首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract

A greenhouse experiment was conducted to determine the effect of peat moss‐shrimp wastes compost on barley (Hordeum vulgare L.) grown on a limed loamy sand soil. A control, four rates of compost applied alone and in combination with three rates of nitrogen, phosphorus, and potassium (NPK) chemical fertilizer were evaluated. Applications of compost to limed soil substantially enhanced the growth of barley over the control. When considering all treatments, the main effect of compost rates on straw yield, numbers of tillers, plant height, and number of ears was more important than that of fertilizer. A significant interaction on barley growth parameter values was obtained with compost and fertilizer rates. A combination of moderate application of compost and fertilizer gave in some instances, more yield than compost or fertilizer applied alone. Nutrient content of barley increased with rate of compost applied to soil over the control. A significant relationship was found between soil organic carbon (C) and straw yield, number of tillers, plant height and number of ears whereas grain yield was correlated with soil total N. Results from this study indicate that peat moss‐shrimp wastes compost could represent a potential means of renovating low fertility sand soils.  相似文献   

2.
对沈阳市郊东陵、于洪、苏家屯、新城子四区蔬菜栽培15年左右的日光温室土壤有机碳组成特征进行了研究,以相应温室外的露地栽培土壤为对照,结果表明:日光温室蔬菜栽培的有机肥用量远远高于温室外露地栽培。随着有机肥用量增加,温室土壤水溶性碳、腐殖酸碳的增加比例小于胡敏素碳的增加比例。各区温室土壤总有机碳、非腐殖质碳、腐殖质碳数量的平均值分别是温室外露地的1.76~3.06倍、3.41~5.23倍、1.57~2.99倍。温室土壤中非腐殖质所占比例较对照露地的大,其水浮物碳占总有机碳比例是对照露地的1.80~2.63倍,温室和露地土壤水溶性物质碳占总有机碳的百分比大多低于2%。温室土壤胡敏酸碳、富里酸碳、胡敏素碳数量均高于对照露地,但有1/3以上的温室土壤H/F低于对照露地土壤。由于不同农户的水、肥管理水平差异较大,不同温室土壤的总有机碳及各组分的碳变异性较大。  相似文献   

3.
In this research, the effects of land use and slope position on soil properties and its agronomic productivity were studied in a greenhouse experiment. The study also covered the effects of water stress, fertilizer treatment and their interactions. Eight soil samples were collected from four slope positions along hill slopes from two adjacent land use types of rangeland and dry farmland in a semiarid region of Iran. Soil samples were analyzed for their physical and chemical properties and yield and yield components of wheat were measured as indices of soil agronomic productivity in a replicated pot experiment. Soils of the dry farmland showed higher fertility and better quality than the soils from the adjacent degraded rangeland, especially at the upper slope positions. The results indicated that yield components of wheat were all higher for the dry farming land compared to the degraded rangeland, and at the bottom of slopes compared to the top. The effect of land use and slope position on agronomic productivity of soil was influenced by water supply. The actual impact on soil productivity of soil degradation, induced by land use and slope position, was overshadowed by the dominating effect of water stress. While both chemical fertilizer and fertilizer + manure treatments enhanced the agronomic productivity of all soils, their effects were much more pronounced on the degraded soils of the rangeland. Water stress reduced fertilizer efficiency on all the soils used in this study. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Soil organic matter, effects on soils and crops   总被引:4,自引:0,他引:4  
Abstract. Manurial treatments and cropping history have remained unchanged for many years in classical and long-term experiments at Rothamsted and Woburn, in some cases for more than 100 years. Soil samples taken periodically have been analysed to follow changes in organic carbon content with time and treatment. Data presented here clearly show effects of carbon input and soil texture on equilibrium organic matter content.
Until recently increasing amounts of soil organic matter had little effect on yields of arable crops especially if fertilizer nitrogen dressings were chosen correctly. However the yield potential of many crops has increased and various agronomic inputs have become available to achieve that potential. Yields of many crops are now larger on soils with extra organic matter both on the sandy loam at Woburn and the silty clay loam at Rothamsted. Some of the effect appears to be related to extra water holding capacity, some to availability of nitrogen in ways which cannot be mimicked by dressings of fertilizer N, and some to improved soil physical properties. Responses to fertilizer N have been larger on soils with more organic matter.  相似文献   

