首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Nitrogen applications to dallisgrass grown on Olivier silt loam, an Aquic Fragiudalf, increased forage yield, forage digestibility, nutrient concentrations and nutrient contents as N rates increased to 896 kg ha‐1. Expressing yield as a function of N application rate resulted in quadratic prediction equations that accounted for 75 to 98% of the variability in yield during five years. Eighty‐six percent of the maximum yield was obtained during the five years at 448 kg of N ha‐1. Plant concentrations of N, Ca and Mg were increased more than concentrations of the other macronutrients as N rates increased. Plant contents of N, Ca and Mg in the forage increased 4.0, 3.2 and 3.5‐fold as N rates increased to 448 kg ha‐1, while that of P, K and S increased 2.5 to 2.8‐fold. Residual N accumulations in the soil profile were apparent at the 896 kg ha‐1 rate at the end of the growing seasons but were not detected the following March, indicating N losses by leaching and/or denitrification occurred at that N rate. Phosphorus applications increased forage P concentrations but did not increase forage yield nor available P levels in the surface 15 cm of soil. Maximum yields were obtained at forage P concentrations and Bray No. 2 soil P levels as low as 2.0 g kg‐1 and 17 mg kg‐1, respectively.  相似文献   

2.
Our objectives were to document effects of nitrogen (N), phosphorus (P), and potassium (K) fertilizer rates on forage yields and uptake of N, P, and K by Midland bermudagrass [Cynodon dactylon (L.) Pers.] on a Minco fine, sandy loam in southern Oklahoma. After six years of this long-term experiment, forage yield responses to fertilization were mixed and depended on year. Stability analysis indicated forage yields responded positively to N fertilization during favorable weather conditions but negatively during poor weather conditions. Application of 112 kg N ha?1 provided the best yield stability and mean annual forage yield among treatments, 11.5 Mg ha?1, across years. In years with near-average weather conditions, uptake of N, P, and K increased linearly with N application rate. Limited water holding capacity of the soil and high soil P and K may have contributed to the limited yield responses to fertilization in this semi-arid environment.  相似文献   

3.
Abstract

Pearl millet and annual ryegrass were continually doubled‐cropped on Olivier silt loam soil for seven years at six levels of N, applied as ammonium nitrate in three applications to millet and in two applications to ryegrass. Forage yields increased as N application rates increased. During seven years at the 0 and 448 kg/ha N rate, millet produced 35% and 95%, respectively, as much yield as it produced at the 800 kg/ha N rate, while comparable values for ryegrass were 19% and 83%. At 448 kg/ha of N the two grasses produced a combined yield of over 20 Mg/ha of dry forage per year. Ryegrass yields following millet were consistently lower than yields previously obtained at this site.

Nitrogen applications consistently increased concentrations of N, Ca, and Mg in both forage grasses, while effects on P and K were variable and S concentrations were unaffected. The amounts of all nutrients removed in the forages were increased as yields increased with N application rates. Nitrate‐N levels considered to be toxic to ruminant animals occurred only where N applications exceeded 170 kg/ha at any one time. In vitro digestibility of each grass was consistently increased by N applications.

The percentage of fertilizer N that was removed in the crops ranged from 66% to 68% for millet and from 35 to 52% for ryegrass as N applications increased up to 448 kg/ha. Residual ammonium and nitrate levels in the top 1.2 m of soil were not increased by N rates of 448 kg/ha or lower. At the 800 kg/ha N‐rate, the apparent N recovery rate decreased and residual ammonium and nitrate levels increased throughout the soil profile.  相似文献   

