首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Abstract

In acid soils, where organic carbon (C) corresponds to total C, direct determination of organic C by dry combustion is possible, whereas in soils with carbonates also a separate measurement of inorganic C is required. In this case, direct quantification of organic C can be accomplished by the Walkley‐Black method, which is time‐consuming and involves greatly polluting by‐products. Hence, a method able to determine directly organic C by dry combustion is strongly needed for soils with carbonates. This study proposes such a method, after it was found to be highly reliable in calcareous soils of a Mediterranean island. The correction factor to use in the Walkley‐Black method to account for nonrecoverable C was calculated. It does not show any overall relationship with the contents of either organic C or inorganic C, and for all land uses examined in the island, it is not significantly different from the commonly suggested value 1.30.  相似文献   

2.
Abstract

Walkley‐Black method is a simple and rapid method for organic carbon analysis. Because of incomplete oxidation of organic carbon (C), the recovery of organic C is low with this method. Assuming the 77% recovery of organic C with Walkley‐Black method, the results are corrected with a correction factor of 1.30. The objective of this study is to determine the soil organic C recovery rate and appropriate correction factor for Walkley‐Black (wet combustion) method for tilled soils in southern Illinois. Soil samples were collected in 1995 and 1996 from a trial established in southern Illinois on a moderately well drained, Grantsburg (fine‐silty, mixed, mesic Oxyaquic Fragiudalf) soil. Organic C contents with the Leco analyzer (dry combustion) were significantly higher as compared to the Walkley‐Black method in different tillage systems (no‐till, chisel plow and moldboard plow), soil organic matter fractions (whole soil and mineral fraction) and soil depths (0–5 and 5–15 cm). The recovery percentage of organic C was lower than the assumed percentage with the Walkley‐Black method. No significant differences in organic C recovery percentage were found due to differences in tillage systems and depths, whereas the recovery percentage was lower in mineral fraction as compared to the whole soil. The lower organic C recovery percentage was due to the more stable organic C compounds in the mineral fraction. On the basis of these findings, correction factors of 1.35 and 1.41 are proposed for whole soil and mineral organic C analysis with Walkley‐Black method, respectively for tilled Grantsburg and other similar soils in southern Illinois.  相似文献   

3.
Reliable measurement of soil organic matter (SOM) contents is crucial to assessment of soil health, productive longevity and the effects of climate change. In this study, the loss‐on‐ignition (LOI) method has been used to determine the SOM of dried soil samples with a wide range of clay, sand and silt contents from the Agricultural Laboratory Proficiency (ALP) program. Regressions of ALP participant data against LOI measurements at 350–650°C indicate that the extent of SOM oxidation depends more on the ignition temperature and time than on the sample compositions. Thus, LOI data from ignition at 350–550°C for 12 h relative to ignition at 650°C for 12 h converge at 650°C and the average coefficient of variance decreases to ≈ 4% at 650°C. Also examined are regressions of soil organic C from direct dry combustion as standards with LOI measured at 360°C for 2 h, LOI measured at 650°C for 12 h and with the Walkley‐Black procedure used in the ALP program.  相似文献   

4.
DETERMINATION OF ORGANIC CARBON IN SOIL   总被引:1,自引:0,他引:1  
The organic carbon contents of a range of soils and of various organic materials (mostly of plant origin) were determined by the titrimetric methods of Tinsley and Walkley and Black, and the results compared with those obtained by Shaw's wet combustion method. Tinsley's method gave more reliable results with soils than Walkley and Black's method, but neither is satisfactory for precise work. Both give high results with organic materials less oxidized than elemental carbon and low results with organic materials more oxidized, although this effect is masked with materials which do not react completely under Walkley and Black conditions. Quantitative results were obtained on a range of whole plant materials with both Tinsley's and Walkley and Black's methods. The latter thus provides a very rapid method for the determination of carbon in plants. The carbon contents, determined by Tinsley's method, of a range of pure organic compounds agreed with the predicted values. Tinsley's method does not give quantitative results with certain soils, partly because of the oxidation level of the organic matter in these soils and partly because oxidation is incomplete.  相似文献   

5.
Abstract

Regression equations for the relationship between Walkley‐Black carbon and carbon by dry combustion in a tropical humic brown clay soil were variable in four different vegetation regimes. In one case, statistically different correlation coefficients were obtained for grassland surface and the corresponding subsurface soils.

