首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The absorption and transport of Na and Cl from 0.1 mM and 10 mM 22Na labelled NaCl or 36Cl labelled KCl were examined in 15 days old seedlings of 3 cultivars of rice differing in their tolerance to salinity. Furthermore, the effects of 10, 100 and 1000 ppm (N)2S on their uptake were studied. It was found that in general, the salt‐tolerant cultivars BR and PNL‐1 absorbed more Na and translocated a lesser proportion of it to the shoot, compared to the salt‐sensitive IR‐8, from 0.1 mM NaCl. The presence of (N)2S reduced the uptake of Na in all the cultivars. It was also found that the presence of 100 ppm K, KN or NNreduced Na absorption from 0.1 mM NaCl significantly in all the cultivars, and the translocation to shoot in BR‐ Chloride transport from 0.1 mM NaCl was reduced by (N)2S in all the cultivars. The 3 cultivars differed significantly in the rates of absorption and transport of Na and Cl. The results indicate that PNL‐1 which is a cross of IR‐8 X BR, has inherited the salt tolerance trait from BR. Lower rates of Na translocation to the shoot can be used as an index of salt tolerance in rice.  相似文献   

2.
Two pairs of contrasting rice genotypes, each pair having similar general characteristics but differing in their tolerance to salt, were compared in short‐term experiments of NaCl absorption and translocation in intact plants. At low external NaCl concentration (0.1 mM), the absorption of Na was passive with a constant net influx rate (In), while the absorption of Cl was an active process obeying Michaelis‐Menten kinetics. At both low and high external NaCl concentrations (0.1 and 50 mM), salt‐tolerant ‘Pokkali’ had significantly lower rates of Na and Cl absorption than did salt‐sensitive ‘Peta’, although another moderately salt‐tolerant genotype, ‘IR 29725–25–22–3‐3–3’, did not differ from its salt‐sensitive counterpart, ‘IR 5’. For both pairs of the plants, translocation rates of Na and Cl were significantly lower in the salt‐tolerant genotypes than in the salt‐sensitive ones. It was concluded that exclusion of Na and/or Cl from the shoots may involve both absorption and translocation components of regulation. For relatively salt‐tolerant genotypes, a better regulation of either or both of the two components results in lower Na and/or Cl contents in the shoots, leading to a higher degree of salt tolerance.  相似文献   

3.
向日葵芽苗期离子对复合盐胁迫的响应   总被引:4,自引:2,他引:4  
研究向日葵耐盐的离子响应机制,可为快速筛选耐盐向日葵品种提供科学依据。本试验以油用向日葵盐敏感品种‘YK18’、中度耐盐品种‘YK06’和耐盐品种‘GF01’为试验材料,研究0 mmol·L~(–1)、50 mmol·L~(–1)、100 mmol·L~(–1)、150 mmol·L~(–1)、200 mmol·L~(–1)和250 mmol·L~(–1)复合盐(NaCl和Na_2SO_4按9∶1摩尔比混合)浓度下的种子萌发和离子在萌发幼苗中积累分布情况,并利用离子流检测技术,动态监测了复合盐胁迫24 h后植株根系的K~+、Na~+、Ca~(2+)等离子的流速流向。结果表明,复合盐胁迫抑制向日葵种子萌发,导致发芽率下降,平均发芽时间延长。盐胁迫后向日葵根系K~+大量外排,流速为‘YK18’‘YK06’‘GF01’;随着盐胁迫浓度升高,根系Na~+流速由内吸转为外排,内吸时‘YK18’速度最大,‘YK06’次之,‘GF01’最小,外排时‘GF01’流速最大,其"排盐"现象明显。复合盐胁迫后,整株的Na~+积累量增加,K~+减少,K~+/Na~+随着盐浓度升高而下降;低盐浓度(150 mmol·L~(–1))下‘GF01’和‘YK06’茎秆中K~+/Na~+低于‘YK18’;高盐胁迫(≥150 mmol·L~(–1))下,‘GF01’整株Na~+积累最少,叶片K~+/Na~+最高。另外,盐胁迫下向日葵幼苗根系Ca~(2+)的吸收速率加快,‘GF01’是‘YK18’的2倍。由此可见,不同耐盐性的油用向日葵植株在盐胁迫下可通过调节Na~+、K~+和Ca~(2+)的吸收与外排来适应盐胁迫环境,耐盐性强的品种具有更强的保K~+能力,并通过区域化Na~+(低盐胁迫)和拒盐机制(高盐胁迫)来提高其对盐胁迫的耐受性,维持植株叶片中合理的K~+/Na~+值。本研究结果可为盐碱地耐盐品种筛选和栽培提供理论依据。  相似文献   

4.
Abstract

Ion‐specific initial salt effects due to supply of extreme K+, Na+, Cl or SO4 2‐ combinations were studied on the carbohydrate pattern as well as on the activity of amylases, phosphorylase and invertase of two soybean varieties, Jackson and the more tolerant Lee.