4.
Abstract

This field study was conducted to evaluate nutrient availability and Coastal bermudagrass [Cynodon dactylon (L.) Pers.] yield response to factorial combinations of applied limestone and P in a strongly acid (pH 4.7), infertile soil. Limestone was applied at rates of 0, 672, and 3808 kg ha‐1 to a Lilbert loamy fine sand (loamy, siliceous, thermic, arenic Plinthic Paleudult). Phosphorus was applied at rates of 0, 30, 60, 90, 120, 240, and 480 kg P ha‐1. Soil pH in the surface 15 cm initially increased to 6.2 in response to the high limestone rate, but subsequently declined due to N fertilization. Lime increased soil test P, Ca, and Mg and decreased K and Al. The efficiency of increasing soil test P with fertilizer P was low, but improved as a consequence of liming. Coastal bermudagrass yield increased by as much as 37 percent from P application. Maximum yield coincided with 10 to 15 mg kg‐1 or greater soil test P and tissue P concentrations that ranged from 1.6 to 2.2 g kg‐1. Lime Increased tissue Ca and Mg, but had no effect on plant P concentrations. Yield was unaffected by lime despite its positive effect on soil P and an apparent K‐Mg antagonism. Plant nutrients obtained from deep rooting of the bermudagrass into an argiilic horizon may have precluded any positive effect of lime on Coastal bermudagrass yield.  相似文献   

5.
Annual potassium (K) balances have been calculated over a 40‐year period for five field experiments located on varying parent materials (from loamy sand to clay) in south and central Sweden. Each experiment consisted of a number of K fertilizer regimes and was divided into two crop rotations, mixed arable/livestock (I) and arable only (II). Annual calculations were based on data for K inputs through manure and fertilizer, and outputs in crop removal. Plots receiving no K fertilizer showed negative K balances which ranged from 30 to 65 kg ha?1 year?1 in rotation I, compared with 10–26 kg ha?1 year?1 for rotation II. On sandy loam and clay soils, the K yield of nil K plots (rotation I) increased significantly with time during the experimental period indicating increasing release of K from soil minerals, uptake from deeper soil horizons and/or depletion of exchangeable soil K (Kex). Significant depletion of Kex in the topsoil was only found in the loamy sand indicating a K supply from internal sources in the sandy loam and clay soils. On silty clay and clay soils, a grass/clover ley K concentration of ~2% (dry weight) was maintained during the 40‐year study period on the nil K plots, but on the sandy loam, loam and loamy sand, herbage concentrations were generally less than 2% K.  相似文献   

6.
Abstract

Many soils in Alberta contain insufficient amount of available P and fertilizer P is needed for optimum crop yields. Fields experiments were conducted at two sites (Lacombe ‐ Black Chernozem silt loam and Botha ‐ Thin Black Chernozem loam) in central Alberta to determine the hay yield response of alfalfa (Medicago sativa leyss. cv. Rambler) to P fertilizer applied annually (0, 10, 20, 30, 40, and 60 kg P ha‐1) or once initially (60, 120, and 180 kg P ha‐1). In the initial application triple superphosphate was incorporated into soil prior to sowing of alfalfa in 1974 and in the annual application the P fertilizer was spread on soil surface for three years at Lacombe and for five years at Botha beginning in the spring of 1975. The hay yield increased with P application, but its magnitude of response to added P was lower at Botha than at Lacombe. The residual effect of large single P applications on hay yield lasted at least for five years.  相似文献   

7.
Abstract

A greenhouse experiment was conducted to evaluate the influence of N and P fertilization on the yield and forage quality of six cold tolerant bermudagrass (Cynodon dactylon L.) selections from the Appalachian region. Midland bermudagrass and limpograss (Hermarthria altissima) were included for comparison purposes. Each grass was treated with a factorial combination of three N rates (112, 224, and 448 kg N.ha‐1) and four P rates (0, 25, 75, and 225 kg P.ha‐1) Two bermudagrass selections from the Appalachian region demonstrated greater dry matter production than Midland bermudagrass. Yields of Quicksand common exceeded those of Midland by 60% to 236% over the range of treatments. High yielding selections were not inferior to low yielding selections when mineral concentrations, neutral detergent fiber, acid detergent fiber and acid detergent lignin levels were considered. The results of this investigation suggest that Quicksand common and Selection 13 merit further study to determine their potential for summer forage production in the Appalachian region.  相似文献   

