首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 572 毫秒
1.
Abstract

Besides supplying calcium (Ca) and sulfur (S) to plants, gypsum has recently been used in agriculture to ameliorate some soil physical and chemical properties, especially to alleviate aluminum phytotoxicity in subsoils. When applied in large quantities, however, gypsum may leach significant amounts of nutrients from the plow layer. This study was conducted to assess the effect of gypsum addition to the soil on the magnitude of cation leaching as well as the relationship of leaching with some soil properties in a group of seven Brazilian soils. Rates of gypsum equivalents to 0, 5.0, 10, and 20 t ha?1 (0, 2.5, 5.0, and 10 g kg?1) were mixed with triplicate soil samples consisting of 3.0 kg of dry base soil. After 60 days of incubation at room temperature (15–25°C), the experimental units were packed into polyvinyl chloride leaching columns (32‐cm‐high×10 -cm-diameter) at a density of 0.9 g cm?3. Thereafter, they were percolated once a week with a volume of distilled water equivalent to 1.5 times the total soil porosity over 11 weeks. Soil samples were collected before the first and after the last percolation, for chemical analysis. Averaged across soils, 11 percolation events leached about 26% of each Ca, magnesium (Mg), and potassium (K) from the treatment without gypsum. Averaged across soils and rates, addition of gypsum leached 41–94% of added Ca, 13–90% of exchangeable Mg, and 13–58% of exchangeable K, and the highest losses occurred on the sandiest soils. The relationship between soil parameters and Ca leaching varied with gypsum rate: in the treatments that received gypsum, leaching was negatively related to cation exchange capacity (CEC), clay, and organic matter, and positively correlated with sand; in the treatment with no gypsum, leaching correlated with the same parameters above, nevertheless, all coefficients presented opposite signs. Leaching of K caused by gypsum was negatively associated with clay and positively with sand, whereas leaching of Mg was poorly correlated with any soil parameter. Gypsum is a good source to promote high and fast downward movement of Ca in the soil profile, but rates must be cautiously chosen because of excessive leaching of Mg especially on soils with low CEC.  相似文献   

2.
Abstract

Polyhalite is a natural mineral containing potassium (K), calcium (Ca), magnesium (Mg) and sulfur (S) and is proposed as a fertilizer source for these essential nutrients. Application of polyhalite is expected to be most relevant in soils where the availability of these nutrients is low: in sandy soils, in highly leached soils, or in areas where crops are irrigated by water with low content of these nutrients or are rain-fed. A controlled lysimeter experiment investigated the efficacy of surface applied polyhalite as a fertilizer supplying K, Ca, Mg and S compared to soluble sulfate salts in two soils (sandy and loamy) with or without simulated rain leaching events through two cycles of cropping. In the first cycle, carrot response and nutrient uptake, transport, and loss through leaching were studied, while in the second cycle the residual effect of the fertilizer was considered on maize without additional fertilizer application or leaching. Polyhalite plus rain led to increased carrot yield due to augmented Ca uptake in sandy soil. In both soils, polyhalite behaved as a prolonged availability fertilizer with more nutrients retained in the top soil layer and not leached below the root zone. The treatments did not affect maize growth or nutrient uptake except for lower K and S uptake in soils where rain had been simulated for the previous crop. We conclude that polyhalite shows potential as a commercial fertilizer to supply K, Ca, Mg, and S nutrients under conditions of dryland agriculture where occasionally leaching by rainfall occurs.  相似文献   