Calibration of the Walkley‐Black method against dry combustion carbon is recommended for each treatment in soil fertility studies as soil organic matter might have a different composition and hence carbon recovery value because of treatment.  相似文献   

6.
ABSTRACT

Hot-water- and water-extractable organic matter were obtained from soil samples collected from a rice paddy 31 years after the start of a long-term rice experiment in Yamagata, Japan. Specifically, hot-water-extractable organic carbon and nitrogen (HWEOC and HWEON) were obtained by extraction at 80°C for 16 h, and water-extractable organic carbon and nitrogen (WEOC and WEON) were obtained by extraction at room temperature. The soil samples were collected from surface (0–15 cm) and subsurface (15–25 cm) layers of five plots that had been treated with inorganic fertilizers alone or with inorganic fertilizers plus organic matter, as follows: PK, NPK, NPK plus rice straw (RS), NPK plus rice straw compost (CM1), and NPK plus a high dose of rice straw compost (CM3). The soil/water ratio was 1:10 for both extraction temperatures. We found that the organic carbon and total nitrogen contents of the bulk soils were highly correlated with the extractable organic carbon and nitrogen contents regardless of extraction temperature, and the extractable organic carbon and nitrogen contents were higher in the plots that were treated with inorganic fertilizers plus organic matter than in the PK and NPK plots. The HWEOC and WEOC δ13C values ranged from ?28.2% to ?26.4% and were similar to the values for the applied rice straw and rice straw compost. There were no correlations between the HWEOC or WEOC δ13C values and the amounts of HWEOC or WEOC. The δ13C values of the bulk soils ranged from ?25.7% to ?23.2% and were lower for the RS and CM plots than for the PK and NPK plots. These results indicate that HWEOC and WEOC originated mainly from rice plants and the applied organic matter rather than from the indigenous soil organic matter. The significant positive correlations between the amounts of HWEOC and HWEON and the amount of available nitrogen (P < 0.001) imply that extractable organic matter can be used as an index for soil fertility in this long-term experiment. We concluded that the applied organic matter decomposed more rapidly than the indigenous soil organic matter and affected WEOC δ13C values and amounts.  相似文献   

7.
ABSTRACT

The precise assessment of soil organic matter (SOM) is required when studying soil pedology, chemistry, physics, and fertility. Besides, it is a key for evaluating soil quality, plant growth, and sustainable land management. This research aims to correlate the SOM resulted from loss-on-ignition (LOI) with those from wet combustion (Walkley–Black, WB). A total of 130 soil samples were collected from Egypt and analyzed using WB and LOI. In LOI, samples exposed to the combustion temperatures of 300, 375, 430, and 550°C for 2 and 4 hours. Using RStudio, simple linear regressions were conducted to estimate the most suitable temperature/time combinations. The results showed that applying lower temperatures (300 and 375°C) for 2 hours provided a strong correlation between LOI and WB with R2 of 93 and 94% for all dataset and sandy soils, respectively. For clay soils the respective R2 values at 300 and 375°C were 83 and 85%. The proposed combinations were valid to estimate SOM content for different soils with correlation up to 0.99 for sandy soils.  相似文献   

8.
The organic matter (OM) quantity in soils is of fundamental importance for agriculture. The indirect determination of the OM through the Total Organic Carbon (TOC) quantity is performed by most soil laboratories in Brazil using the Walkley–Black (WB) method. This procedure involves oxidation with potassium dichromate which is a cancerous reagent. The objective of this study is to optimize the parameters for OM determination by the gravimetric method and to estimate the van Bemmelen factor for the studied soil. The studied region is the second and third plateau of Parana State, Brazil, from which 50 agricultural soil samples were analyzed. The temperature and exposition time in muffle were determined after a thermal analysis. The optimized parameters for the gravimetric method were 3 h at 420°C in the muffle furnace. The results for WB and gravimetric methods presented a good correlation and the van Bemmelen factor for the studied soil was 4.37.  相似文献   