5.
Abstract

Mungbean [Vigna radiata (L). Wilczek] grown in rainfed calcareous soils suffers with phosphorus (P) deficiency. In view of high cost and low use efficiency of P fertilizer, greenhouse, incubation, and field experiments were carried out for determining P deficiency diagnostic criteria and efficient method of P fertilizer application in mungbean. In a pot culture experiment using a P‐deficient Typic Ustocherpt, maximum increase in grain yield with P was 686% over the control; and fertilizer requirement for near‐maximum (95%) grain yield was 30 mg P kg‐1 soil where fertilizer was mixed with the whole soil volume (broadcast) and 14 mg P kg‐1 where mixed with 1/4th soil volume (band placement). In a field experiment on a P‐deficient Typic Camborthid, however, maximum increase in grain yield was 262% over the control. Band placement resulted in 73% fertilizer saving as P requirement was 66 kg ha‐1 by broadcast and only 18 kg ha‐1 by band placement. Critical P concentration range appears to be 0.27–0.33% in young whole shoots (≤30 cm tall) and 0.25–0.30% in recently matured leaves. In an incubation study using the same Typic Ustochrept, P extracted by the sodium bicarbonate (NaHCO3), the ammonium bicarbonate‐diethlylenetriaminepentaacetic acid (AB)‐DTPA), and the Mehlich 3 soil tests correlated closely with each other, P concentration of whole shoots, and total P uptake by mungbean plants. Critical soil test P levels for pot grown mungbean were NaHCO3,9 mg kg‐1; AB‐DTPA, 7 mg kg‐1; and Mehlich 3, 23 mg dm‐3 soil. The more efficient and economical ‘universal’ soil test, AB‐DTPA, is recommended for P fertility evaluation of calcareous soils.  相似文献   

6.
不同磷源对设施菜田土壤速效磷及其淋溶阈值的影响   总被引:2,自引:0,他引:2  
土壤中磷的移动性不仅取决于磷的数量且与磷肥形态有关。了解不同磷源(有机肥和化肥)对设施菜田土壤磷素的影响对于指导科学施肥和面源污染防治至关重要。本文选取河北省饶阳县3种不同磷含量的农田土壤(未种植过蔬菜的土壤、种植蔬菜30年的塑料大棚土壤和种植蔬菜4年的日光温室土壤)为研究对象,采用室内培养试验和数学模型模拟方法研究有机无机磷源对设施菜田土壤磷素的影响,确定无机肥和有机肥源土壤磷素淋溶的环境阈值。结果表明添加有机肥和无机磷肥都会显著增加3种不同种植年限设施菜田土壤速效磷(Olsen-P)和氯化钙磷(CaCl2-P)含量,但增加速度不同。对于未种植过蔬菜的低磷对照土壤,磷投入量高于50 mg·kg-1(干土)后,无机肥比有机肥显著提高了土壤Olsen-P含量。对于已种植蔬菜30年的塑料大棚土壤,高磷投入时[300 mg·kg-1(干土)和600 mg·kg-1(干土)],无机肥比有机肥显著提高了土壤Olsen-P含量,低于此磷投入量时有机肥和无机肥处理之间没有显著差异。3种不同农田土壤CaCl2-P的含量所有处理均表现出无机肥显著高于有机肥处理,尤其是在高磷量[>300 mg·kg-1(干土)]投入时表现更加明显。两段式线性模拟结果表明,设施菜田土壤有机肥源磷素和无机肥源磷素淋溶阈值分别为87.8 mg·kg-1和198.7 mg·kg-1。随着土壤Olsen-P的增加,添加无机肥源磷对设施菜田土壤CaCl2-P含量的增加速率是有机肥源磷的两倍。因此,建议在河北省高磷设施菜田应减少无机磷肥的投入,特别是土壤速效磷高于198.7 mg·kg-1的设施菜田应禁止使用化学磷肥和有机肥,在土壤速效磷低于198.7 mg·kg-1的设施菜田应加大有机肥适度替代无机肥技术的推广。  相似文献   

7.
A pot experiment was conducted to investigate the effects of food waste compost (FW) on soil microbial population and growth, fruit yield, and quality of tomato grown in a greenhouse compared to no fertilizer (CK), chemical fertilizer (CF), decomposed chicken manure (CM), pig manure (PM), horse manure (HM), and bull manure (BM). Results show that FW treatment had the greatest numbers of bacteria, fungi, and actinomycetes in soils and shoot biomass, fruit diameter, and fruit yield of tomato, and it increased fruit yield by 12.6, 28.5, 31.0, and 40.0% when compared to HM, CF, CM, and CK, respectively. The FW treatment also improved fruit quality, with the contents of vitamin C, soluble sugar, and organic acid and the sugar/acid ratio of 22.8 mg 100 g?1, 3.84%, 0.50%, and 7.73, respectively. Thus food waste compost can be as an alternative to chemical fertilizer and other animal manures in vegetable cultivation.  相似文献   