8.
Accumulation of dry matter and plant nutrients by perennial grass over the growing season is dependent upon harvest interval and availability of water and applied nutrients. Mathematical models are frequently incorporated in the analysis, design, and operation of systems for land application of reclaimed water (municipal or agricultural). The objective of the present work was to measure response of warm‐season Coastal bermudagrass [Cynodon dactylon (L.)] to irrigation with reclaimed municipal wastewater and to evaluate parameters for a simplified model. Grass was harvested at intervals of 2, 4, and 6 wk. Measurements included yields (dry matter and digestible organic matter) and plant nutrient uptake (N, P, and K). The probability model described time trends rather well. The linear model parameter A showed linear dependence on harvest interval At over the range studied, in agreement with results from the literature. Maximum values for a harvest interval of 6 wk were 16.5 Mg ha‐1 (dry matter), 8.0 Mg ha‐1 (digestible organic matter), 350 kg N ha‐1,57 kg P ha‐1, and 272 kg K ha‐1.  相似文献   

9.
Response of sugar beet ( Beta vulgaris var. altissima ) to potassium fertilization—a 20‐year field experiment A long‐term fertilizer experiment was performed to develop a K fertilization strategy to achieve highest extractable sugar yields (BZE). Sugar beet was grown in a crop rotation with wheat and barley on an alluvial soil (clayic silt) in Lower Saxony with annual recycling of straw and beet tops, respectively. Since 1983, the treatments were as follows: 1) K fertilization with 0, 29, 58, 87,174, and 524 kg K ha–1 a–1 corresponding to 0, 0.5, 1, 1.5, 3, and 9 times the average annual K removal by the marketable products of the crop rotation—since 1995, the two highest treatments (3 and 9 times the removal) received only 174 kg ha–1 every third year; 2) K fertilization according to the average K removal, given each year (58 kg K ha–1) or every third year (174 kg ha–1) to sugar beet; 3) annual K fertilization of 87 kg K ha–1 (1.5 times the removal) applied in autumn or spring, respectively; 4) annual K fertilization, applied as mineral fertilizer or as organic material (recycling of grain and straw or root and leaves); 5) application of 29 kg NaCl ha–1 to sugar beet supplemental to a yearly application of 58 kg K ha–1. Both root yield and soil concentration of lactate‐soluble K increased with K fertilization up to the highest K treatment. The extractable sugar content reached a maximum at a yearly application of 174 kg K ha–1. Averaged over years, the extractable sugar yield (BZE) increased up to the highest K application. The time of K application (autumn or spring) and the source of K (mineral fertilizer or organic material) had no effect on BZE. An additional fertilization with NaCl increased BZE only slightly in single years. Low‐grade muriate of potash containing 33% K and 3% Na can thus be used. The economically optimal K‐fertilization rate was 174 kg K ha–1 given once in the crop rotation to sugar beet. A soil K concentration of about 110 mg (kg soil)–1 (lactate‐extractable K) is sufficient in this soil to achieve a high BZE.  相似文献   

10.
A 3-year study was conducted to determine the effects of broiler litter relative to inorganic fertilizer on soil nutrient content and quality in an upland Loring silt loam soil. Treatments included annual broiler litter rates of 0, 2.2, 4.5, 5.6, 6.7, 10.1, and 13.4 Mg ha?1 y?1 and commercial fertilizer rates of 34, 68, 90, 112, 134, and 168 kg nitrogen (N) ha?1 y?1. Broiler litter application linearly increased soil total carbon (C), microbial biomass C, extractable soil phosphorus (P), potassium (K), soil cation exchange capacity (CEC), and the stability of soil aggregate. At the highest broiler litter rate, the stability of soil aggregate was 34% greater than inorganic fertilizer. Application of broiler litter or fertilizer N at rate greater than 6.7 Mg ha?1 or 90 kg N ha?1, respectively, exceeded plant N utilization potential as evidenced by higher end-of-season soil residual nitrate (NO3)-N. Broiler litter is more effective in improving soil physical, chemical, and biological components than conventional fertilizer.  相似文献   

