首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 685 毫秒
1.
A Tetranychus cinnabarinus strain was collected from Chongqing, China. After 42 generations of selection with abamectin and 20 generations of selection with fenpropathrin in the laboratory, this T. cinnabarinus strain developed 8.7- and 28.7-fold resistance, respectively. Resistance to abamectin in AbR (abamectin resistant strain) and to fenpropathrin in FeR (fenpropathrin resistant strain) was partially suppressed by piperonyl butoxide (PBO), diethyl maleate (DEM) and triphenyl phosphate (TPP), inhibitors of mixed function oxidase (MFO), glutathione S-transferases (GST), and hydrolases, respectively, suggesting that these three enzyme families are important in conferring abamectin and fenpropathrin resistance in T. cinnabarinus. The major resistant mechanism to abamectin was the increasing activities of carboxylesterases (CarE), glutathione-S-transferase (GST) and mixed function oxidase (MFO), and the activity in resistant strain developed 2.7-, 3.4- and 1.4-fold contrasted to that in susceptible strain, respectively. The activity of glutathione-S-transferase (GST) in the FeR strain developed 2.8-fold when compared with the susceptible strain, which meant the resistance to fenpropathrin was related with the activity increase of glutathione-S-transferase (GST) in T. cinnabarinus. The result of the kinetic mensuration of carboxylesterases (CarE) showed that the structure of CarE in the AbR has been changed.  相似文献   

2.
The carmine spider mite Tetranychus cinnabarinus is the most serious of crop mite pests in China. Their ability to rapidly develop resistance to acaricides has caused difficulty in controlling this mite. In this study, the molecular mechanism of acaricide resistance associated with esterase genes TCE1 and TCE2 was investigated in susceptible and acaricide-resistant strains of T. cinnabarinus. The quantitative real-time PCR (qrtPCR) method was adopted to compare the expression level of two esterase genes TCE1 and TCE2 among four different strains (abamectin-resistant, AbR; fenpropathrin-resistant, FeR; omethoate-resistant, OmR and susceptible strains, S) of T. cinnabarinus. The relative expression level of TCE2 was 1.39-2.47 fold in the three resistant strains compared with the S strain. And after inducing with abamectin, fenpropathrin, and omethoate the highest expression level of TCE2 in the S was 1.64-, 2.92- and 2.24-fold compared with the control, respectively, and this difference was found to be significant. However, there was no obvious difference of the mRNA relative expression levels of TCE1 genes among the four strains, and those of TCE1 were not higher than the control throughout the study. Furthermore, the expression modes of TCE1 and TCE2 in AbR and FeR were similar with that in the S after being treated with abamectin and fenpropathrin, respectively. These results indicated that the enhanced expression of esterase gene TCE2 was associated with acaricide-resistance in T.cinnabarinus.  相似文献   

3.
BACKGROUND: The tomato red spider mite, Tetranychus evansi (Baker and Pritchard), is a serious pest of solanaceous crops in many African countries. In this study an investigation has been conducted to establish whether mutation of the para‐type sodium channel underlies pyrethroid resistance in T. evansi strains collected in Southern Malawi. RESULTS: Two T. evansi strains from Malawi showed tolerance to the organophosphate chlorpyrifos and resistance (20–40‐fold) to the pyrethroid bifenthrin, but were susceptible to two contemporary acaricides (abamectin and fenpyroximate) in insecticide bioassays. Cloning of a 3.1 kb fragment (domains IIS5 to IVS5) of the T. evansi para gene from pyrethroid‐resistant and pyrethroid‐susceptible strains revealed a single non‐synonymous mutation in the resistant strains that results in an amino acid substitution (M918T) within the domain II region of the channel. Although novel to mites, this mutation confers high levels of resistance to pyrethroids in several insect species where it has always been associated with another mutation (L1014F). This is the first report of the M918T mutation in the absence of L1014F in any arthropod species. Diagnostic tools were developed that allow sensitive detection of this mutation in individual mites. CONCLUSION: This is the first study of pyrethroid resistance in T. evansi and provides contemporary information for resistance management of this pest in Southern Malawi. Copyright © 2011 Society of Chemical Industry  相似文献   

