group NER, and in the NENR group were genotypes Bonança, Canastra, Caraja, and Guarani. From a practical point of view, genotypes that produce high grain yield at a low level of Mn and respond well to Mn additions are the most desirable because they are able to express their high yield potential in a wide range of Mn availability.  相似文献   

19.
Sulfur (S) is an essential nutrient in crop plants and one of the components of amino acids (AAs) and proteins. Studies about sulfur efficiency on soybean cultivars [Glycine max (L) Merril] adapted to the tropical and subtropical conditions are still incipient. In Brazil, one experiment under greenhouse conditions evaluated the S-efficiency from eight soybean cultivars. The plants cultivated in a Typic Quartzipsamment received two S rates (0 and 80 mg kg?1). The grain yield (GY), shoot dry weight (SDW), and the relative yield (RY) had influence from the S rates. The cultivars BRS 295RR and BRS 360RR were the most efficient in using the S application. The number of pods per plant (NPP), photosynthetic rate (A), nitrate reductase (N-NO2?), and chlorophyll significantly increased with de 80 mg kg?1 of S. By contrast, the internal concentration of carbon dioxide (CO2) (Ci) was reduced. Similarly, there were increases in the concentration of nitrogen (N), phosphorus (P), magnesium (Mg), and N:S ratio in the leaves and grain, but the K increased only in the leaves. Comparing the cultivars, only the N concentration in the leaves and the Mg in the grain had non-significant differences.  相似文献   

20.
Zinc (Zn) deficiency in rice has been widely reported in many rice-growing regions of the world. A greenhouse experiment was conducted with the objective of determining Zn requirements of lowland rice. Zinc rates used were 0, 5, 10 20, 40, 80, and 120 mg Zn kg?1 of soil applied to an Inceptisol. Zinc application significantly affected shoot dry weight and grain yield as well as concentrations and uptakes of Zn in soil and plant. Maximum yield of shoot dry weight and grain yield were achieved at 5 and 20 mg Zn kg?1 of soil, respectively. Zinc concentration and uptake in shoot as well as Zn uptake in grain had significant quadratic increases as Zn concentration increased in the soil solution. Zinc concentration as well as uptake was greater in the shoot as compared with concentration and uptake in the grain. Zinc-use efficiencies significantly decreased with increasing Zn rates in the soil except agrophysiological efficiency, which had significant quadratic increases with increasing Zn rates. On average, about 6% of the applied Zn was recovered by the lowland rice plants. Mehlich 1 extracting solution extracted much more Zn than diethylenetriaminepentaacetic acid (DTPA). However, Mehlich 1 as well as DTPA-extractable Zn had significant positive correlations with each other as well as with Zn uptake in grain and shoot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号