3.
Abstract

The relationship between water soluble and exchangeable cations (Ca, Mg, Na, and K) was investigated for surface horizons of 195 soils including many taxonomic categories and a wide range in physical and chemical properties from around the world. This will provide information on exchangeable soil cation solubility for use in estimating plant uptake and leaching potential. Amounts of water soluble and exchangeable cations were not consistently related (r2 of 0.50, 0.08, 0.77, and 0.49 for Ca, Mg, Na, and K). High correlations were biased by high water soluble and exchangeable cation levels of a few soils that had 3.8‐ and 2.5‐fold greater mean than median values. The ratio of exchangeable to water soluble cations was closely related to cation saturation (r2 of 0.87, 0.95, 0.95, and 0.93 for Ca, Mg, Na, and K, respectively). As the degree of saturation of the exchange complex by a certain cation increased, solubility Increased. A change in saturation had less effect on K than on Na, Mg, and Ca solubility. Only exchangeable soil cations (NH4OAc extractable) are routinely measured and reported in soil survey reports, thus, water soluble levels may be determined from cation saturation. This will allow estimation of the amounts of cation that can potentially move in solution through the soil or be taken up by plants. Use of cation saturation, in addition to exchangeable content, will better characterize soil cation availability by representing quantity, intensity, and buffer factors.  相似文献   

4.
Abstract

The objective of this work was to appraise the double acid (0.05N HCl+0.025N H2SO4) extraction agent for assessing the availability of Ca, Mg, and K in organic soils. The evaluation was done by determining the relation and interactions between the concentrations of Ca, Mg and K extracted from soils and those found in onion and alfalfa tissues.

The extraction procedure was found to give good relations (r 0.848**) between the concentrations of Ca and Mg extracted from soils and those present in onion and alfalfa tissues, though interactions between the amounts of Ca and Mg extracted from soils were found.

A differentiation among soils was found upon relating the amounts of soil extracted K to its concentration in onion and alfalfa tissues. Soil extracted K was shown to be related to its preponderance (K x 100/K Ca Mg) over other extracted bases (r = 0.975**). A critical preponderance of 11% K was identified for alfalfa. The critical preponderance of K in crops appraises some of the interactions among available soil cations and, consequently, is suggested as an improved approach for predicting crop response to potassium fertilization.  相似文献   

5.
我国东南部地区红壤表土养分的淋溶及再分布   总被引:6,自引:0,他引:6  
The leaching and redistribution of nutrients in the surface layer of 4 types of red soils in Southeast China were studied with a lysimeter experiment under field conditions. Results showed that the leaching concentrated in the rainy season (from April to June). Generally, the leaching of soil nutrients from the surface layer of red soils was in the order of Ca > Mg > K > NO3-N. In fertilization treatment, the total amount of soil nutrients leached out of the surface layer in a red soil derived from granite was the highest in all soils. The uptake by grass decreased the leaching of fertilizer ions in surface layer, particularly for NO3-N. Soil total N and exchangeable K, Ca and Mg in the surface layer decreased with leaching and grass uptake during the 2 years without new fertilization of urea, Ca(H2PO4)2, KCl, CaCO3 and MgCO3. Ca moved from the application layer (0~5 cm) of fertilizer and accumulated in the 10~30 cm depth in the soils studied except that derived from Quaternary red clay. The deficiency of soil exchangeable K will become a serious degradation process facing the Southeast China.  相似文献   

6.
ABSTRACT

Nitrate (NO3 -N) leaching in tropical soils, which are more weathered, is influenced by their mineralogical, physical, and chemical characteristics. Thus, the present study aimed to evaluate the effect of the variation of net electrical charge on the mobility of nitrate, applied as potassium nitrate (KNO3) or calcium nitrate (Ca(NO3)2), in samples from A and B horizons of three Red-Yellow Latosols (Oxisols), with different mineralogical and textural characteristics. Hydrochloric acid (HCl) or sodium hydroxide (NaOH) volumes were added to previously sterilized soil samples in order to condition five hydrogen potential (pH) values, obtaining different net electrical charges. The experiment was carried out with leaching columns under laboratory conditions. The soil columns were percolated with solutions of KNO3 or Ca(NO3)2 or water (control). An increase in positive net charges was significant and varied according to the soil and percolating solution; in general, it resulted in an increase of up to 50% in nitrate adsorption in some soils. Larger amounts of adsorbed nitrate were observed in the columns filled with the B horizon of the clayey gibbsitic Red-Yellow Latosol, showing adsorption of 85% for a positive net charge of 2 cmolc kg?1. Regarding kaolinitic soils, lower adsorption was observed in the medium-textured kaolinitic Red-Yellow Latosol, which had lower clay content and positive net charge. Application of Ca(NO3)2, as a percolating solution, increased nitrate adsorption compared to the application of KNO3. This effect may be attributed to the increase in positive net charge promoted by calcium (Ca2+), being more evident for the highest negative net charges.  相似文献   