4.
BACKGROUND: The pyrethroid resistance of the diamondback moth Plutella xylostella (L.) is conferred by increased gene expression of cytochrome P450 to detoxify the insecticide and/or through gene mutation of the sodium channel, which makes the individual insensitive to pyrethroids. However, no information is available about the correlation between the increased metabolic detoxification and the target insensitivity in pyrethroid resistance. RESULTS: Frequencies of pyrethroid‐resistant alleles (L1014F, T929I and M918I) and two resistance‐related mutations (A1101T and P1879S) at the sodium channel and expression levels of the cytochrome P450 gene CYP6BG1 were examined individually using laboratory and field strains of P. xylostella. Real‐time quantitative PCR analysis using the laboratory strains revealed that levels of larval expression of the resistant strain, homozygous for the pyrethroid‐resistant alleles other than the M918I, are significantly higher than those of the susceptible strain. In the field strains, the expression levels in insects having the same resistant alleles as those of the resistant strains varied greatly among individuals. The expression levels were not significantly higher than those in the heterozygotes. CONCLUSION: Significant correlation between the target insensitivity and the increased metabolic detoxification in pyrethroid resistance of P. xylostella was observed in the laboratory but not in the field. Copyright © 2010 Society of Chemical Industry  相似文献   

5.
Tetranychus urticae Koch is the most serious mite pest to various orchard trees and garden plants. Biochemical and molecular analyses were conducted to elucidate resistance mechanisms in a fenpropathrin-resistant mite strain (FenR). No significant differences were found in the activities of carboxylesterase and glutathione-S-transferase between the susceptible (UD and PyriF) and FenR strains. Cytochrome P450 activity was highest in PyriF, followed by FenR and UD. Analysis of detoxification enzyme assays, therefore, suggested that metabolic detoxification plays little role, if any, in fenpropathrin resistance. However, the FenR strain showed approximately 104- and 33.3-fold slower knockdown responses than UD and PyriF strains, respectively, suggestive of sodium channel insensitivity as a major resistance mechanism. We cloned cDNA fragments of the para-homologous sodium channel α-subunit gene (Tuvssc) and determined its full-length nucleotide sequences. The complete open reading frame of Tuvssc was 6627 nucleotides, encoding 2209 amino acids. The amino acid sequences of Tuvssc were 47.5% and 51.2% identical to the fruit fly and varroa mite, respectively. Amino acid sequence comparison between the three strains revealed two mutations (L1022V and A1376D) and one deletion (HisDel1278-1280) found only in FenR mites, among which the L1022V mutation was proposed to play a major role in knockdown resistance to fenpropathrin.  相似文献   

6.
棉花对硃砂叶螨抗性的鉴定和机制研究   总被引:13,自引:3,他引:13       下载免费PDF全文
1988-1991年进行的棉花抗硃砂叶螨试验表明,海岛棉和二倍体栽培棉(中棉和草棉)对硃砂叶螨具有较高水平的抗性,它们的抗螨性已通过远缘杂交技术转移到了感螨的陆地棉栽培品种中。来自四川省和河南省的一些品种以及来自美国的PD种质系对硃砂叶螨的抗性比湖北省当地品种要差。叶片有毛,无腺体和高含淀粉的棉花,硃砂叶螨为害较重;而叶片具有致密茸毛、棉酚、可溶性糖、叶绿素和类黄酮含量高以及叶片鲜重高的品种抗螨性较强。  相似文献   