9.
Abstract

The determination of soil organic matter by wet digestion techniques is a slow and laborious analysis. Loss‐on‐ignition (LOI) provides a simple alternative technique for the estimation of soil organic carbon in non‐calcareous A horizon soils of the Natal midlands and Zululand forestry regions. Using multiple regressional techniques, the relationships between loss‐on‐ignition, Walkley organic carbon and soil texture for 55 soils were determined over a range of ignition temperatures. The relationships hold best for soil samples with relatively low organic carbon contents (< 5%). The optimum temperature for ignition was found to occur at 450°C and resulted in the relationship: Soil organic carbon = 0.284*LOI percent. No advantage is gained through ignition at higher temperatures due to the loss of clay mineral structural water, even if the soil texture is accurately known.  相似文献   

10.
Abstract

Renewed interest in temporal soil organic carbon (SOC) stock changes has stressed the importance of reliable methods for quantitative assessment of organic compound (OC) content. Particularly with the establishment of modern dry‐combustion analyzers, which are replacing the traditional wet‐oxidation methods, the need for correct relationships between both is of crucial importance for comparison of past and current SOC data in long‐term SOC stock change studies. Dry combustion with a Variomax CNS‐analyzer was the standard to evaluate three other methods for Belgian agricultural soils. Excellent linear relationships were found with the Walkey and Black method and the Springer and Klee method, whereas a Shimadzu TOC‐analyzer slightly underestimated the OC content. Precision of the investigated methods was comparable and tended to be dependent on the sample size used for measurement. The OC oxidation efficiency of the most widely applied method of Walkey and Black for the soils in this study was very close to the generally accepted 75%. Mass loss on ignition at 800°C could be very well related to the soil OC content and the clay content. The traditional factor of 1.724 used to convert OC measurements to organic matter percentages is not valid for the investigated soils, which demonstrates that rather regional‐specific factors (in this study 1.911) should be determined and adopted.  相似文献   

11.
Is the composition of soil organic matter changed by adding compost? To find out we incubated biowaste composts with agricultural soils and a humus‐free mineral substrate at 5°C and 14°C for 18 months and examined the products. Organic matter composition was characterized by CuO oxidation of lignin, hydrolysis of cellulosic and non‐cellulosic polysaccharides (CPS and NCPS) and 13C cross‐polarization magic angle spinning nuclear magnetic resonance (CPMAS 13C‐NMR) spectroscopy. The lignin contents in the compost‐amended soils increased because the composts contained more lignin, which altered little even after prolonged decomposition of the composts in soil. A pronounced decrease in lignin occurred in the soils amended with mature compost only. Polysaccharide C accounted for 14–20% of the organic carbon at the beginning of the experiment for both the compost‐amended soils and the controls. During the incubation, the relative contents of total polysaccharides decreased for 9–20% (controls) and for 20–49% (compost‐amended soils). They contributed preferentially to the decomposition as compared with the bulk soil organic matter, that decreased between < 2% and 20%. In the compost‐amended agricultural soils, cellulosic polysaccharides were decomposed in preference to non‐cellulosic ones. The NMR spectra of the compost‐amended soils had more intense signals of O–alkyl and aromatic C than did those of the controls. Incubation for 18 months resulted mainly in a decline of O–alkyl C for all soils. The composition of the soil organic matter after compost amendment changed mainly by increases in the lignin and aromatic C of the composts, and compost‐derived polysaccharides were mineralized preferentially. The results suggest that decomposition of the added composts in soil is as an ongoing humification process of the composts themselves. The different soil materials affected the changes in soil organic matter composition to only a minor degree.  相似文献   

12.
Abstract

This study compared three dichromate‐oxidation methods adapted for use with 100‐mL digestion tubes and 40‐tube block digester (for controlled heating), the Walkley‐Black method, a loss‐on‐ignition procedure and an automated dry combustion method for the determination of organic carbon in soils of the northwestern Canadian prairie. The Walkley‐Black method required a correction factor of 1.40. The modified Tinsley method and the Mebius procedure, adapted for use with 100‐mL digestion tubes, recovered 95% and 98%, respectively, of soil carbon against the dry combustion procedure. The presence of elemental carbon in some soils probably caused, at least partially, the slightly incomplete recovery; thermal decomposition of dichromate may not have been accurately corrected for. A dichromate‐oxidation procedure with controlled digestion at 135°C gave 100% recovery, but somewhat more variable results. The loss‐on‐ignition procedure, even when allowance was made for clay content of the soils, was the least satisfactory of the methods tested. All procedures produced correlation coefficients of 0.980 or better against the dry combustion method.  相似文献   