Reducing sugars were little affected. Salinity increased leaf sucrose more in Jackson than in Lee, and more due to Cl? than to SO4 2‐ supply. Salinity increased the higher level of root sucrose in Lee less than the lower sucrose level in Jackson, independent of the nature of salination. Salinity increased leaf starch more in Jackson than in Lee. KCl increased leaf starch of Jackson most, Na2SO4. least. KCl increased leaf starch of Lee more than NaCl, while K2SO4 and Na2SO4 tended to decrease leaf starch. Only KCl stimulated amylases and phosphorylase in leaves of Jackson. Salinity changed amylases according to the starch content in leaves of Lee, while phosphorylase decreased independent of the ion combination supplied. Salinity decreased invertase in leaves of Jackson, it affected invertase in Lee only little.

It is suggested that the carbohydrate metabolism dependent and independent of ionic regulation contribute to physiological salt tolerance mechanisms of soybean varieties.  相似文献   

5.
Abstract

The mineral ion contents of seven halophytic species in the family Chenopodiaceae, and associated soils were examined. Each species was found growing in soils with wide ranges of salinity, sodicity and salt ion composition. Absolute concentrations of Na, Ca, Mg, K, Cl and SO4 in shoot tissue differed significantly among species. Species were classified into two groups: (1) chloride halophytes, with ion composition dominated by Na and Cl (Atriplex patula, Chenopodium rubrum, Salicornia rubra and Suaeda depressa), and (2) alkali halophytes, with relatively high K, Mg, Ca and low Cl contents (Chenopodium salinum, Kochia scoparia and Salsola pestifer). All species accumulated ? and excluded SO4, relative to concentrations of these ions in soil. Salsola pestifer was unique in strongly excluding Na.  相似文献   

6.
The effect of potassium sulfate (K2SO4) on adaptability of sugarcane to sodium chloride (NaCl) stress was investigated under hydroponic conditions. Two sugarcane cultivars, differing in salinity tolerance, were grown in half strength Johnson's solution at 80 mM NaCl with 0, 2.5 and 5.0 mM potassium (K) as K2SO4. Salinity disturbed above and below-ground dry matter production in both sugarcane cultivars. However, salt sensitive cultivar showed more reduction in shoot dry matter and higher root:shoot ratio compare to the salt tolerant cultivar under. Application of K significantly (p < 0.05) improved dry matter production in both sugarcane cultivars. The concentration of Na was markedly increased with increasing salinity; however, the application of K reduced its uptake, accumulation and distribution in plant tissues. Salinity induced reduction in K concentration, K-uptake, K utilization efficiency (KUE) and K:Na ratio in both sugarcane cultivars was significantly improved with the addition of K to the saline growth medium.  相似文献   

7.
Abstract

This study was conducted to ascertain the percent of available K, Cl, and SO4‐S recovered by alfalfa (Medicago sativa L. cv. ‘Vernal') herbage when various rates of K as KCl and K2SO4 were topdressed and also to determine where residual K, Cl, and SO4‐S accumulated in the soil profile. An established stand of alfalfa growing on low fertility silt loam soil was topdressed in the spring of each of two harvest years with 0, 448, 896, 1344, and 1792 kg/ha of K as KCl or K2SO4. Four harvests were taken during each harvest year (1972 and 1973). Soil samples were taken during the autumn of 1973 to a depth of 91.4 cm in KCl‐fertilized plots, and to a depth of 76.2 cm in K2SO4‐fertilized and control plots.