7.
The carmine spider mite is the most serious crop mite pests in China. Abamectin has been used to control insects and mites worldwide but carmine spider mites, Tetranychus cinnabarinus, had developed resistance to it. Genetic research on insecticide resistance has been fundamental for understanding the resistance development, studying resistance mechanisms, and designing appropriate resistance management strategies to control insect pests. A resistant colony of T. cinnabarinus, RRG42, was established to examine the inheritance of abamectin resistance in T. cinnabarinus. The females of T. cinnabarinus were selected for bioassay using a slide dip method. After 42 generations of selection, the RRG42 strain was 8.7-fold resistant to abamectin compared with the susceptible strain (SS). The logarithm (log) concentration–probit response curve for F1s from reciprocal crosses, of F1RS and F1SR, were inclined to that for SS and the degree of dominance (D) values for F1s were −0.81 and −0.17. There was a significant difference in values of LC50 and slope of log concentration–probit lines between F1RS and F1SR. The observed mortalities of BC1 (F1RS♀ × RRG42♂) and BC1′ (F1SR♀ × SS♂) were significantly different from the expected mortalities based on a monogenic resistance in the chi-square tests. The inheritance of abamectin resistance in T. cinnabarinus is incompletely recessive and may be controlled by more than one gene. The maternal or cytoplasmic effect may exist in the inheritance of resistance to abamectin in T. cinnabarinus.  相似文献   

8.
RNA-seq data analysis of cigarette beetle (Lasioderma serricorne) strains having different sensitivities to pyrethroids identified sodium channel mutations in strains showing pyrethroid resistance: the T929I and F1534S mutations. These results suggest that reduced sensitivity of the sodium channel confers the pyrethroid resistance of L. serricorne. Results also showed that the F1534S mutation mostly occurred concurrently with the T929I mutation. The functional relation between both mutations for pyrethroid resistance is discussed.  相似文献   

9.
BACKGROUND: Pediculosis is the most prevalent parasitic infestation of humans. Resistance to pyrethrin‐ and pyrethroid‐based pediculicides is due to knockdown (kdr)‐type point mutations in the voltage‐sensitive sodium channel α‐subunit gene. Early detection of resistance is crucial for the selection of effective management strategies. RESULTS: Kdr allele frequencies of lice from 14 countries were determined using the serial invasive signal amplification reaction. Lice collected from Uruguay, the United Kingdom and Australia had kdr allele frequencies of 100%, while lice from Ecuador, Papua New Guinea, South Korea and Thailand had kdr allele frequencies of 0%. The remaining seven countries investigated, including seven US populations, two Argentinian populations and populations from Brazil, Denmark, Czech Republic, Egypt and Israel, displayed variable kdr allele frequencies, ranging from 11 to 97%. CONCLUSION: The newly developed and validated SISAR method is suitable for accurate monitoring of kdr allele frequencies in head lice. Proactive management is needed where kdr‐type resistance is not yet saturated. Based on sodium channel insensitivity and its occurrence in louse populations resistant to pyrethrin‐ and pyrethroid‐based pediculicides, the T917I mutation appears to be a key marker for resistance. Results from the Egyptian population, however, indicate that phenotypic resistance of lice with single or double mutations (M815I and/or L920F) should also be determined. Copyright © 2010 Society of Chemical Industry  相似文献   

10.
柑橘全爪螨对甲氰菊酯和阿维菌素的抗性选育及交互抗性   总被引:1,自引:0,他引:1  
何恒果  王进军 《植物保护》2015,41(6):195-198
通过室内抗性品系选育,研究了柑橘全爪螨对甲氰菊酯和阿维菌素的抗性发展情况,并就其与柑橘园常用11种杀螨剂的交互抗性进行了分析。结果表明:在柑橘全爪螨19代中用甲氰菊酯和阿维菌素分别不连续汰选16次和11次后,柑橘全爪螨对两者的抗性分别为29.92和3.80倍;甲氰菊酯抗性品系(FeR)对哒螨灵、三氯杀螨醇和三唑锡产生了明显的交互抗性,阿维菌素抗性品系(AbR)对甲维盐产生了明显的交互抗性。试验结果可为柑橘全爪螨抗性治理提供参考。  相似文献   