8.
采用盆栽试验,研究了连续3年施用生物有机肥对3种土壤有机质组分、 棉花养分吸收量及产量的影响。结果表明,连续施肥3年后,不同有机质含量土壤的有机质组分含量、 棉花养分吸收量及产量均较不施肥有不同程度的提高。3种土壤随着施肥量的增加,土壤有机质总量和活性有机质组分(活性有机质、 中活性有机质、 高活性有机质)增加,活性有机质在3年后的增加幅度高于有机质总量,说明连续施用生物有机肥可以改善土壤有机质质量。高等、 中等有机质含量的土壤施用生物有机肥2030 g/kg时养分吸收量最大; 低等有机质含量的土壤在施用生物有机肥40 g/kg时养分吸收量最高。高、 中、 低等有机质含量的土壤棉花产量分别在施用生物有机肥20、 20、 40 g/kg时最大,较不施肥增加了54.05%、 37.15%、 104.08%。通过相关分析表明,随着土壤的本底有机质含量由高到低,有机质组分、 棉花养分吸收量及产量之间的相关性则越好,养分吸收量和产量存在极显著相关。  相似文献   

9.
Abstract

Polyhalite is a natural mineral containing potassium (K), calcium (Ca), magnesium (Mg) and sulfur (S) and is proposed as a fertilizer source for these essential nutrients. Application of polyhalite is expected to be most relevant in soils where the availability of these nutrients is low: in sandy soils, in highly leached soils, or in areas where crops are irrigated by water with low content of these nutrients or are rain-fed. A controlled lysimeter experiment investigated the efficacy of surface applied polyhalite as a fertilizer supplying K, Ca, Mg and S compared to soluble sulfate salts in two soils (sandy and loamy) with or without simulated rain leaching events through two cycles of cropping. In the first cycle, carrot response and nutrient uptake, transport, and loss through leaching were studied, while in the second cycle the residual effect of the fertilizer was considered on maize without additional fertilizer application or leaching. Polyhalite plus rain led to increased carrot yield due to augmented Ca uptake in sandy soil. In both soils, polyhalite behaved as a prolonged availability fertilizer with more nutrients retained in the top soil layer and not leached below the root zone. The treatments did not affect maize growth or nutrient uptake except for lower K and S uptake in soils where rain had been simulated for the previous crop. We conclude that polyhalite shows potential as a commercial fertilizer to supply K, Ca, Mg, and S nutrients under conditions of dryland agriculture where occasionally leaching by rainfall occurs.  相似文献   

10.
ABSTRACT

Digestate is increasingly utilized as a fertilizer, and earlier research was dedicated to plant growth and soil properties, with simple little information available regarding the effects of digestate on soil, plant, and microbial communities under saline irrigation. For this reason, a pot experiment with Chinese melon was conducted in a greenhouse, and digestate (1100 L ha?1) and a full recommended dose of NPK fertilizer were used. The melons were irrigated with normal water 0.25 (SL0) and 2 dS/m (SL1) using sodium chloride (NaCl). Application of digestate increased the melon plant height and leaves number significantly (p < 0.05) compared to control and treatments that received full NPK dose, under both water treatments (SL0 and SL1). The maximum plant height (SL0: 161 cm and SL1: 85.5 cm) and leaves number (SL0: 156.33 and SL1: 69.67) were observed when digestate used with NPK fertilizer. Plant fruit length, fruit diameter, sugar content, and yield increased significantly by digestate addition. The melon fruit sugar content values were 12% (SL0) and 9.83% (SL1). Soil electrical conductivity values increased when digestate combined with NPK fertilizer (1.4 dS m?1) particularly, under saline water, while the soil pH is not affected by digestate treatments. Digestate increased bacteria and decreased the number of fungi in the soil. Our results indicated that the usage of digestate could be more effective than NPK fertilizer on plant growth and soil properties. And there is a need to confirm these results in soils more realistic for agricultural field conditions and pay attention to use of digestate with saline irrigation water.  相似文献   