Potassium recovery by alfalfa during two harvest years where K as KCl was applied at 448, 896, 1344, and 1792 kg/ha/yr was 56, 33, 20, and 17%, respectively. Recovery of available Cl from those same treatments was 30, 17, 12, and 10%, respectively. Where K as K2SO4 was applied at 448, 896, 1344, and 1792 kg/ha/yr, 55, 35, 27, and 22%, respectively, of available K was recovered. Recovery of available SO4‐S from those same treatments was 16, 9, 7, and 5%, respectively. At the end of two years, a majority of the residual K was in the top 15.2 cm of soil. Residual Cl and SO4‐S were concentrated at a depth of 30.5 to 76.2 cm in the soil profile.  相似文献   

8.
Sulphate (SO4) salinity, in general, was found to be more injurious than chloride (Cl) salinity in all the four genetically diverse wheat cultivars—Triticum monococcum (Cl), T. aestivum cv. Chinese spring (C2), T. turgidum cv. langdon (C3) and amphidiploid (C4) obtained by a cross between T. aestivum cv. Chinese spring x Thinopyrum bessarabicum grown in hydroponic cultures containing iso‐osmotic saline treatments T1 (90 mM NaCl), T2 (45 mM NaCl+22.5 mM Na2SO4), T3 (15 mM NaCl + 37.5 mM Na2SO4), and T4 (45 mM Na2SO4). Among the cultivars, C4 followed by C2 and C3 appeared to be more salt resistant and Cl the most salt sensitive as far as various observations on osmotic potential and internal ion accumulation were concerned. Salt resistance could be ascribed to more exclusion of Na and Cl ions. Sulphate injury might be due to less effective sequestration or mobility of this ion towards some innocuous centres of plant tissues. Most of the interactive effects of cultivar versus salinity were prominently higher in cultivar C4 in treatment T1.  相似文献   

9.
Mineral regulation of two soybean varieties Jackson and Lee was investigated in long term water culture experiments using saline solutions. The effects of extreme K:Na ratios using chloride and sulfate as counterions were studied in the early stages of salinity.

The growth rates of both varieties were not affected by salinization. A K+ stimulated, intensive acropetal Cl translocation was observed in the salt sensitive variety Jackson. The varieties did not differ in Na+ translocation and in the suppression of Ca2+ and Mg2+ in the leaves. But the effect of the nature of salinization indicates already differences in Na uptake and translocation of the cultivars.

The avoidance of Cl, but also of Ha+, in connection with influences of the resulting ionic imbalance on metabolic pathways are probably the most causative factors for the different tolerance to salinity of the two soybean varieties.  相似文献   

10.
Abstract

A serial batch leaching experiment was carried out to evaluate the release of elements from wood ash mixed with a strongly acidic forest soil sample. Wood ash application resulted in increased leachate pH, dissolved organic carbon (DOC), and electrical conductivity (EC). Increasing application of wood ash increased cumulative release of inorganic carbon (IC), chloride (Cl), nitrate (NO3), sulfate (SO4), potassium (K), sodium (Na), calcium (Ca), magnesium (Mg), manganese (Mn), phosphorus (P), and copper (Cu). Release of NO3, P, iron (Fe), aluminum (Al), Cu, and lead (Pb) continued. Large amounts of DOC, K, Ca, and SO4 were mobilized. Inorganic C, Fe, and Mg were released in moderate quantities. Manganese, Na, Al, Cl, and NO3 were released in limited amounts. Amounts of leached P, Pb, and Cu were lower. The mixed order equation adequately described the release of elements in the soil‐ash mixture. Accumulation of elevated amounts of trace elements does not appear to be a problem when higher wood ash rates are avoided. Wood ash should be applied in split application to avoid short‐term concentrated alkaline and salty conditions that could interfere with plant growth.  相似文献   

11.
ABSTRACT

The interaction between soil salinity and infection caused by Verticillium dahliae was studied in pistachio (Pistacia vera) in a greenhouse experiment. Treatments consisted of 0, 1400, 2800, and 4200 mg sodium chloride (NaCl) kg? 1 soil and three rootstocks (Sarakhs, Badami, and Qazvini cultivars). They were gradually exposed to salinity stress before and/or after root inoculation with a water suspension of 107 conidia/mL of a pistachio isolate of V. dahliae. Salt stress significantly increased rootstock shoot and root colonization by V. dahliae. All rootstocks were susceptible to V. dahliae, but symptoms of the disease appeared earlier in Sarakhs, a salt sensitive cultivar. Moreover, salinity and V. dahliae interaction increased the concentrations of sodium (Na), potassium (K) and chloride (Cl), but decreased the K/Na ratio in all rootstocks. Shoot and root tissues of inoculated Sarakhs and Qazvini (a salt tolerant) contained the highest and the lowest concentrations of Na, K,and Cl, respectively. In salinity treatments, shoot and root dry weight of all rootstocks decreased as compared with controls. Sarakhs showed smaller shoot and root dry weight than Qazvini and Badami. Also, increasing the NaCl level increased accumulation of Na, K, and Cl in shoot and root of the rootstocks. Sarakhs showed higher concentrations of ions in the shoot and root. Based on shoot and root dry weights and ion accumulation, Sarakhs and Qazvini were susceptible and tolerant to salinity, respectively.  相似文献   