7.
Abstract. Leaching of calcium (Ca), potassium (K) and magnesium (Mg) from urine patches in grazed grassland represents a significant loss of valuable nutrients. We studied the effect on cation loss of treating the soil with a nitrification inhibitor, dicyandiamide (DCD), which was used to reduce nitrate loss by leaching. The soil was a free-draining Lismore stony silt loam (Udic Haplustept loamy skeletal) and the pasture was a mixture of perennial ryegrass ( Lolium perenne ) and white clover ( Trifolium repens ). The treatment of the soil with DCD reduced Ca2+ leaching by the equivalent of 50%, from 213 to 107 kg Ca ha−1 yr−1 on a field scale. Potassium leaching was reduced by 65%, from 48 to 17 kg K ha−1 yr−1. Magnesium leaching was reduced by 52%, from 17 to 8 kg Mg ha−1 yr−1. We postulate that the reduced leaching loss of these cations was due to the decreased leaching loss of nitrate under the urine patches, and follows from their reduced requirement as counter ions in the drainage water. The treatment of grazed grassland with DCD thus not only decreases nitrate leaching and nitrous oxide emissions as reported previously, but also decreases the leaching loss of cation nutrients such as Ca2+, K+ and Mg2+.  相似文献   

8.
Abstract

An adequate supply of available Ca in the soil solution of the pegging zone during fruit development is required for production of high yields of high quality peanuts (Arachis hypogaea L.). On low Ca soils, application of gypsum during early bloom is recommended in order to ascertain adequate availability of Ca. Reaction of gypsum in soils under leaching conditions vary considerably and play an important role in fruit development and yield of peanuts. A laboratory study was conducted in leaching soil columns to investigate the effects of one gypsum amendment on leaching of Ca, K, Mg, and SO4 to a depth of 8 cm (fruiting zone of peanut). Six soils of varying physical and chemical properties representative of major peanut growing soils in Georgia were utilized. Following leaching with 15 cm water through gypsum‐amended soil columns, 50% to 56% and 74% to 77% of applied Ca and SO4, respectively, were leached below 8 cm in the sandy‐Carnegie, Dothan, Fuquay and Tifton soils. The respective values for the sandy clay loam‐Greenville and Faceville soils were 28% to 36% and 58% to 69%. Lower initial Ca status and greater leaching of Ca from the applied gypsum in the sandy soils as compared to sandy clay loam soils suggest greater beneficial effects of supplemental gypsum application for peanut production in the former soils than in the latter soils. Leaching of K or Mg (as percentage of Mehlich 1 extractable K or Mg) in gypsum‐amended treatment was considerably greater in sandy soils than that in the sandy clay loam soils. In view of the reported adverse effects of high concentrations of soil K and Mg in the fruiting zone on the yield and quality of peanuts, greater leaching of K and Mg from the fruiting zone in gypsum amended sandy soils enable them to maintain a favorable cation balance for the production of high yields of quality peanuts.  相似文献   

