首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
在福建黄泥田长期定位施肥试验的第26年,研究了不同施肥模式对水稻子粒与土壤微量元素含量的影响。结果表明,与不施肥(CK)相比,化肥+牛粪(NPKM)、 化肥+秸秆还田(NPKS)及单施化肥(NPK)处理的水稻子粒Zn、 B、 Cu含量均有不同程度的提高,并尤以NPKM处理最为明显,三种微量元素含量分别提高14.3%、 25.1%、 465.2%,均达差异显著水平。NPKM与NPKS处理还不同程度地提高了子粒Mn含量,但各施肥处理的子粒Fe含量均显著降低。各施肥处理尤其是NPKM与NPKS均显著提高了子粒微量元素吸收量。NPK处理的土壤有效B、 Fe、 Zn、 Cu含量与CK相比均呈下降趋势,且有效Zn、 Mn含量较试验前土壤分别降低了36.4%与24.6%,而NPKM与NPKS处理缓解了下降趋势,且NPKM处理的土壤有效Zn、 B、 Mn含量分别较CK提高46.6%、 52.0%、 43.0%,均达差异显著水平。土壤有机质与子粒B、 Cu、 Zn含量呈显著正相关,子粒必需氨基酸、 粗蛋白与子粒Zn含量呈显著正相关。以上结果说明,长期化肥配施牛粪或秸秆还田有利于提高水稻子粒Zn、 B、 Cu等微量元素含量和产量,改善子粒营养品质,一定程度上又可缓解土壤有效微量元素含量的下降,是适合南方黄泥田的施肥模式。  相似文献   

2.
Micronutrient status in soils and crops can be affected by different fertilization practices during a long-term field experiment. This paper investigated the effects of different fertilization treatments on total and DTPA-extractable micronutrients in soils and micronutrients in crops after 16 year fertilization experiments in Fengqiu County, Henan Province, China. The treatments of the long-term experiment included combinations of various rates of N, P and K in addition to two rates of organic fertilizer (OF) treatments. Winter wheat and summer maize were planted annually. Soil macro- and micronutrients along with pH and organic matter (OM) were analyzed. Grains and above ground parts of both crops in the final year were harvested and analyzed for Cu, Zn, Fe and Mn. The results showed that soil Cu, Zn, Fe and Mn concentrations did not change among the different treatments to a significant level, except for a slight decrease of soil Zn in the CK (no fertilizer application) compared to the OF treatment. The DTPA-extractable soil Zn, Fe and Mn concentrations increased from 0.41 to 1.08 mg kg−1, from 10.3 to 17.7 mg kg−1, and from 9.7 to 11.8 mg kg−1, respectively, with increasing soil OM content, thus showing the importance of soil OM in micronutrient availability for crops. The NPK treatment also had higher DTPA-extractable micronutrient concentrations in soil. Deficiency of N or P resulted in a low yield but high micronutrient concentrations in crops except Cu in maize stalks. Higher available soil P significantly decreased crop micronutrients, possibly because of their precipitation as metal phosphates. Maize stalks contained higher concentrations of micronutrients than those of wheat straw, whereas wheat grain had higher micronutrients than those of corn grain. The transfer coefficients (TCs) of micronutrients from straw to grain were significantly different between winter wheat (1.63–2.52 for Cu; 2.31–3.82 for Zn; no change for Fe; 0.55–0.84 for Mn) and summer maize (0.24–0.50 for Cu; 0.50–1.21 for Zn; 0.02–0.04 for Fe; 0.07–0.10 for Mn). In conclusion, application of organic matter significantly increased the DTPA-extractable concentrations of Zn, Fe and Mn compared to the CK, grain and vegetative tissue in the CK and NK had higher micronutrient concentrations than those in other treatments.  相似文献   