11.
Abstract: In recent years, sulfur (S) deficiencies in winter wheat (Triticum aestivum L.) have become more common, particularly on coarse‐textured soils. In Study I, field experiments were conducted in 2001/2002 through 2003/2004 on Mississippi River alluvial soils (Experiment I) and an upland, loessial silt loam (Experiment II) to evaluate the influence of spring S rates of 0, 5.6, 11.2, and 22.4 kg ha?1 and a fall rate of 22.4 kg sulfate (SO4)‐S ha?1 on grain yield of three varieties. In Study II, field experiments were conducted in 2001/2002 and 2004/2005 on alluvial soils to evaluate the influence of spring S rates of 0, 5.6, 11.2, and 22.4 kg SO4‐S ha?1 in fields where S‐deficiency symptoms were present. Grain yield response to applied S occurred only on alluvial, coarse‐textured, very fine sandy loam soils (Study II) that had soil SO4‐S levels less than the critical level of 8 mg kg?1 and organic‐matter contents less than 1 g kg?1 in the 0‐ to 15‐, 15‐ to 30‐, and 30‐ to 45‐cm depths. Soil pH increased with soil depth. Optimum S rate was 11.2 kg SO4‐S ha?1 in 2001/2002 and 5.6 kg SO4‐S ha?1 in 2004/2005. On the upland, loessial silt loam soil, soil SO4‐S levels accumulated with depth, whereas organic‐matter content and pH decreased. In the loessial soils, average soil SO4‐S levels in the 15‐ to 30‐ and 30‐ to 45‐cm soil depths were 370% greater than SO4‐S in the surface horizon (0 to 15 cm).  相似文献   

12.
Abstract

A three‐year field study was conducted on a Decatur silt loam (clayey, kaolinitic, thermic Rhodic Paleudult) in North Alabama. The objective of the study was to evaluate the effects of winter grazing by cattle on the potassium (K) and starter fertilizer needs of cotton (Gossypium hirsutum L.) the following season. Grazed and non‐grazed treatments were established by planting a wheat (Triticum aestivum L.) cover crop in the fall and allowing cattle to graze half of the treatment area for 35 to 65 days in late winter‐early spring. After grazing, the grazed and non‐grazed wheat was killed and cotton was planted using a strip‐tillage system. Test areas had medium to high soil test ratings for K. Fertility treatments consisted of three rates of K (0, 37, and 74 kg K ha‐1), three methods of K application (surface broadcast; in‐row, band application at a depth of 30.5 cm; and surface banding using a spacing of 50.8 cm) and two rates of starter fertilizer (no starter and 168 kg#lbha‐l of a liquid 15–15–0). Seed cotton yields were affected by grazing of the winter cover crop prior to planting, but not by the method of K fertilizer application. During the two years that a yield reduction was observed, winter grazing reduced seed cotton yields by an average of 14%. Cotton responded to K rate only under the ungrazed system. During the first and second year of the test, an application of 37 kg K ha‐1 increased seed cotton yields by an average of 351 kg#lbha‐1. Starter fertilizer consistently gave slightly higher yields with a significant response occurring in two out of the three years.  相似文献   