13.
There is considerable interest in the computation of national and regional soil carbon stocks, largely as the result of the provisions of the Kyoto Protocol. Such stocks are often calculated and compared without proper reference to the uncertainties induced by different analytical methodologies. We illustrate the nature and magnitude of these uncertainties with the present soil organic carbon (SOC) study in Belgium. The SOC recovery of the Walkley‐Black method was investigated based on a database of 475 samples of silt loam and sandy soils, which cover different soil depths and vegetation types in northern Belgium. The organic carbon content of the soil samples was measured by the original Walkley‐Black method and by a total organic carbon analyser. The recovery was computed as the ratio of these two results per soil sample. Land use, texture and soil sampling depth had a significant influence on the recovery as well as their three‐way interaction term (land use × texture × sampling depth). The impact of a land use, texture and sampling depth dependent Walkley‐Black correction on the year 2000 SOC inventory of Belgium was determined by regression analysis. Based on new correction factors, the national SOC stocks increased by 22% for the whole country, ranging from 18% for cropland to 31% for mixed forest relative to the standard corrected SOC inventory. The new recovery values influenced therefore not only C stocks in the year 2000, but also the expected SOC change following land use change. Adequate correction of Walkley‐Black measurements is therefore crucial for the absolute and comparative SOC assessments that are required for Kyoto reporting and must be computed to take into account the regional status of soil and land use. ‘Universal’ corrections are probably an unrealistic expectation.  相似文献   

14.
Globally, there is problem of computing soil carbon stock because the Walkley–Black method gives only an approximation of soil organic carbon content. Until now, no universal relationship between Walkley–Black carbon (WBC) and total soil organic carbon (TOC) has been developed that could be applicable in all kinds of soil. In the present study, relationships between WBC and TOC were established from samples collected from central and northern India. TOC was measured by dry combustion technique and WBC was determined by wet digestion methods. A relationship between WBC and TOC was developed by taking into account silt + clay content (SICL) of soil and mean annual rainfall (MAR) of the region (adj. R2 = 0.99, n = 100). The present study gives an easy approach to measure TOC by easily available data sets (WBC, SICL, and MAR). Using this relationship, computation of soil carbon stock that was done earlier with WBC values could be revisited and improved.  相似文献   

15.
Accurate measurement of soil organic carbon (SOC) is dependent on precise and fast methods for the separation of organic and inorganic carbon. The widely used methods involving thermal decomposition of soil samples at a specific temperature in an automated carbon (C) analyzer are susceptible to interference by carbonates and overestimation of organic C, and thus removal of carbonates by acid pretreatment of samples is recommended. Two carbonate-removal pretreatments including hydrochloric (HCl) acid addition and HCl fumigation are compared using the calcium carbonate (CaCO3) standard and soil samples of varying SOC contents. Both pretreatment methods provided similar measurements of organic C, indicating that both methods are efficient in removal of carbonates present in the soil. However, the HCl fumigation method exhibited greater accuracy and precision compared to the HCl addition method. Hence, SOC measurement procedure involving HCl fumigation as a pretreatment for the removal of carbonates is recommended for carbonate-rich soils.  相似文献   

16.
A composting experiment was carried out to study changes in physical [color, odor, temperature, organic matter (OM) loss], chemical [C:N ratio, water-soluble organic carbon (Cw):organic N (Norg) ratio, NH4 +-N and NO3 ?-N, humic acid (HA):fulvic acid (FA) ratio, humification index (HI) and cation-exchange capacity (CEC):total organic carbon (TOC) ratio)] and biological [seed germination index (GI)] parameters to assess compost maturity and stability over a period of 150 days. Five composts were prepared using a mixture of different farm wastes with or without enrichment of N, rock phosphate (RP) and microorganism (MO) inoculation. All the composts appeared to change to a granular and dark grey color without foul odor, and attained a constant temperature with no measurable changes (ambient level) at 120 days of composting. Correlation analysis showed that the optimal values of the selected parameters for our experimental conditions are as follows: organic matter loss > 42%, C:N ratio < 15, HA:FA ratio > 1.9, HI > 30%, CEC:TOC ratio > 1.7 and Cw:Norg ratio < 0.55. Composts enriched with N + RP or N + RP + MO matured at 150 and 120 days, respectively, whereas composts without any enrichment or enrichment with N or RP + MO did not mature even at 150 days of composting.  相似文献   