3.
Identification of genotypic differences in micronutrient concentrations of staple food crops is essential if plant breeding strategies are to improve human mineral nutrition. The concentrations of zinc (Zn), iron (Fe), copper (Cu), and manganese (Mn) in polished grains of 285 rice (Oryza sativa L.) genotypes and the relationship between concentrations of the four micronutrient elements and concentrations of protein and lysine were examined. Significant differences (P<.01) were found in the concentrations of Zn, Fe, Cu, and Mn in polished rice with a fairly normal distribution among rice genotypes. On average, Cu and Zn concentrations of Indica rice were about 2‐fold higher than Japonica rice, while Fe concentrations of Japonica rice were slightly higher than Indica rice. Among Indica rice genotypes, red rice contained higher Zn than white rice. Protein and lysine concentrations differed considerably among the genotypes, but no close relationship between the micronutrients and protein or lysine concentrations was observed among genotypes. Sixteen genotypes with significantly higher grain Zn, Fe, Cu, and Mn concentrations were identified.  相似文献   

4.
The influence of elevated levels of micronutrients on the growth and flowering of French marigold (Tagetes patula L.) was investigated. Plants were grown with nutrient solution containing 0.25, 0.5, 1, 2, 3, 4, 5, or 6 mM boron (B), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), or zinc (Zn) and toxicity development was monitored. The threshold micronutrient concentrations that induced visible foliar toxicity symptoms were 0.5 mM B, 4 mM Cu, 4 mM Fe, 2 mM Mn, 1 mM Mo, and 5 mM Zn. The dry matter yields during the 5 week experimental period were reduced when micronutrient concentrations exceeded 0.5 mM B, 3 mM Cu, 3 mM Fe, 6 mM Mn, 0.5 mM Mo, and 5 mM Zn in the fertilizer solution. Leaf chlorophyll contents decreased when the nutrient solution concentrations of Cu, Fe, and Mn were greater than 0.5 mM, 3 mM, and 2 mM, respectively. Visual toxicity symptoms of the six micronutrients were characterized.  相似文献   

5.
Soil fertility exerts a direct influence on the essential micronutrient contents of food crops. The focus in this study was on the role that long-term inorganic fertilization (nitrogen (N), phosphorous (P) and potassium (K)) plays in increasing the micronutrient output of the paddy cropping system. After more than 45 years of inorganic fertilizer application, the combined application of fertilizers (PK > NP > NK) substantially increased As (arsenic), B (boron), Cd (cadmium), Co (cobalt), Cr (chromium), Cu (copper), Fe (iron), Mn (manganese), Mo (molybdenum), Ni (nickel), Se (selenium), V (vanadium) and Zn (zinc) density in the soil and rice grain. Optimized and continuous application of PK fertilizers increased the overall micronutrient densities in rice milling fractions (grain and bran). Micronutrient concentrations were usually the highest in bran. Both grain and bran were rich in Fe, Mn and Zn. Correlation analysis indicated that soil pH and organic matter exert a significant and direct effect on the micronutrient concentration of rice. Although long-term fertilization enhanced the proportion of micronutrients in rice grain, the levels were still much lower than the recommended dietary intake levels for micronutrients. We therefore suggest high consumption levels of brown rice (with micronutrient-dense bran layer) because they may increase the daily intake level of micronutrients and meet the nutritional requirements that people need for sound health.  相似文献   

6.

Purpose

The balance of micronutrients in soils is important in nutrient use efficiency, environmental protection and the sustainability of agro-ecological systems. The deficiency or excess of micronutrients in the plough layer may decrease crop yield and/or quality. Therefore, it is essential to maintain appropriate levels of micronutrients in soil, not only for satisfying plant needs in order to sustain agricultural production but also for preventing any potential build-up of certain nutrients.