9.
第四纪红色粘土发育的红壤中营养元素的淋失   总被引:13,自引:2,他引:11  
A red soil derived from Quaternary red clay was employed to study nutrient leaching with soil columns repacked in laboratory. The objective was to identify the effects of fertilization practices on leaching patterns and magnitudes of Ca2+, Mg2+, K+, NH4+, and NO3-. The treatments were CK (as a control), CaCO3, CaSO4, MgCO3, Ca(H2PO4)2, urea, KCl, and multiple (a mixture of the above-mentioned fertilizers). The fertilizers were added to the bare surface of the soil columns, and then the columns were leached with 120 mL deionized water daily through peristaltic pumps over a period of 92 days. Leaching processes of NH4+, and NO3- were only measured in CK, urea, and multiple treatments which were directly related to N leaching. Results showed that sole application of CaSO4, and Ca(H2PO4)2 scarcely had any effect on the leaching losses of Ca2+, Mg2+, and K+; the application of MgCO3 stimulated the leaching of Mg2+; the application of CaCO3 promoted the leaching of Ca2+, Mg2+ and K+; urea treatment also promoted the leaching of K+ and NH4+, and NO3- leaching mainly occurred at late stage of leaching process in particular; under KCl treatment, leaching of Ca2+, Mg2+, and K+ was promoted to a large extent; under multiple treatment, leaching of Ca2+, Mg2+, K+, NH4+, and NO3- was all increased and NO3- was mainly leached at the end of leaching process and still had a trend of increase.  相似文献   

10.
Most Brazilian soil-testing laboratories use Mehlich 1 and 1.0 M potassium chloride (KCl) solutions as extractants for the determination of phosphorus (P), potassium (K), and sodium (Na) and for exchangeable calcium (Ca), magnesium (Mg), manganese (Mn), and aluminum (Al) in agricultural soil samples. Other laboratories use a combination of exchangeable ionic resin and KCl procedures. With recent adoption of the inductively coupled plasma (ICP-OES) in routine soil-testing laboratories, soil extraction with 1.0 M ammonium chloride (NH4Cl) became an alternative due to the possibility of determining all exchangeable elements in one run (Ca, Mg, K, Mn, Na, and Al), leaving determination of phosphorus (P) with Mehlich 1 or exchangeable ionic resin. To evaluate the performance of the NH4Cl solution, an experiment was carried out with thirty-seven samples of soils representative of the southernmost state of Brazil, Rio Grande do Sul. Four extraction solutions [Mehlich 1 at soil/solution ratio of 1:10 and 1.0 M ammonium acetate (NH4OAc), 1.0 M KCl, and 1.0 M NH4Cl at soil/solution ratio 1:20] were used with three different shaking times (5, 30, and 60 min). Correlation coefficients among all methods were high. Mehlich 1 did not perform well against NH4OAc and NH4Cl, despite the high correlation coefficients, with values consistently lower for K, even when the time of extraction was increased from 5 to 30 or 60 min. However, for concentrations less than 0.30 cmol kg?1 (i.e., in the range of K deficiency), both solutions performed similarly. Calcium and Mg increased with time of shaking. Comparable values of exchangeable Ca, Mg, and K, as well as of Al and Mn, were obtained with 1.0 M NH4Cl with 60 min shaking and the standard procedures of 1.0 M NH4OAc and 1.0 M KCl. The determination of Al by traditional titration/back-titration of the 1.0 M KCl solution gave slightly greater results compared to ICP-OES obtained using extraction with 1.0 M NH4Cl. The results indicate that for Ca, Mg, Mn, and Al, it is possible to replace the traditional 1.0 M KCl extraction with 1.0 M NH4Cl solution, with 60 min shaking time and a soil/solution ratio of 1:20.  相似文献   