11.
土壤的团聚状况是土壤重要的物理性质之一,团聚体数量是衡量和评价土壤肥力的重要指标。施用有机肥是提高土壤有机碳(SOC)含量、促进土壤团聚体形成和改善土壤结构的重要措施。本文以华北地区曲周长期定位试验站的温室土壤和农田土壤为研究对象,运用湿筛法,对比研究施用化肥(NP)、有机肥加少量化肥(NPM)、单施有机肥(OM)3种施肥方式对温室和农田两种利用方式土壤水稳性团聚体含量、分布和稳定性的影响,以提示施肥措施对不同土地利用方式土壤水稳性团聚体特征的影响。结果表明:在温室土壤和农田土壤中,OM处理较NP和NPM处理显著降低了土壤容重,增加了土壤有机质含量(P0.05),且在0~10 cm土层中效果最为明显。其中在温室土壤0~10 cm土层,单施有机肥处理(OM1)的土壤容重为1.17 g·cm~(-3),分别较施用化肥(NP1)和有机肥加少量化肥(NPM1)处理降低12.0%和8.6%,OM1的土壤有机质含量为54.81 g·kg~(-1),较NP1和NPM1增加104.8%和35.7%;在农田土壤0~10 cm土层,单施有机肥处理(OM2)的土壤容重为1.19 g·cm~(-3),较施用化肥(NP2)、有机肥加少量化肥(NPM2)分别降低8.5%和7.0%,OM2的土壤有机质为22.67 g·kg~(-1),较NP2、NPM2分别增加23.1%和15.0%。温室土壤和农田土壤中,0~10 cm、10~20 cm和20~40 cm层土壤团聚体的平均重量直径(MWD)和几何平均直径(GMD)均为OMNPMNP;OM处理下水稳性团聚体的分形维数(D)值最低,NP处理下最大。OM处理显著降低0~20 cm土层内水稳性团聚体的D值,表层0~10 cm土层效果最为明显,土壤结构明显得到改善;相比农田土壤,温室土壤稳定性指标变化最为明显,团聚体结构改善效果最好。土壤有机质含量与0.25 mm水稳性团聚体含量间呈极显著正相关关系(P0.001),说明土壤有机质含量越高,0.25 mm水稳性团聚体的含量就越高,土壤团聚体水稳性越强,土壤结构越稳定。因此有机施肥方式能在补充土壤有机碳库和有效养分含量的同时,显著增加土壤中大团聚体的含量及其水稳性,是提高华北平原农田土壤、尤其是温室土壤结构稳定性和实现土壤可持续发展的有效措施。  相似文献   

12.
Abstract

A range of cultivated organic soils was studied with respect to water repellence. All soils were wettable above a water content of approximately 30-50 % (v/v). Below this critical content, most soils showed a varying degree of water repellence. Well decomposed peat had lower infiltration rates than moderately decomposed peat. Lightly crushing the peat soil before measurement increased the infiltration rate compared with an undisturbed soil sample. In tests with aqueous ethanol of different molarity, peat soils showed greater repellence than gyttja soils. All moss peat layers were extremely water repellent and fen peats slightly less repellent. Water repellence did not occur on gyttja clay and marl gyttja.  相似文献   

13.
Biochar addition to soils has been frequently proposed as a means to increase soil fertility and carbon (C) sequestration. However, the effect of biochar addition on greenhouse gas emissions from intensively managed soils under vegetable production at the field scale is poorly understood. The effects of wheat straw biochar amendment with mineral fertilizer or an enhanced‐efficiency fertilizer (mixture of urea and nitrapyrin) on N2O efflux and the net ecosystem C budget were investigated for an acidic soil in southeast China over a 1‐yr period. Biochar addition did not affect the annual N2O emissions (26–28 kg N/ha), but reduced seasonal N2O emissions during the cold period. Biochar increased soil organic C and CO2 efflux on average by 61 and 19%, respectively. Biochar addition greatly increased C gain in the acidic soil (average 11.1 Mg C/ha) compared with treatments without biochar addition (average ?2.2 Mg C/ha). Biochar amendment did not increase yield‐scaled N2O emissions after application of mineral fertilizer, but it decreased yield‐scaled N2O by 15% after nitrapyrin addition. Our results suggest that biochar amendment of acidic soil under intensive vegetable cultivation contributes to soil C sequestration, but has only small effects on both plant growth and greenhouse gas emissions.  相似文献   