Materials and methods

A long-term fertilizer experiment started in 1969 at Central Rice Research Institute, Cuttack, Odisha, India. Using this experiment, a study was conducted to analyze the balance of micronutrients and their interrelationship. The experiment was composed of ten nutrient management treatments viz. control; nitrogen (N); N + phosphorus (NP); N + potassium (NK); nitrogen, phosphorus and potassium (NPK); farmyard manure (FYM); N + FYM; NP + FYM; NK + FYM; and NPK + FYM with three replications. Micronutrients in soil (total and available), added fertilizers and organic manures and in rice plant were analyzed. Besides, atmospheric deposition of the micronutrients to the experimental site was also calculated. A micronutrient balance sheet was prepared by the difference between output and input of total micronutrients.

Results and discussion

Application of FYM alone or in combination with chemical fertilizer increased the diethylenetriamine pentaacetate (DTPA)-extractable Fe, Mn and Zn over the control treatment. The treatment with NPK + FYM had the highest soil DTPA-extractable Fe, Mn, Zn and Cu after 41 years of cropping and fertilization. Application of chemical fertilizers without P decreased the DTPA-extractable Zn over the control while the inclusion of P in the fertilizer treatments maintained it on a par with the control. The application of P fertilizer and FYM either alone or in combination significantly increased the contents of total Fe, Mn, Zn and Cu in soil mainly due to their micronutrient content and atmospheric depositions. A negative balance of Zn was observed in the N, NP, NK and NPK treatments, while a positive balance observed in the remaining treatments. The balance of Mn was negative in all the treatments, due to higher uptake by the rice crop than its addition.

Conclusions

Long-term application of chemical fertilizers together with FYM maintained the availability of micronutrients in soil and, thus, their uptake by rice crop.
  相似文献   

7.
Management practices have significant effects on crop micronutrient contents. This study examined effects of applying chemical fertilizers of nitrogen (N), phosphorus (P), and potassium (K) (NPK), alone or supplemented with straw or manure, under a wheat-maize cropping system in a 18-year experiment, on the crops’ iron (Fe), manganese (Mn), copper (Cu), and zinc (Zn) contents throughout the crops’ development. The micronutrient contents of both wheat and maize were above critical values during vegetative development, but Zn contents of maize ear leaves were sub-sufficient under all treatments. The wheat grain Mn, Cu, and Zn contents were lower under fertilized treatments than in unfertilized controls. Nutrient balance calculations showed that NPK application alone or with straw resulted in deficits of the four micronutrients, but not application of NPK supplemented with manure. Hence, application of micronutrients, such as Zn, through organic or inorganic fertilizers is recommended for this cropping system.  相似文献   

8.
Soil micronutrients have different degrees of residual effect to crops; again crops differ in their sensitivity to micronutrient requirement. Evaluation of residual effects of micronutrient application to cauliflower, okra, and transplant aman rice in a pattern was studied in piedmont soil of Bangladesh. In this study, seven treatment combinations including a control treatment were tested, and the treatments were designed taking the micronutrients following the additive element trial technique. The rates of micronutrients were 3 kg zinc (Zn), 2 kg boron (B), 2 kg Cu, 3 kg manganese (Mn), 5 kg iron (Fe), and 1 kg molybdenum (Mo) per hectare. Both Zn and B were found responsive for the first crop. As second crop, okra responded to both residual Zn and B, whereas in the third crop, residual effects of only Zn were reported. Zn fertilizer need not to apply in each crop of a cropping pattern.  相似文献   

9.
Micronutrients are essential for plant development; however, micronutrient content in soil often is not sufficient. This study compared availability of boron (B), copper (Cu), manganese (Mn), and zinc (Zn) in the soil and their effect in developing maize plants, supplied from a physical mixture of nitrogen, phosphorus, and potassium (NPK) granules and micronutrients or from a granulated mixture of NPK coated with these micronutrients. The experiment was conducted in a greenhouse, with a Rhodic Acrustox soil and the formulation 4-30-10 [nitrogen-phosphorus pentoxide-potassium oxide (N-P2O5-K2O)] with 0.1% B, 0.2% Cu, 0.2% Mn, and 0.3% Zn. A randomized block design with four replicates was used and the NPK formula doses used were 0, 150, 300, 600, 1200, and 2400 kg/ha. Coated NPK increased Zn levels in soil in 0.5 mg/dm3 in relation to its initial content, also causing an increase in plant dry matter. Compared with mixture, this increase was more than three times greater. Cu and Zn accumulation and Zn absorption were greater when their supply was made via coated granules. The larger dose of B via coated granules resulted in a greater B accumulation in comparison to the mixture. No differences were observed for the other variables when comparing both sources. Coating NPK granules with micronutrients was better than the mixture when comparing B, Cu, and Zn concentrations in the soil. Dry matter production of maize shoots and the accumulation of B, Mn, Cu, and Zn in it was greater when the fertilizer was coated with micronutrients.  相似文献   