11.
Amazonas State is the largest state in Brazil and mainly covered by tropical forest. Because of the importance of the tropical forest in maintaining soil health and a clean environment, conservation of the Amazon forest is a national priority. However, sustainable agriculture development is necessary in the state for the welfare of the local population. Maintaining soil fertility at an adequate level is an important component of sustainable farming. Very little information is available about soil fertility of Amazonas State. The objective of the present study was to evaluate chemical soil properties of Amazonas State of Brazil. Results include chemical properties of 3,340 samples, covering 62 municipalities of the state collected at 0–20 cm deep during 30 years (1975–2005). Chemical properties [phosphorus (P), potassium (K) extracted with Mehlich 1, calcium (Ca), magnesium (Mg), aluminum (Al) extracted with potassium chloride (KCl) 1.0?mol L?1, potential acidity (H + Al) extracted with calcium acetate, and base saturation] presented great variation, except cation exchange capacity (CEC) and pH (water). Most of the soil samples were characterized as having high acidity; medium level of organic‐matter content; low levels of P, K, Ca, and Mg; and high levels of Al and H + Al. Overall, base saturation was less than 20%, a value considered very low for most of annual crops. Soils from upland areas were more acidic and have poor fertility compared with lowland soils. To maintain sustainability of cropping systems, use of an adequate level of liming and chemical fertilizers are necessary on these soils.  相似文献   

12.
热带亚热带酸性土壤硝化作用与氮淋溶特征   总被引:3,自引:0,他引:3  
通过室内好气培养和土柱模拟淋洗培养试验,研究了氨基氮肥加入对热带亚热带4种不同性质和利用方式酸性土壤硝化、氮及盐基离子淋溶、土壤及淋出液酸化的影响。4种土壤分别为采自花岗岩发育的海南林地砖红壤(HR)、玄武岩发育的云南林地砖红壤(YR)、第四纪红黏土发育的江西旱地红壤(RU)和第四纪下蜀黄土发育的江苏旱地黄棕壤(YU)。结果表明:4种土壤硝化作用大小表现为YURUYRHR。HR主要以可溶性有机氮(DON)和NH_4~+-N形态淋失,YU土壤的氮淋溶形态以NO_3~–-N为主,YR和RU土壤的氮淋溶形态NO_3~–-N、NH_4~+-N和DON兼而有之。盐基离子总淋失量与NO_3~–-N淋失量显著正相关,但各盐基离子淋失由于离子本性和土壤性质差异并不完全一致。Ca~(2+)在缓冲外源NH_4~+-N硝化致酸和平衡NO_3~–-N淋失所带负电荷过程中起重要作用。在阳离子交换量小、盐基饱和度低的土壤(如RU土壤),外源NH_4~+-N的硝化和淋失不仅导致盐基离子淋失,而且引发NH_4~+-N、甚至是H~+淋失。综上,热带亚热带地区土壤上外源氮输入的增加可能会在更短的时间内导致氮素向系统外的流失,引发环境问题。  相似文献   

13.
An antagonistic reaction between calcium (Ca) and magnesium (Mg) and potassium (K) may lead to low absorption of K and Mg by plants from soils with high Ca contents even when levels of K and Mg should be adequate. Two separate field studies were carried out in 2009 and 2010 to determine the effects of potassium (0, 40, 80, 120 kg K2O ha?1; as potassium sulfate) and magnesium (0, 20, 40, 60 kg magnesium oxide (MgO)ha?1; as magnesium sulfate) applied to a soil with high lime content either separately or in combinations, on the grain yield and yield components of maize for grain in semi-arid Central Anatolia in Turkey. One dose of the K, Mg-fertilizers was applied during sowing in both years. According to the results, increasing the dosage of K increased yield components more than increases in Mg dosages. Combinations of K and Mg tended to maximize the yield components. Moreover, the greatest plant heights, first ear lengths, grain weights per ear and protein ratios were obtained for the K80Mg40 dose.  相似文献   