12.
Seed samples of diploid, tetraploid, and hexaploidbuffalograss (Buchloe dactyloides) were collected from locations over a geograptucal latitudinal gradient from San Luis Potosi, Mexico to Lincoln, Nebraska in the United States. Seed samples and samples of vegetatively propagated clones were tested for salt tolerance and salt uptake. Under nutrient solution culture, young shoots separated from the established buffalograss clones were found to be more tolerant to salt than the seedlings. Significant difference was found in the percentage of seedling survivorship among the populations. Substantial genetic variation of salt tolerance was detected among the vegetatively propagated clones within buffalograss populations. Over all, the buffalograss can he considered to be a moderately salt sensitive species. Its wealth of genetic variation of salt tolerance represents a potential for rapid salt tolerance selection response. A salt exclusion mechanism was found in the tolerance mechanism of the buffalograss. A greater sodium (Na) concentration was found in the root tissue than in the shoot tissue, suggesting a preferential exclusion of Na taken up by the shoots. The negative correlations between the plant tissue potassium (K) concentrations and Na/K ratios indicate a partial substitution of K by Na, and there was a less substitution of K by the more salt tolerant plants than the less tolerant plants. Differential susceptibility to calcium (Ca) disorders at high Na/Ca levels was detected between the salt tolerant and salt sensitive buffalograss genotypes.  相似文献   

13.
Bulk precipitation was sampled every 2 weeks for more than 2 yr in a lowland catchment in the eastern part of the Netherlands and dissolved constituents were determined. This paper discusses only concentrations of the main constituents: S04, NH4, Cl, NO3, Na, Ca, H, Mg, and K (in decreasing order) and tries to delineate specific source regions for these ion species. Despite the complex character of precipitation chemistry and the rather long sampling interval, statistical evaluation (cluster- and discriminant analyses) of the data provided discriminating results. Four sources could be distinguished: seaspray supplying major part of Na, Mg, and CI; industrial activities (Ruhr area) contributing excess amounts of Cl and SO4 in association with NH4; rural activities supplying N03, while K, Ca and excess amounts of Na and Mg mainly derive from local dust. No clear source area could be detected for H, but it was shown that SO2-emission is the main source of acidification of precipitation at the study catchment.  相似文献   

14.
Effect of NaCl and Na2SO4 on dry matter production, mineral content and organic compounds of spinach and lettuce . In water culture experiments the effect of 2,5 meq and 25 meq NaCl and Na2SO4 respectively on dry matter production and content of mineral elements, chloroplasts pigments and carbohydrates in lettuce (salt sensitive) and spinach (salt tolerant) has been studied. With increasing Na-supply the dry matter production was decreased in lettuce and increased in spinach. With increasing Na-supply in both species the content of K, Mg and Ca in the leaves decreased. This decrease was more pronounced with sulfate as accompanying anion (Na2SO4) and induced already deficiency in Ca and Mg. This induced deficiency of Mg was reflected especially in lettuce in lower contents of chloroplasts pigments. In both plant species there was no effect of the Na salt treatments on the content of phosphorus or nitrogen in roots or leaves. The carbohydrate content in both species was strongly affected by the Na salt treatments. Irrespectively of the accompanying anion this effect occured already at the low Na supply and before the dry matter production was influenced. In leaves and roots of lettuce the contents of glucose, fructose and sucrose was considerably decreased; this decrease was less expressed in the starch content. In spinach the Na supply only decreased the carbohydrate content in the roots whereas in the leaves especially the sucrose content was increased. This different effect of Na on carbohydrate content in spinach and lettuce could be an indication of different action of Na on carbohydrate metabolism, namely inhibited synthesis in lettuce and inhibited translocation in spinach. The results demonstrate that in studies on the effect of increasing Na salt concentrations besides the osmotic effects also the ion specific effects have to be carfully considered. These ion specific effects are competition of Na+ with other cations during uptake and the influence of Na on the cell metabolism, especially on the pathway of carbohydrates. The authors thanks Mrs. Hwie Juen Tjandraatmadja for her engaged help in various laboratory works.  相似文献   