10.
Lowland or flooded rice is mainly responsible for about 76% of total rice production at global level, yet information on micronutrient requirements for this crop is limited. Six greenhouse experiments were conducted at the National Rice and Bean Research Center of EMBRAPA, Santo Antônio de Goiás, Brazil, to determine requirements of zinc (Zn), copper (Cu), boron (B), molybdenum (Mo), manganese (Mn), and iron (Fe) for lowland rice grown on a Brazilian Inceptisol. The levels of micronutrients used were Zn (0, 10 20, 40, and 80 mg kg?1), Cu (0, 5, 10, 20, and 40 mg kg?1), B (0, 5, 10, 20, and 40 mg kg?1), Mo (0, 2, 4, 8, and 16 mg kg?1), Mn (0, 50, 100, 300, and 600 mg kg?1), and Fe (0, 250, 500, 1000, and 2000 mg kg?1). Grain yield was significantly increased in a quadratic fashion with the addition of Zn, Cu, B, Mo, Mn, and Fe. The adequate rates of micronutrients for maximum grain yield were Zn 33 mg kg?1, Cu 25 mg kg?1, B 26 mg kg?1, Mo 10 mg kg?1, Mn 250 mg kg?1, and Fe 1269 mg kg?1. In addition to grain yield, plant height, straw yield, panicle density, and root growth of lowland rice were also improved with the addition of most of these micronutrients. Improvement in root growth has special significance in improving nutrient-use efficiency under nutrient-stress conditions. Micronutrient-use efficiency (grain yield per unit nutrient applied) was in the order of Cu > Zn > Mn > Fe > Mo > B.  相似文献   

11.
稻米和土壤微量元素的空间变异   总被引:1,自引:0,他引:1  
Consumption of rice is the main source of micronutrients to human in Asia. A paddy field with unknown anthropogenic contamination in Deqing County, Zhejiang Province, China was selected to characterize the spatial variability and distribution of micronutrients in rice grain and soil. A total of 96 paired soil and rice grain samples were collected at harvest. The micronutrients in the soil samples were extracted by diethylenetriamine pentaacetic acid (DTPA). The mean micronutrient concentrations in rice grain were 3.85 μg Cu g-1, 11.6 μg Fe g-1, 39.7 μg Mn g-1, and 26.0 μg Zn g-1. The mean concentrations were 2.54 μg g-1 for DTPA-Cu, 133.5 μg g-1 for DTPA-Fe, 30.6 μg g-1 for DTPA-Mn, and 0.84 μg g-1 for DTPA-Zn. Semivariograms showed that measured micronutrients in rice grain were moderately dependent, with a range distance of about 110 m. The concentrations of the DTPA-extractable micronutrients all displayed strong spatial dependency, with a range distance of about 60 m. There was some resemblance of spatial structure between soil pH and the grain Cu, Fe, Mn, and Zn. By analogy, similar spatial variation was observed between soil organic matter (SOM) and DTPA-extractable micronutrients in the soil. Kriging estimated maps of the attributes showed the spatial distributions of the variables in the field, which is beneficial for better understanding the spatial variation of micronutrients and for potentially refining agricultural management practices at a field scale.  相似文献   