13.
《Journal of plant nutrition》2013,36(8):1337-1346
ABSTRACT

Production of bermudagrass [Cynodon dactylon (L.) Pers.] hay to manage manure nutrients may differ from production of hay intended for livestock consumption. The objective of this study was to determine the relationships between maturity and yield, nutrient concentration, and nutrient uptake in bermudagrass fertilized with swine effluent. Primary spring and summer growth of ‘Coastal’ hybrid and common bermudagrass was harvested every 7 d to 63 d maturity. Effluent applied to Brooksville silty clay loam (fine, smectitic, thermic Aquic Hapludert) during each harvest period contained 140 kg nitrogen (N), 240 kg potassium (K), and 25 kg phosphorus (P) ha? 1 (mean of 2 years). Coastal and common bermudagrass had similar trends for yield, nutrient concentration, and nutrient uptake. Dry-matter production followed a linear trend in the spring (maximum of 1.11kg m? 2 after 63 d) and a quadratic trend in the summer (maximum of 0.96 kg m? 2 after 56 d). Herbage N concentration declined from 33 to 17 g kg? 1 during the spring and summer harvest period, while P concentration declined from 3.8 to 2.4 g kg? 1. Maximum K concentration (26 g kg? 1) occurred at 28 d of growth. Nitrogen, P, and K uptake exhibited a quadratic response to increasing maturity during the spring and summer harvest periods, but maximum uptake was greater in the spring than in the summer. These results suggest that the spring harvest period is the best time to maximize nutrient uptake by delaying bermudagrass harvest to more mature stages.  相似文献   

14.
Bermudagrass (Cynodon dactylon L.) is a warm season perennial that is well adapted in the southern Great Plains. It is one of the region's most important forage crops used for livestock production, and is commonly grown without legume interseeding. Recent research has investigated ways of improving the quality and quantity of this forage. The objectives of this study were to determine the effect of interseeded legumes and phosphorus (P) fertilizer on bermudagrass pasture forage yield and crude protein content. One experiment was initiated in 1993 in eastern Oklahoma in an established bermudagrass pasture. Red clover (Trifolium pratense L.), ladino clover (Trifolium repens L.), and two varieties of alfalfa (Medicago sativah), ’alfagraze’ and'common’, were interseeded by hand into an established stand of bermudagrass. The effect of P on forage yield and crude protein was evaluated using a 30‐kg P ha‐1 rate applied at establishment versus no applied P. Forage yield was collected three times throughout the growing season each year from 1994 through 1997. When both alfalfa varieties were interseeded into a bermudagrass pasture without applying additional P fertilizer, forage yields for the legume‐grass mixtures decreased below those obtained from the monoculture bermudagrass in the first year of the stand. The alfalfa variety ‘alfagraze’ interseeded into established bermudagrass decreased total forage yield over the entire 4‐yr study. Interseeded red clover and ladino clover increased crude protein of the forage compared with monoculture bermudagrass the first two years of the study, with red clover continuing to increase crude protein in the fourth year. However, when 30 kg P ha‐1 was applied to the bermudagrass prior to establishment of the legumes, no change in yield or protein was observed for both alfalfa varieties’ interseeding treatments versus the unfertilized mixtures. Although forage yield may not be increased, interseeding legumes into established bermudagrass could provide an efficient way to improve pasture crude protein without the use of inorganic fertilizers. However, if alfalfa ('common’ or ‘alfagraze') is interseeded, additional P may need to be applied at legume establishment to prevent possible yield decreases.  相似文献   

15.
In grassland farming, especially on coarse‐textured soils, K can be a critical element. On these soils, the actual K management as well as fertilizer history to a large extent determine the leaching of K. The effects of four fertilizer regimes on the nutrient balances and leaching of K from grassland grown on a sandy soil were investigated. The swards differed in the source and level of N input and K fertilizer: no fertilizer N + 166 kg K ha?1 year?1 (Control), 320 kg inorganic N ha?1 + 300 kg K ha?1 year?1 (MIN 320), 320 kg N + 425 kg K ha?1 year?1 in form of cattle slurry (SLR 320) and a grass–clover sward + 166 kg K ha?1 year?1 (WCL 0) without any inorganic N input. In a second experimental phase, cores from these swards were used in a mini‐lysimeter study on the fate of K from urine patches. On cut grassland after 6 years K input minus removal in herbage resulted in average K surpluses per year of 47, 39, 56 and 159 kg K ha?1 for the Control, MIN 320, WCL 0 and SLR 320, respectively. Related leaching losses per year averaged 7.5, 5, 15 and 25 kg K ha?1. Losses of urinary‐K through leaching were 2.2–4.5 and 5.7–8.4% of the K supplied in summer and autumn applications, respectively. Plant and soil were the major sinks for K from fertilizer or urine. High levels of exchangeable K in the soil and/or large and late fertilizer or urine applications stimulated leaching of K.  相似文献   