11.
BACKGROUND: The polyphagous cotton‐melon aphid Aphis gossypii Glover is structured into geographically widespread host races comprising a few clones specialised on Cucurbitaceae, cotton, eggplant or pepper. To assess insecticide resistance among and within host races, leaf disc bioassays were conducted on aphid clones collected from Cucurbitaceae (genotypes C4 and C9), cotton (genotypes Burk and Ivo), eggplant (genotype Auber) and pepper (genotype PsP4). Molecular diagnostic (PCR‐RFLP) and enzyme assays were also performed to detect the basic mechanisms underlying insecticide resistance. RESULTS: All six clones were susceptible to acetamiprid (neonicotinoid) or carbosulfan (carbamate). Conversely, all clones were resistant to dimethoate (organophosphate) (RF = 4.1–38.1) and carried mutation S431F in the acetylcholinesterase gene. Auber, PsP4 and Burk also carried mutation A302S in this gene, which possibly conferred moderate resistance (RF = 3.7–6.8) to profenofos and monocrotophos (organophosphates). Auber and Burk were highly resistant (RF = 41.2 and 473 respectively) to cypermethrin (pyrethroid). This resistance was likely associated with point mutation super‐kdr (M918L) in the voltage‐gated sodium channel gene (para gene) or metabolic detoxification mediated by esterase and oxidase enzymes. CONCLUSION: Multiple resistance to a broad range of insecticides and multiple mechanisms of resistance in some clones could explain to some extent the low genetic diversity observed within A. gossypii host races. Copyright © 2009 Society of Chemical Industry  相似文献   

12.
13.
Permethrin resistance in the human head louse, Pediculus capitis De Geer (Anopulura: Pediculidae), has been reported worldwide, is associated with the knockdown phenotype, and elicits cross-resistance to DDT and the pyrethrins. Two point mutations, T929I and L932F, in the voltage-sensitive sodium channel α-subunit gene are responsible for permethrin resistance as a resistant haplotype (kdr-like). We have optimized a serial invasive signal amplification reaction (SISAR) protocol for the detection of these mutations using PCR amplified DNA fragments. SISAR distinguished all genotypes with high accuracy in a head louse population from Texas that was heterogeneous in terms of permethrin sensitivity. Using SISAR, resistance-conferring mutations are detected in a high throughput format, facilitating the efficient monitoring of permethrin resistance allele frequency in field populations.  相似文献   

14.
The antibiosis of tenZea mays L. inbred lines to the carmine spider mite,Tetranychus cinnabarinus (Boisduval) (Acari: Tetranychidae), was evaluated. Two maize inbred lines previously reported as resistant to this spider mite and a susceptible inbred line were compared with B96 (formerly called 41:2504B), reported as being resistant to the two-spotted spider mite T. urticae and to the European corn borer (Ostrinia nubilalis Hübner). Other lines were derived from B96. All lines originated in the U.S.A. and were tested in Israel at two different growth stages. Four days after inoculation of detached leaf squares with adult mites, significant differences in susceptibility were observed among lines. At the 3-leaf stage lines B68, B96, B79, A619, B65, B49 and B64 reduced the average mite daily fecundity by 43%, 64%, 66%, 67%, 77%, 81% and 87%, respectively, as compared with the most susceptible line, B52. At the flowering stage, the average reduction in mite daily fecundity was much lower: inbred lines B64, A619 and B96 reduced the average mite daily fecundity by 48%, 51% and 86%, respectively, whereas the seven other genotypes had an intermediate or a susceptible reaction to the carmine spider mite, with A661 being the most susceptible. Our results show that B96 could be used as a source of resistance in developing improved resistance of inbred lines of maize to carmine spider mites.  相似文献   

15.
The carmine spider mite is the most serious crop mite pests in China. Abamectin has been used to control insects and mites worldwide but carmine spider mites, Tetranychus cinnabarinus, had developed resistance to it. Genetic research on insecticide resistance has been fundamental for understanding the resistance development, studying resistance mechanisms, and designing appropriate resistance management strategies to control insect pests. A resistant colony of T. cinnabarinus, RRG42, was established to examine the inheritance of abamectin resistance in T. cinnabarinus. The females of T. cinnabarinus were selected for bioassay using a slide dip method. After 42 generations of selection, the RRG42 strain was 8.7-fold resistant to abamectin compared with the susceptible strain (SS). The logarithm (log) concentration–probit response curve for F1s from reciprocal crosses, of F1RS and F1SR, were inclined to that for SS and the degree of dominance (D) values for F1s were −0.81 and −0.17. There was a significant difference in values of LC50 and slope of log concentration–probit lines between F1RS and F1SR. The observed mortalities of BC1 (F1RS♀ × RRG42♂) and BC1′ (F1SR♀ × SS♂) were significantly different from the expected mortalities based on a monogenic resistance in the chi-square tests. The inheritance of abamectin resistance in T. cinnabarinus is incompletely recessive and may be controlled by more than one gene. The maternal or cytoplasmic effect may exist in the inheritance of resistance to abamectin in T. cinnabarinus.  相似文献   