14.
Abstract

Poor accessibility and cost of soil testing reduce effectiveness of fertilizer use on small‐scale subsistence farms, and inadequate funding promotes adoption of soil tests in developing countries with minimal validation. For example, Mehlich I extraction of phosphorus (P) currently used extensively in Guatemala may not be suitable for Guatemala's broad range of soils. At least four alternatives are available but relatively untested [Bray 1, Mehlich III, Olsen, and pressurized hot water (PHW)]. Pressurized hot water is relatively simple and inexpensive but is not yet tested against other extraction methods under variable P or potassium (K) fertilization levels. To determine whether PHW‐extracted nutrients could be used to predict maize yield and nutrient concentration and uptake, soil, plant tissue and grain samples were obtained from a multiple‐site field study, and calibration studies were conducted using five rates of P and three rates of K on soils incubated without plants or cropped with maize in greenhouse and field conditions. In the multiple‐site field study, maize yield related significantly to PHW‐extractable P (r2=0.36) and to leaf P concentration (r2=0.23), but Mehlich I–extractable P did not. In the two soils used in the greenhouse study, maize yield, vegetative P concentration, and total P uptake by maize were predicted by PHW‐extractable P (R2=0.72, 0.75, and 0.90, respectively). In the field experiment, grain yield was not improved by P or K application, but P concentration of maize leaf tissue did relate significantly with PHW‐extracted P (R2=0.40). Mehlich I did not. There were no yield responses to K application in any experiment, but relationships defined between extractable K for all five K‐extraction procedures and soil‐applied K were similarly significant. In comparison, PHW was as good as or better than Olsen whereas Bray 1 and Mehlich III were less consistent. Mehlich I was overall the poorest P extractant. Mehlich I extraction of P should be replaced by one of the four alternatives tested. PHW is the least expensive and, therefore, most viable for use in Guatemala soils.  相似文献   

15.
施用有机肥对农田温室气体排放影响研究进展   总被引:3,自引:2,他引:1  
有机肥因具有丰富的氮、磷、钾、生物活性物质,能改善地力及作物品质等优点,而被广泛运用。然而有机肥对农田土壤的作用机理复杂,对农田土壤温室气体的影响不容忽视。通过增加土壤中有机C、改变土壤的C/N、影响土壤呼吸速率、增强土壤微生物活性等途径影响农田土壤温室气体的排放量。本文结合当前国内外研究进展,综述了施用有机肥对农田温室气体排放影响因子及作用特征,并提出了今后重点研究方向,以期为更好地揭示有机肥对农田温室气体通量的作用机制和控制农田温室气体排放提供参考。  相似文献   

16.
为探究设施农业中不同灌溉量与施肥模式对土壤理化特性、作物产量、品质、水分利用效率(water use efficiency,WUE)及氮肥偏生产力(nitrogen partial productivity,NPP)的影响。该研究通过对温室黄瓜设置充分(W1)与亏缺(W2)灌溉下不同比例减氮(N1:275 kg/hm2、N2:220 kg/hm2、N3:165 kg/hm2)配施腐熟羊粪有机肥(O1:12 t/hm2、O2:8 t/hm2)处理试验,分析充分与亏缺灌溉下不同减氮配施有机肥处理对土壤理化特性、黄瓜品质、产量、WUE及NPP的影响。结果表明,在相同灌溉条件下,减施氮肥和配施有机肥均能有效改善土壤结构,O1N3处理较其他处理土壤容重平均降低5.8%,孔隙度平均增加7.7%,三相组成优化,大粒径水稳性团聚体含量平均提高25.4%,0~30 cm土层土壤硝态氮含量平均降低21.8%。同时,配施有机肥能提高温室黄瓜WUE和NPP,在相同灌溉和氮肥条件下,O1较O2水平黄瓜WUE和NPP分别平均提高14.5%和15.7%。综合对比分析不同指标得出W1O2N2处理表现最佳,黄瓜可溶性葡萄糖、可溶性固形物、维生素C(VC)含量及产量较W1O1N1处理无显著差异(P>0.05),同时能有效改善土壤环境,减少肥料用量,保证生产经济效益。研究结果对于设施农业科学水肥管理及绿色高效生产具有重要的参考意义。  相似文献   

17.
Abstract

Most of the P extractants developed for soils in temperate countries have not been able to successfully predict P requirements of crops in the tropics. Some workers have, however, suggested the use of sorption capacity at standard equilibrium P concentration to estimate fertilizer P requirements. Phosphorus sorption capacity (psc), determined at 0.2 and 2.0 ug/ml equilibrium P concentrations, were evaluated by greenhouse and field fertilizer experiments on savannah soils of western Nigeria. Correlation coefficients between psc at 0.2 and 2.0 ug/ml P and yield attributes were very low and not statistically significant. The sorption values were also not able to predict P requirement in these soils because psc, and therefore, buffer capacity were low, difficult to measure accurately and did not approximate values required for maximum crop yields.