17.
Abstract

The oxidable carbon content of 46 calcareous soils from the South‐East of Spain was determined by the Walkley and Black method and compared with the total organic carbon (C) content obtained by an automatic microanalysis method. The results were fitted to linear, curvilinear, and exponential equations which permit the conversion of the oxidable C values into those of total organic C when no direct means of analysis of the latter is available. A conversion factor of 1.26 is recommended.  相似文献   

18.
Abstract

Carbon and nitrogen (N) content of various soils in the world were analyzed using a CNS‐2000 (LECO, Corp., St. Joseph, MI) analyzer. The results were in good agreement with those obtained by a laboratory proficiency test at the International Soil‐Analytical Exchange, organized by Wageningen Agricultural University, Wageningen, The Netherlands. The best agreement for both elements was observed at a combustion temperature of 1000°C. Results of organic carbon (C) determined by the Tyurin method were closely related to results of C determination at this temperature. Higher C contents were obtained with samples rich in carbonates when analyzed at higher temperatures >1000°C. These results confirm the suitability of automated dry combustion in soil analysis for C and N.  相似文献   

19.
The objective of this work was to characterize colloids extracted from composts and their potential retention in soils. Compost made of sludge and green wastes was sampled (i) during the fermentation phase and (ii) after maturation. The same kind of compost was used in a long-term field experiment at Feucherolles (France), near Paris where amended and nonamended soils were sampled. The colloidal fraction was extracted from composts in water at room temperature (20°C) and compared to the colloidal fraction extracted from the soil. Composts were also extracted by pressurized hot liquid water at 50, 125 and 175°C. The total organic carbon of the extracts was measured and the particle size distribution (PSD) of colloidal extracts was analyzed by laser granulometry. The diameters of the colloids extracted from the soil ranged between 0.040 and 0.300 μm, independently of the temperature. For composts, it varied from 0.040 to 3.200 μm when extraction was done at 20°C, while at higher temperatures, much more organic matter was extracted, and colloid diameters ranged from 0.040 μm to 0.200 μm. The water-soluble C decreased and the size of colloids recovered in water at temperatures below 50°C increased when compost maturity increased. The adsorption on soils of colloidal particles extracted from composts was characterized. The largest adsorption (up to 30% of the initial soluble C) occurred with the extracts recovered at high temperature, in relation to the more hydrophobic properties of the colloids extracted with hot water maintained in subcritical conditions. After adsorption, the particle size distribution in the colloidal fraction extracted at 20°C moved towards finer fractions; by contrast, the colloidal fraction extracted at 175°C moved towards coarser fractions. The coarsest colloids coming from the soil disappeared during the adsorption experiment, probably because of the coprecipitation with the finest colloids coming from compost.  相似文献   

20.
Abstract

The performance of a commercial automated CHN elemental analyzer was evaluated by comparison with classical wet methods and with another commercial analyzer. With proper standardization, calibration, and sample preparation, the Perkin‐Elmer 2400 CHN elemental analyzer was shown to give reliable carbon (C) and nitrogen (N) analyses of plant and soil materials. Precision was demonstrated by the consistent reference rice straw C and N results obtained (1.6 to 2.8% CV for N, and 0.3 to 0.7% CV for C) when 11 samples were analyzed consecutively within a day or on other days. A simple linear regression analysis showed generally higher plant N values measured by the CHN analyzer than the Kjeldahl method. Predicted analyzer plant N values were only slightly lower than Kjeldahl N, with plant materials containing less than 1% N. Recovery of different amounts of nitrate‐N (NO3‐N) added to rice straw samples was better with the CHN analyzer than with both the common and the salicylic acid‐modified Kjeldahl method. A very good 1:1 relationship between analyzer soil N values and the permanganate‐reduced iron modified Kjeldahl N values was also shown at the range measured (0.005–0.200% N). However, the soil C values determined by the analyzer were generally lower than the Walkley‐Black C values. Based on precision, analyzer soil C results with 0.4 to 5% CV appear to be more reliable than the Walkley‐Black C results with 0.3 to 18% CV. In spite of its reliability, speed of analysis, and low manpower requirement, studies showed the high cost of analyzing samples (minimum of US$2.38 per plant and US$3.83 per soil sample) with the CHN analyzer and of maintaining such a sensitive equipment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号