16.
The resistance levels of different human head louse populations from the USA to 1% permethrin were evaluated using permethrin-impregnated, filter paper disk-contact bioassay. Populations from southern California, south Florida and south central Texas showed 1.5-, 3.1-, and 1.5- to 5.1-fold resistance compared to insecticide-susceptible head louse populations from Panama or Ecuador. Permethrin-resistant or permethrin-susceptible homozygous or heterozygous genotypes were determined from sequences of PCR-amplified genomic DNA fragments of the voltage-sensitive sodium channel α-subunit gene by the presence of a T or C, or both, respectively, at nucleotide positions 36 and 44 in the sequence. The presence of a T at both these positions resulted in the amino acid substitutions, T929I and L932F, respectively. Of the 424 louse samples examined that had the T929I mutation, all also possessed the L932F mutation, indicating that the two mutations were tightly linked. The southern California population was phenotypically determined by bioassay to be comprised of 45% resistant individuals and had a resistant allele frequency of 0.53 by DNA sequence analysis. The south Florida population was phenotypically determined to consist of 87% resistant individuals and had a resistant allele frequency of 0.97. The four Texas populations varied in the level of resistance and in resistant allele frequency. The Mathis population was phenotypically determined to consist of 15% resistant individuals and had a resistant allele frequency of 0.33. However, the populations from San Antonio, Mansfield, and Corpus Christi were likewise phenotyped to have 91%, 94%, and 100%, respectively, resistant individuals and a 0.98, 1.00 and 1.00, respectively, resistant allele frequency. The log survival time versus logit mortality regression lines of susceptible-homozygotes, resistant-homozygotes, and heterozygotes determined that the resistance trait was complete recessive. Thus, the presence of homozygotes of the T929I and L932F mutations in the voltage-sensitive sodium channel correlated well with increased survival time following exposure to permethrin and indicates that a knockdown-type nerve insensitivity mechanism is functioning as the major mechanism causing permethrin resistance in USA head louse populations. Our results substantiate that permethrin resistance in human head louse population in the USA is widespread but variable. Permethrin resistance is highly correlated with the presence of the T929I and L932F point mutations, which are suitable for detection by a variety of DNA-based diagnostic techniques [Pest Manag. Sci. 57 (2001) 968]. Large-scale monitoring of permethrin resistance is possible utilizing these techniques and would provide critical information necessary for the development of an effective resistance management program for pediculosis.  相似文献   

17.
以兰州吐鲁沟公园金花忍冬植物上采集的二点叶螨为敏感种群,在室内盆栽菜豆苗上饲养繁殖后分别用氧乐果、甲氰菊酯、四螨嗪及螨嗪菊酯(甲氰菊酯 四螨嗪)混剂喷雾处理20代,获得二点叶螨抗氧乐果种群(抗性指数RF=35.84倍)、抗甲氰菊酯种群(RF=479.79倍)、抗四螨嗪种群(RF=67.26倍)以及抗混剂螨嗪菊酯种群(RF=26.75倍)。用生化法测定离体酶活性的结果表明,上述四个抗性种群的形成与体内羧酸酯酶、磷酸酯酶、谷胱甘肽转移酶的活力增加及乙酰胆碱酯酶的活性降低有关。4个抗性种群对常用15种供试药剂交互抗性测定结果表明,氧乐果、甲氰菊酯与联苯菊酯、三氟氯氰菊酯、水胺硫磷、久效磷、氰久合剂有交互抗性,甲氰菊酯还与螨蚧克有交互抗性;四螨嗪与三氯杀螨醇(RF=14.15倍)、齐螨素(RF=10.26倍)有交互抗性;螨嗪菊酯与双甲脒、氧乐菊酯有负交互抗性,RF值分别为0.85、0.71倍。  相似文献   