16.
Two popular concepts of soil fertilization, basic cation saturation ratio (BCSR) and sufficiency level of available nutrients (SLAN), were tested on a calcareous soil (Aeric haplaquept) during 1995–1996 at the Bangladesh Rice Research Institute (BRRI) Regional Station Rajshahi using wheat as a test crop. According to BCSR concept the soil was deficient in potassium (K) and according to SLAN concept it was deficient in phosphorus (P), respectively. Potassium dose of 120 kg ha‐1 [to attain 2% saturation of total cation exchange capacity (CEC) according to BCSR] along with other two doses (0 and 60 kg K ha‐1) and P dose of 50 kg ha‐1 (to attain available P at sufficiency level) along with other two doses (0 and 100 kg P ha‐1) were compared in a randomized complete block design. The application of 50 kg P ha‐1 significantly increased plant height, spikes m2, grains per spike, grain and straw yields of wheat over 0 kg P ha‐1 with or without K but increasing P dose from 50 to 100 kg P ha1 did not give additional yields. The agronomic parameters and yields were not affected significantly by K application. Similar results were also observed in nutrient content and nutrient uptake. Thus, SLAN concept appeared as an effective tool for fertilizer recommendation for the calcareous soil while BCSR gave no apparent result there.  相似文献   

17.
Abstract

Corn (Zea mays L.) grown on sandy Coastal Plain soils may be subject to sulfur (S) deficiency due to the low levels of available S in the soil. The diagnosis of S deficiency in the field is sometimes ambiguous since mineralization of soil organic matter or root growth into the subsoil may supply adequate S to the crop. Yield response to S fertilizers has been more frequent since incidental additions of S to the soil by air pollution and fertilizer applications have been reduced. This study was conducted to identify S deficiency in corn grown on sandy Coastal Plain soils and to determine the effects of S source, rate and method of application on grain yield. Irrigated corn was grown on Norfolk loamy sand and Tifton loamy sand near Leesburg and Moultrie, Georgia, respectively in 1987. Grain yields were increased with addition of 11 kg S ha‐1 compared to the check treatment. Increased rates of S up to 88 kg ha‐1 did not increase grain yields above the 11 kg ha‐1 rate. There was no difference between banded or broadcast application of (NH4)2SO4 or between elemental S and (NH4)2SO4 as S sources. Earleaf S concentrations of 1.6 g kg‐1 and extractable soil S concentrations of 4.0 to 8.7 mg kg‐1 were associated with S deficiency. Visual symtoms of S deficiency were observed in the check treatments throughout the growing season at both experimental sites. The results indicate that visual symptoms and tissue analysis can be used to identify S deficiency. Extractable soil S may be useful in determining the possible response to S fertilizer especially if the subsoil is sampled.  相似文献   