14.
Biochar affects base cation retention and leaching when it is used to enhance the base cation status of acidic soil. However, the details of its contribution are not yet clear. In this study, six loadings of corn straw biochar (0%, 2%, 4%, 6%, 8% and 10%, w/w) were applied to an acidic Ferralsol and incubated for 1 year. The results showed that the content of water-soluble and exchangeable base cations of K, Na, Ca and Mg increased with increasing levels of biochar in amended soil. The percentage of water-soluble Na, Ca and Mg of amended soil significantly decreased, while the percentage of exchangeable K, Ca and Mg increased significantly after the addition of biochar. For K and Na, biochar affected their leaching concentrations both as a source and by increasing the pH. For Ca, biochar reduced Ca leaching when the biochar loading was ≥4%, and the contribution increased from 30.8% to 100% at 4%–10% loading. For Mg, biochar reduced Mg leaching at biochar loadings 2%–10%, the reduction increasing from 22.0% to 70.5%. The results show that corn straw biochar can increase the content of the soil nutrient base cations K, Ca and Mg by increasing their exchangeable forms and enhance soil retention by decreasing their leaching. Thus, corn straw biochar can be used to effectively improve acidic soil base cation fertility.  相似文献   

15.
The mobility of major cations (H+, ammonium, Al, Ca, Na, Mg, K, Fe), heavy metals (Mn, Zn, Ni, Cd) and anions (chloride, sulphate and nitrate) was studied in the laboratory in an acidified brown soil from a Norway spruce forest. Lysimeters containing undisturbed soil columns of the A-horizon and the A- plus B-horizon were watered with 540 mm of throughfall precipitation collected in situ, either directly (pH 3.6) or adjusted to pH 3.3 or 2.8. The pH 3.3 treatment increased leaching of Mn and Cd from the B-horizon. The pH 2.8 treatment increased leaching of ammonium, Na, Ca, Mg, K, Mn, Zn and Cd from the A-horizon and ammonium, Al, Na, Ca, Mg, K, Mn, Zn and Cd from the B-horizon. Fe leaching from the A-horizon was decreased by both acidic treatments, and the pH of the leachates was not significantly affected. Sulphate retention was 138-161 meq m?2 yr?1 by all treatments. Due to experimental conditions nitrate leaching was observed in all lysimeters.  相似文献   

16.
A two years lysimeter experiment was carried out using wheat plants (Triticum aestivum L. cv. Lotti) on two texturally contrasting soils. The main purpose of this study was to evaluate the influence of increasing applications (5,10, 15,20, and 25 t.ha‐1) of solid phase (SP) from pig slurry on soil nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and sodium (Na) content, nitrate‐N (NO3‐N) leaching as well as on wheat composition and yield. As the control, a basic dressing of NPK fertilizer was applied. Results showed that plant growth was stimulated by increasing amounts of SP, yet the additions of 15 to 20 t SP ha‐1 led to similar effects on yield as that for the control. An accumulation of P on both soils was observed as well as a significant increase on NO3‐N leaching due to increasing rates of SP added to the soils. The N and P content in wheat plants (straw and grain) increased with increasing rates of applied SP.  相似文献   

17.
Abstract

The effects of irrigating with saline water on native soil fertility and nutrient relationships are not well understood. In a laboratory experiment, we determined the extent of indigenous nutrient [calcium (Ca), magnesium (Mg), potassium (K), manganese (Mn), and zinc (Zn)] release in salt-saturated soils. Soils were saturated with 0, 75, and 150 mmolc L?1 sodium chloride (NaCl) solution and incubated for 1, 5, 10, and 15 days. The saturation extracts were analyzed for pH, ECe, and water‐soluble Ca, Mg, K, Mn, and Zn, and the remainder soil samples were analyzed for exchangeable forms of these elements. In a subexperiment, three soil types (masa, red‐yellow, and andosol) were saturated individually either with 100 mmolc L?1 of NaCl, sodium nitrate (NaNO3), or sodium sulfate (Na2SO4) salt. These salts were also compared for nutrient release. Soils treated with NaCl released higher amounts of water‐soluble than exchangeable nutrients. Except for Zn, the average concentrations of these nutrients in the soil solution increased significantly with time of incubation, but concentrations of the exchangeable forms varied inversely with time of incubation. The masa soil exhibited the highest concentrations of Ca and Mg, whereas K was highest in andosol. The extract from soils treated with NaCl contained greater amounts of soluble cations, whereas soils treated with Na2SO4 produced the lowest concentration of these elements irrespective of the type of soil used.  相似文献   