12.
The effect of source and sink manipulation on accumulation of micronutrients (Fe, Zn, Mn, Cu) and protein in wheat grains was studied in a field experiment and ear culture. The source and sink manipulation was obtained by reducing assimilate source (through defoliation and spike shading) or sink (through 50% spikelets removal) after anthesis in the field and by changing sucrose or NH4NO3 levels of the culture media in ear culture. In the field experiment, reducing source and sink generally increased Fe, Zn, Mn, Cu, and protein concentrations except defoliation which decreased Mn concentration. Grain yield as well as micronutrient and protein contents in grains were all reduced by reducing source and sink sizes, suggesting that the accumulation of micronutrients and protein in grains was restricted by source supply and sink capacity. In ear culture, the supply of 20 to 80 g L–1 sucrose increased grain weight and yield, but decreased grain Fe, Zn, Mn, Cu, and protein concentrations. The supply of 0.57 to 2.28 g L–1 NH4NO3 increased grain yield and the concentrations and contents of micronutrients and protein. All these results show that micronutrient and protein accumulation in grains can be affected by the source–sink relationship of carbohydrate and nitrogen. Adequate N supply can simultaneously increase grain yield and the accumulation of Fe, Zn, Mn, Cu, and protein.  相似文献   

13.
Abstract

Due to continuous single nitrogen fertilization, we hypothesized a built-up deficiency of micronutrients in crops that would limit plant growth and crop quality. In 2-year field experiments using urea-N fertilized grain maize (Zea mays L.), hybrid KWS 2376 at 0, 120 and 240 kg N ha?1 crop uptake of Zn, Mn, Cu and Fe was studied at DC 32, DC 61 and in the grain harvested. Micronutrient contents at DC 32 stage – 1st node (aboveground phytomass) and DC 61 – flowering (ear leaf) were all at levels indicative of adequate micronutrient supply to the crop. At both sampling occasions the Fe:Zn and Fe:Mn ratios were adequate implying that Fe did not inhibit the uptake of Zn and Mn. The application of nitrogen increased the Fe content at the 1st sampling in both years; in the second year the same was also the case for the Zn content. Nitrogen nutrition increased the contents of Mn and Fe at the 2nd sampling only in year 2; in the other treatments no changes were observed in the micronutrient contents. Micronutrient correlations in the grain were discovered between Zn and Mn contents and between Fe and Mn contents. In the second year the highest N-rate significantly increased the Fe and Zn content of the grain compared with the lower rates of nitrogen fertilization. Grain yields were not affected by the rate of nitrogen and ranged between 13.65 and 14.34 t ha?1 (1st year) and between 13.68 and 14.18 t ha?1 (2nd year). Nitrogen fertilization did not reduce the content of micronutrients in the plant or grain of maize. It is evident that the continuous single use of N fertilization so far has not resulted in a micronutrient deficiency of the plants limiting the nutrient density of the grain or reducing its quality.  相似文献   

14.
Heavy metal uptake, translocation and partitioning differ greatly among plant cultivars and plant parts. A pot experiment was conducted to determine the effect of cadmium (Cd) levels (0, 45 and 90 mg kg?1 soil) on dry matter yield, and concentration, uptake and translocation of Cd, Fe, Zn, Mn and Cu in seven rice cultivars. Application of 45 mg Cd kg?1 soil decreased root and shoot dry weight. On average, shoot and root Cd concentrations and uptake increased in all cultivars, but micronutrients uptake decreased following the application of 45 mg Cd kg?1. No significant differences were observed between 45 and 90 mg kg?1 Cd levels. On average, Cd treatments resulted in a decrease in Zn, Fe and Mn concentrations in shoots and Zn, Cu and Mn concentrations in roots. Differences were observed in Cd and micronutrient concentrations and uptake among rice cultivars. Translocation factor, defined as the shoot/root concentration ratio indicated that Cu and Fe contents in roots were higher than in shoots. The Mn concentration was much higher in shoots. Zinc concentrations were almost similar in the two organs of rice at 0 and 45 mg Cd kg?1. A higher Cd level, however, led to a decrease in the Zn concentration in shoots.  相似文献   