15.
ABSTRACT

When rice is grown under moderate salinity (6?dS m?1), yields are reduced by up to 50%. The development of salt-tolerant varieties is a key strategy for increasing yields. We conducted an experiment using a hydroponic system with ion components similar to seawater to determine useful parameters for assessing salt tolerance. Two-week-old seedlings were grown for 7 days on Yoshida hydroponic solution. The treatment group then additionally received an artificial seawater solution (electrical conductivity, 12 dS m?1). After a 2-week period of salt stress, standard evaluation scores (SES) of visual salt injuries were assessed. The K, Na, Mg, and Ca contents were then determined in the roots, sheaths, and leaves of each plant. Following the SES results, we divided the 37 genotypes into four groups: salt-tolerant groups (STGs), moderately salt-tolerant groups, salt-sensitive groups (HSSGs), and highly salt-sensitive groups (HSSGs). In the control, STGs had the highest sheath K content (30.1 mg g?1 dried weight [DW]), whereas HSSGs had the lowest (21.4 mg g?1 DW). Sheath K was also highly and negatively correlated with SES. This suggests that sheath K may be useful for identifying salt-tolerant varieties under non-saline conditions. Plant growth was significantly affected under salt stress, but STGs had the smallest decrease in sheath DW. SES was significantly correlated with sheath and leaf Na, sheath K and Mg, and sheath and leaf Na/K and Na/Mg ratios. The results suggested that sheath K, Na/K, and Na/Mg may be useful indicators for genetic analyses of salt-tolerant varieties under salt-stress conditions. The salt-tolerant cultivars, KCR20, KCR124, and KCR136, are possible candidates for such studies because they had high sheath K content (31.19, 31.21, 29.44 mg g?1 DW, respectively) under non-saline conditions and low SES (3.3, 3.6, 3.9, respectively), and low sheath Na/K (0.64, 0.52, 0.92, respectively) and Na/Mg ratios (2.96, 2.27, 3.03, respectively) under salt-stress conditions.  相似文献   

16.
Abstract

Two lysimeter experiments were conducted on annual leaching losses of calcium (Ca), potassium (K), sodium (Na), chloride (Cl), sulphate‐sulphur (SO4‐S), and magnesium (Mg) (one experiment only) from a sandy soil in central England during 1988–1995 to provide information on typical nutrient losses under arable agriculture below 1.2 m (Experiment 1) or 1.5 m (Experiment 2). Total annual losses, in the absence of manure additions, were highly dependent on the amount of drainage; flow‐weighted average concentrations were similar between years within experiments. Concentrations, averaged over the duration of the experiments were 74 and 78 mg L‐1 Ca, 17 and 27 mg L‐1 Na, 11 and 8 mg L‐1 K, 74 and 77 mg L‐1 Cl, and 57 and 38 mg L‐1 SO4‐S for the two experiments respectively; Mg concentration was 17 mg L‐1. Applications of chicken litter were made to some of the lysimeters in the last three years, and all nutrients showed increased leaching as a result. Application rates akin to disposal (rather than for crop fertilization) produced the largest losses. Following a total application of 125 t ha‐1 over three years, average concentrations in water draining below 1.5 m in the final year were 57 and 277 mg L‐1 Ca, 22 and 75 mg L‐1 Cl, 7 and 14 mg L‐1 K, 22 and 57 mg L‐1 Na, 27, and 125 mg L‐1 SO4‐S for the untreated and manured soils, respectively.  相似文献   

17.
Loading of chemical elements in precipitation at the Solling For the period 1969–1976 (NH4, NO3: 1971–1976) monthly values of concentrations and flows of the ions NH4, H, Na, K, Ca, Mg, Fe, Mn, Al, Cl, NO3, SO4, P and organic bound N in precipitation are passed on. From the correlations between elements the following main ion sources are concluded: sea water (Na, Cl), combustion processes (SO4, NO3, NH4), lime dust after dissolution by H2SO4 and HNO3 (Ca, Mg), soil dust after dissolution by H2SO4 and HNO3 (Al, Fe), leaching from plants (K, NO3, SO4, Mg, Ca), biogenic contaminations (P, organic N, K, NH4, NO3). Seasonal variations in the concentrations are most evident for Na and Cl, less for NH4, SO4 and NO3. During the measuring period the flux of NH4 is significantly increased; for H and SO4, less for NH4, Mg, Ca and Fe, the increasing trend was interrupted in winter 1973/74 (oil crisis). Consequences for sampling are discussed.  相似文献   