18.
With advances in biogas technology, lignocellulosic material may be increasingly included in feedstock due to the abundance of raw materials. The main goal of this study was to evaluate fertilizing and soil amendment effects of digestates based on lignin-rich feedstock. The digestates originated from reactors fed with manure co-digested with Salix, wheat straw or sugarcane bagasse, respectively. In pot experiments with three different soils, Italian ryegrass and reed canary grass were grown with 120 kg ha?1 total nitrogen or 150 kg ha?1 available nitrogen, respectively, given as either mineral fertilizer or digestate. Soil chemical and physical characteristics were determined after ended experiments. Additionally, an incubation study was carried out to estimate N mineralization from one digestate over time. Digestate addition resulted in similar yields compared to mineral fertilizer, varying from 0.5 (loam) to 1 kg dry matter m?2 (silt) for Italian ryegrass and 1.2 (loam) to 2.3 kg m?2 (silt) for reed canary grass. Digestates contributed to a favourable pH for plant growth, reduced bulk density in the loam and improved water retention characteristics in the sand. Biogas digestates based on lignin-rich feedstock appear promising as fertilizers and for soil amelioration but results have to be verified in field experiments.  相似文献   

19.
The effects of 25 years of annual applications of P fertilizer on the accumulation and migration of soil Olsen‐P, and the effects of soil residual P on crop yields by withholding P application for the following 5 years, were evaluated in a subtropical region. Annual application of P fertilizer for 25 years to crops in summer (groundnut), winter (wheat, mustard or rapeseed) or in both seasons raised the Olsen‐P status of the plough layer (0–15 cm) from initially very low (12 kg P ha?1) to medium (18 kg P ha?1) and very high levels (40–59 kg P ha?1), depending on the amount of P surplus (amount of fertilizer applied in excess of removal by crops) (r = 0.86, P 0.01). However, only 4–9% of the applied P fertilizer accumulated as Olsen‐P to a depth of 15 cm (an increase of 2 mg kg?1per 100 kg ha?1 surplus P) in the sandy loam soil. In the following 5 years, the raising of 10 crops without P fertilizer applications decreased the accumulated Olsen‐P by only 20–30% depending upon the amount of accumulated P and crop requirements. After 29 years, 45–256 kg of residual P fertilizer had accumulated as Olsen‐P ha?1 in the uppermost 150 cm with 43–58% below 60 cm depth; this indicates enormous movement of applied P to deeper layers in this coarse textured soil with low P retention capacity for nutrients. Groundnut was more efficient in utilizing residual P than rapeseed; however, for both crops the yield advantage of residual P could be compensated for by fresh P applications. These results demonstrated little agronomic advantage above approximately 20 mg kg?1 Olsen‐P build‐up and suggested that further elevation of soil P status would only increase the risk of environmental problems associated with the loss of P from agricultural soils in this region.  相似文献   

20.
Winter wheat (Triticum aestivum L.) production on acid soils can be greatly affected by reduced phosphorus (P) availability. At low pH (below 5.5), iron (Fe) and aluminum (Al) react with P to form highly insoluble compounds that severely reduce the amount of plant available P. Previous research suggested that supersaturating localized P fertilizer bands with respect to Ca2+ could induce precipitation of applied P as dicalcium phosphate (DCP) or dicalcium phosphate dihydrate (DCPD) which would slowly become plant available with time. The objective of this study was to determine the effect of dual‐band applications of P and gypsum on winter wheat forage and grain yield. Methods of application included P and gypsum banded with the seed, P and gypsum broadcast, and P banded and gypsum broadcast at rates of 29 and 58 kg P ha‐1 and 22 and 44 kg S as gypsum ha‐1. Sources of P included diammonium phosphate (DAP; 18–20–0) and triple superphosphate (TSP; 0–20–0). Grain and forage yields increased when P was applied. Dual‐band applications of P and gypsum increased wheat grain and forage yields compared to P banded without gypsum, and P banded and gypsum broadcast. When DAP was the P source, the N‐P band reduced yields compared to P banded alone or the N‐P‐gypsum band. This suggests that gypsum should be included in the band for maximum benefit. Precipitation of DCPD and DCP may have taken place within the dual P‐gypsum band, reducing fertilizer P fixed as Fe or Al hydroxides thus increasing long‐term P availability for winter wheat forage and grain production on acid soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号