15.
‘Bluecrop’ blueberry plants were exposed to 2×2×2 factorial treatments of high and low phosphate and micronutrients (Cu, Zn, Mn, and B) and excess or stoichiometric concentrations of a chelator (EDDHA) added to Fe(NO3), in pH 6.8 solution cultures. The effects on growth, Fe chlorosis and overall nutrition were accessed. Phosphorous was applied at 20 (low) or 400 (high) μM levels, micronutrients at low or high levels and either a 1:1 or 10:1 ratio of chelator to Fe concentration. Plants grown in excess chelator and low micronutrient supply grew normally. Plants grown in all high micronutrient solutions were chlorotic after 34 days. Plants in low micronutrient and stochiometric chelator to Fe ratio solutions were also chlorotic.

Foliar Fe was not a good indicator of Fe chlorosis development. High Cu levels in roots grown in high micronutrients without excess chelator may have been a causative factor in Fe chlorosis development, but not in reducing foliar Fe levels. There was no indication that excess chelator facilitated Fe transport as has been reported for other crops. However, this work demonstrates that highbush blueberry has an effective ability to absorb Fe from strong Fe chelates and remain non‐chlorotic even at high solution pH levels under an all nitrate‐nitrogen regime. Chemical name used: EDDHA‐ethylenediaminedi‐o‐hydroxyphenlyacetic acid.  相似文献   

16.
Modern agricultural systems have to provide enough micronutrient output to meet all the nutritional needs of people. Accordingly, knowledge on micronutrient status in soil and crop edible tissues is necessary. This study was carried out to investigate zinc (Zn), iron (Fe), manganese (Mn), and copper (Cu) concentration of calcareous paddy soil and the relative rice grain. Rice crops (straw, hull, and grain) and associated surface soils (0–25 cm) were collected from 136 fields and analyzed for total and diethylene triamine pentaacetic acid (DTPA) available Zn, Fe, Mn, and Cu. The DTPA-Zn concentration in more than 50% of paddy soils was less than its critical deficiency concentration (2 mg kg−1), while the concentrations of DTPA Fe, Mn, and Cu were sufficient. The grain Zn concentration of more than 54% of the rice samples was less than 20 mg kg−1. About 55% and 49% of the rice samples were deficient in Mn and Cu, respectively, while the Fe concentration in rice grains was sufficient. A significant negative correlation was found between the CaCO3 content and soil DTPA-extractable Zn, Fe, Mn, and Cu. There were significant relationships between the total soil phosphorus and DTPA-extractable micronutrient concentrations. By considering the average daily rice consumption of 110 g per capita, the Zn, Fe, Mn, and Cu intake from rice consumption was estimated to be 2.4, 7.7, 1.6, and 0.7 mg for adults, respectively.  相似文献   

17.
Low and unstable fruit yield, poor quality of fruits, and excessive fruit dropping are major problems in a lime crop and are due to either micronutrient deficiencies or nutrient imbalance. A study was conducted to assess the micronutrient status in a lime orchard at the Central Soil and Water Conservation Research and Training Institute (CSWCRTI)’s research farm in Kota, Rajasthan, India. Plant and soil samples were collected during September and October in 2006–2007. The micronutrients extracted with diethylenetriaminepentaacetic acid (DTPA) in soils were in the order of manganese (Mn) > iron (Fe) > zinc (Zn) > copper (Cu). The mean values of DTPA Mn, Fe, Zn, and Cu in surface soils varied from 13.98 to 22.70, 2.48 to 8.66, 0.79 to 1.19, and 0.14 to 0.46 mg kg?1, respectively, whereas in subsurface soils they varied from 12.94 to 23.06, 4.84 to 6.52, 0.51 to 0.83, and 0.07 to 0.20 mg kg?1, respectively. Results reveal that except for Fe, the other DTPA-extractable micronutrients decreased with depth. Total Mn, Fe, Zn, and Cu in plant leaves varied from 22 to 83, 70 to 630, 40 to 932, and 37 to 3057 mg kg?1, respectively, indicating greater or toxic concentrations of total micronutrient in leaf samples. Total Mn, Fe, Zn, and Cu in petiole samples varied from 7 to 60, 235 to 574, 70 to 827, and 101 to 2623 mg kg?1, respectively. High concentration of Cu and Zn in leaves resulted in Fe and Mn deficiencies (exhibited as leaf chlorosis) in lime plants. Results of the study indicated that Fe and Mn deficiencies are major disorders in lime plantation. Similarly, the measure of DTPA-extractable micronutrients showed the low statuses of Fe and Cu and marginal status of Zn in soils along the Chambal region.  相似文献   