Field P rates usually exceeded P requirements obtained from psc measurements. However, extractants which were able to indicate P status and availability in the soils correlated significantly with yield. It is suggested, therefore, that soil tests with suitable P extractants in addition to fixation studies which would evaluate P needed to increase soil F to a given level would have to be investigated for meaningful fertilizer recommendations.  相似文献   

18.
Abstract

Whether a tropical soil should be limed or not for a particular crop is strongly dependent on the levels of soil aluminum (Al) which can be determined with soil tests. Soil pH is used to predict whether lime is needed in less‐weathered soils, although some evidence indicates a soil Al test would be more accurate. The objectives of this study were to determine and to compare the accuracies of four soil tests to separate soils requiring lime from those that do not, and to determine the cause of acid‐soil injury to soybean [Glycine max (L.) Merr.]. Soybean was grown in the greenhouse on four surface soils representing the major land resource areas of Louisiana and were amended with eight rates of lime, yields determined, and soils analyzed for soil pH, extractable Al, CaCl2‐extractable Al, CaCl2‐extractable manganese (Mn), and Al saturation. Acid‐soil injury in soybean grown on the Litro clay and Stough fsl was probably caused by soil‐Al effects while low soil calcium (Ca) and high soil Mn was likely responsible for lower yields from the Mahan fsl. Leaf Ca from the limed Mahan‐soil treatment was 5‐fold greater and leaf‐Mn 7‐fold less than control levels. Regression analyses’ R2 values were similar for all soil tests except for CaCl2‐extractable Mn, which was lower. Soil tests were compared across soil type by selecting treatments that had the same 85% relative yield. Using this data subset, there was no difference in the soil pH among the four soils, while there were significant differences among soils for all other soil test measurements indicating the superiority of soil pH for identifying acid‐soil injury. Critical test values were 5.1 soil pH, 30 mg kg‐1 extractable Al, 7% Al saturation, 0.7 mg‐kg‐1 CaCl2‐extractable Al, and 9 mg‐kg‐1 CaCl2‐extractable Mn.  相似文献   

19.
利用未熟化土壤(耕层2.0m以下)在温室内进行盆栽试验,研究不同底肥(CK、N、P、K、NP、NK、NPK、有机肥、NPK 有机肥)处理对冬小麦产量构成及生理生化指标的影响。结果表明:P肥对小麦各生长性状、产量、叶绿素含量、植株N含量和籽粒蛋白均有显著作用;植株N含量与籽粒N含量、叶片叶绿素含量及籽粒产量显著正相关,籽粒蛋白含量与叶绿素含量及籽粒产量亦显著正相关。在北方黄土母质的石灰性贫瘠土壤条件下,无机肥N、P、K 3因素中,P肥具有第一重要的作用,是小麦生长发育的限制因子。  相似文献   

20.
在甘肃武威市设施栽培条件下,通过田间小区试验研究了不同施肥量及肥料种类(化肥、有机肥、有机+无机)对设施土壤硝态氮累积、硝态氮在土壤剖面运移及土壤pH值变化的影响。结果表明:施氮量和肥料种类对土壤硝态氮的累积和淋溶均有较大的影响,随施氮量的增加,土壤剖面硝态氮累积量增加,其中对0~20cm土层硝态氮累积量的影响最为显著;在同等施氮量时,单施无机肥处理(NPK)、有机无机肥减半配施处理(1/2MNPK)、单施有机肥处理(M),在40~150cm土层硝态氮的累积量分别为267.33、211.94、125.72kg.hm-2,表明只施用化肥较有机肥、有机肥与化肥配施更易造成土壤硝态氮淋溶并在深层累积。将农户习惯施肥量(MNPK)减半后施用(1/2MNPK)对蔬菜产量没有影响,并且显著减少了硝态氮在土壤中的累积,表明当地农户设施栽培肥料施用量过高,不仅造成肥料利用率低,栽培成本高,还可能给地下水位较浅的地区带来环境污染的风险。此外,土壤硝态氮含量与pH值呈极显著负相关关系,表明硝态氮在土壤中大量累积会造成土壤pH值的下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号