18.
Tuber crops are generally grown in marginal lands with low native soil fertility. In India, laterite soils (acidic Ultisols) are the major soils for tropical tuber crops and are poor in innate fertility. Among tropical tuber crops, some have adapted to poor soils, such as cassava, whereas others such as tannia (Xanthosoma sagittifolium L.) cannot establish well in these soils and may manifest nutritional disorders, which ultimately result in the complete devastation of the crop. Therefore, we investigated the effects from a preliminary rate trial (PRT) and nutrient-omission pot trial (NOPT) using maize as a test crop and a NOPT with tannia to determine the optimum nutrient rate and limiting nutrients, as well as nutritional problems affecting the growth and yield of tannia. Each experiment was laid out in a complete randomized design with three replications and was conducted for both garden and paddy soils. The PRT revealed that the optimum nutrient requirements for the soils were different, with garden soils requiring nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), boron (B), zinc (Zn), and molybdenum (Mo) at 200, 60, 160, 70, 60, 50, 4, 8, and 0.8 kg ha?1, respectively, and paddy soil requiring twice these rates. The NOPT indicated that in addition to N, P, K, B, and Mo in both garden and paddy soils, Ca and Zn in paddy soils and S in garden soils were the constraining nutrients. The NOPT carried out with tannia indicated that the main nutritional problem was subsoil acidity-induced multinutrient deficiencies involving K, Ca, and Mg.  相似文献   

19.
Abstract. Ten chalk topsoils (0-25 cm) were repacked into columns in the laboratory. After leaching similar to one year's throughflow in the field, loss of K was equivalent to between 9 and 74kg K/ha. This represented between 3 and 30% of the initial exchangeable K with which loss was poorly correlated. Loss was dependant on the soil solution concentration and was inversely proportional to potassium buffer power.
The loss of magnesium in the same columns was between 10 and 22 kg Mg/ha (6-21% of the initial exchangeable Mg). Magnesium loss was poorly correlated with exchangeable Mg.
When KCl fertilizer was incorporated into the soils, the increase in leaching of potassium was 1–35% of the K addition. Application to the top of the column resulted in less leaching than when the K was incorporated. Leaching of magnesium was increased by up to 5 kg Mg/ha.
Potassium leaching may be delayed by the underlying A/C horizon but pure chalk, with an extremely low buffer power for K, has little ability to retain K. Extremely calcareous topsoils were the most leaky although in practice it is the organic chalk soils on which it is most difficult to attain adequate K levels. On all chalk soils, maintenance of a high K level with K fertilizer is likely to cause unnecessary long-term leaching losses. Annual, rather than biennial, fertilizer applications are to be preferred.  相似文献   

20.
Variations in concentrations of 24 elements in soils with loam and sandy loam texture and in Triticum aestivum wheat seedlings grown in the soils under greenhouse conditions were studied. Initial soils differed significantly in concentrations of 20 elements. Elemental composition of wheat seedlings depended on the soil where the plants were grown. An application of ISPOLIN (fertilizer enriched with potassium) resulted in variations in soil pH, plant biomass, and concentrations of several elements both in soils and in plants. An excess of bioavailable potassium (K) in soil led to significant increase of K and deficiency of calcium (Ca) and magnesium (Mg) in all parts of T. aestivum. Concentrations of many other elements in the plants also changed. The effects of soil fertilization on plant biomass, leaf chlorophyll, and plant element concentrations were soil-dependent. Depending on the ratio of K/Mg in the soils, there was either an increase of plant yield and chlorophyll content or no effect at all.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号