18.
长江中游农田土壤微量养分空间分布特征   总被引:10,自引:0,他引:10  
张智  任意  鲁剑巍  郑磊  苗洁  李小坤  任涛  丛日环 《土壤学报》2016,53(6):1489-1496
为了更好地掌握长江中游土壤肥力状况,运用地统计学和Arc GIS技术相结合的方法,对湖北、湖南、江西三省41 943个土壤样品的微量养分(铁Fe、锰Mn、铜Cu、锌Zn、硼B)含量的分布特征和空间变异进行研究。结果表明,长江中游土壤有效态Fe、Mn、Cu、Zn、B的平均含量分别为88.0、27.2、3.05、1.71、0.41 mg kg-1。空间分布特征表现为Fe、Mn均以江汉平原区较低,Zn以湖南省较低,Cu、B空间分布较为不均;与第二次土壤普查结果相比,土壤微量养分含量均有所提高,其中Fe、Mn、Cu含量为缺乏或严重缺乏的面积比例分别降至0.1%、2.2%和0.1%,而Zn和B分别为30.8%和17.7%。不同的土地利用类型、土壤类型和成土母质对土壤微量养分均有不同程度的影响。随着微量养分在农业生产中的贡献越来越突出,亟须根据土壤微量养分的分布特征进行分区管理。  相似文献   

19.
Using conventional soil and foliar spray applications to correct micronutrient deficiency in citrus has not been completely satisfactory. Therefore, this study was developed to test the effectiveness of micronutrient application through microirrigation (fertigation) at rates similar to those recommended for foliar spray application. Three field experiments were conducted on ‘Valencia’ orange [Citrus sinensis (L.) Osb.] trees to study the absorption of Fe, Mn, Zn, and Cu by periodically analyzing leaf samples. The effectiveness of fertigation with micronutriems was found to depend on the fertilizer source. Application of chelated Fe, Mn, and Zn through irrigation systems increased the concentrations of these micronutrients in the leaves. The nitrate forms of Fe, Mn, and Zn were ineffective, as was the sulfate form of Zn. The sulfate form of Mn was occasionally effective, but the sulfate form of Cu was very effective. The application of chelated micronutrients through fertigation shows promise in central Florida.  相似文献   

20.
Abstract

Micronutrients may be provided to plants in containers either via pre‐plant inclusion in the growing medium or via fertigation, or both. For Hebe ’Inspiration’ plants growing in a soilless potting medium, micronutrients applied as a single pre‐plant application or via weekly liquid fertilizer applications were equally effective in producing optimum growth over a 12‐month period. Under the conditions of this experiment, the liquid fertilizer did not need to contain more than (in mg/L) 0.5 = iron (Fe), 0.1 = copper (Cu), 0.1 = zinc (Zn), 0.8 = manganese (Mn), and 0.1 = boron (B). Growth was excellent for the full 12 months, without supplementation via the liquid fertilizer, when there were micronutrient concentrations of (in mg/L extract) 29 = Fe, 0.5 = Cu, 3 = Mn, 0.6 = Zn, and 0.14 = B in a 1:1.5 volume in a 2mM DTPA extract of the medium at potting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号