18.
NaCl and Na2SO4 often dominate salt compositions in saline soils. While either salt alone affects soil organic matter mineralization, their interactions on soil organic matter dynamics are unknown. This study aimed to investigate interactive effects of the two salts on organic C mineralization and microbial biomass C of the saline soils after addition of maize straws. Both NaCl and Na2SO4 were applied at 0, 40 and 80 mmol Na kg−1 soil and the incubation was undertaken at soil water content of 15% and 20% (w/w) in dark at 28.5 °C for 70 days. The study found significant interactions of NaCl and Na2SO4 on CO2-C evolution during the early incubation periods—a suppressing effect at days 1-2 but a stimulating effect at days 6-8 and 17-20, and thereafter the salt interactions were influenced by water content. The interactions of water content with NaCl or Na2SO4 on CO2-C evolution were observed through the incubation periods except days 1-2, showing that the salt effects were dependent on water content. Total CO2 evolution over the 70-day-long incubation decreased with increasing NaCl but increased with increasing Na2SO4 compared to the nil-salted treatment. Salt interactions on soil microbial biomass C were observed at days 7, 21, but not at day 49. Microbial biomass C increased at day 7 in the soils treated with either NaCl or Na2SO4 but decreased where the two salts were combined. At day 21, microbial biomass C increased with NaCl but decreased with Na2SO4 regardless whether the counterpart salt was added. The results suggest that soil organic C mineralization can be affected by the interactions of NaCl and Na2SO4, possibly through the salt-induced changes in microbial biomass community structure.  相似文献   

19.
不同品种油葵对盐胁迫响应研究   总被引:1,自引:0,他引:1  
通过盆栽试验,研究了盐胁迫对不同品种油葵出苗、生长、产量及植株Na+和K+吸收的影响,明确不同品种油葵对盐胁迫效应的差异。结果表明,随土壤盐浓度的升高,油葵的出苗率、株高、产量和生物量均有所下降,新葵杂6号受到的抑制作用更加明显;与全生育期的相比,各品种在出苗阶段的耐盐性远高于成苗至成熟期阶段,低盐胁迫对油葵的出苗和后期生长均有一定的促进作用。研究发现当盐胁迫对油葵苗期生长的相对抑制率超过40%时不能完成其生活史,超过50%时则不能生长至成熟期,在显蕾或花期枯死。随着盐胁迫程度的加剧植株中Na+的含量成倍增加,K+/Na+显著降低,而K+含量变化较小,适宜的盐浓度可促进植株对钾的吸收,但品种间存在较大的差异,在同一盐浓度下油葵植株中Na+含量陇葵杂1号<法A15<新葵杂6号,而K+含量与K+/Na+则刚好相反,各品种对盐胁迫的敏感性均为花期、显蕾期>苗期>成熟期;减少植株对Na+的吸收,维持K+的稳定性,保持较高K+/Na+是品种耐盐的重要机制之一,三个油葵品种中,陇葵杂1号耐盐性最强,其次为法A15,新葵杂6号耐盐性较差。  相似文献   

20.
水稻耐盐性的机理   总被引:15,自引:3,他引:15  
Shaheen Basmati was evolved as a salt tolerant fine rice variety by the Soil Salinity Research Institute,Pindi Bhattian, Pakistan. Water culture studies were conducted to investigate the physiological mechanism exercised by this variety in particular and rice plant in general to face the saline environment. Performance of this rice variety and the concentration and uptake of ions were studied under stress of three salinity levels(30, 60 and 90 mmolL^-1) created with NaC1. Recorded data indicated that shoot dry matter was not significantly affected by all the three levels of salinity. However, NaC1 levels of 60 and 90 mmol L^-1 affected the root dry matter significantly. Sodium concentration and uptake was enhanced significantly in root and shoot at the first level of salinity (30 mmol L^-1) but thereafter the differences were non-significant, indicating the preferential absorption of this cation. The K concentration decreased significantly in shoots at all the levels. The impact was less pronounced in roots as far as K absorption was concerned. The effect on Ca and Mg concentrations was not significant. The values of K:Na, Ca:Na and (Ca Mg):Na ratios in shoot and root were comparatively low under stress conditions, indicating that selective ion absorption may be the principal salt tolerance mechanism of variety Shaheen Basmati when grown in a saline medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号