18.
Pyrethroid and organophosphate resistance-associated mutations have been recently reported in the whitefly Bemisia tabaci (Gennadius), a major pest of protected and outdoor crops worldwide. Here, we developed simple PCR–agarose gel visualization based assays for reliably monitoring the L925I and T929V pyrethroid resistance mutations in the B. tabaci para-type voltage gated sodium channel and the iAChE F331W organophosphate resistance mutation in the acetylcholinesterase enzyme ace1.PCR-RFLP assays were developed for detecting the L925I and the F331W resistance mutations. A highly specific PASA was developed for detecting the T929V mutation. The molecular diagnostic tools were used to monitor the frequency of the resistance mutations in a large number of field caught Q biotype B. tabaci from Crete (Greece), where both organophosphates and pyrethroids are extensively used. The F331W mutation was fixed in all field individuals examined. The pyrethroid resistance mutations were detected in high frequencies: 0.38 and 0.54 for L925I and T929V, respectively. The simple diagnostics are accurate and robust, to be used alongside classical bioassays to prevent ineffective insecticide applications, and for early identification of the spreading of resistant Q biotype populations into new regions around the globe.  相似文献   

19.
BACKGROUND: Resistance to glyphosate in weed species is a major challenge for the sustainability of glyphosate use in crop and non‐crop systems. A glyphosate‐resistant Italian ryegrass population has been identified in Arkansas. This research was conducted to elucidate its resistance mechanism. RESULTS: The investigation was conducted on resistant and susceptible plants from a population in Desha County, Arkansas (Des03). The amounts of glyphosate that caused 50% overall visual injury were 7 to 13 times greater than those for susceptible plants from the same population. The EPSPS gene did not contain any point mutation that has previously been associated with resistance to glyphosate, nor were there any other mutations on the EPSPS gene unique to the Des03 resistant plants. The resistant plants had 6‐fold higher basal EPSPS enzyme activities than the susceptible plants, but their I50 values in response to glyphosate were similar. The resistant plants contained up to 25 more copies of EPSPS gene than the susceptible plants. The level of resistance to glyphosate correlated with increases in EPSPS enzyme activity and EPSPS copy number. CONCLUSION: Increased EPSPS gene amplification and EPSPS enzyme activity confer resistance to glyphosate in the Des03 population. This is the first report of EPSPS gene amplification in glyphosate‐resistant Italian ryegrass. Other resistance mechanism(s) may also be involved. Copyright © 2012 Society of Chemical Industry  相似文献   

20.
BACKGROUND: Rapid and accurate detection of mutations related to insecticide resistance is essential for development of resistance management strategies to support sustainable agriculture. The M918V, L925I and T929V mutations of the voltage‐gated sodium channel gene (vgsc) and the F392W mutation of the acetylcholinesterase I gene (ace1) are reportedly associated with resistance to pyrethroids and organophosphates, respectively, in Bemisia tabaci. In order to detect known base substitutions in the ace1 and vgsc genes, a low‐density microarray with an allele‐specific probe was developed. RESULTS: Specific regions of the ace1 and vgsc gene mutations were amplified by multiplex asymmetrical PCR using Cy3‐labelled primers, and then the PCR products were hybridised on the microarray. After analysing the probe signal data, the microarray containing 12 allele‐specific probes produced a unique pattern of probe signals for field DNA samples of B. tabaci. To determine the optimal cut‐off value of each probe, receiver operating characteristic (ROC) curve analysis was conducted using SPSS. Among 60 individual samples, microarray data for 57 samples were consistent with direct sequencing data. CONCLUSION: Although many molecular detection methods have been employed to monitor insecticide resistance, the present microarray provides rapid and accurate identification of target mutations in B. tabaci for resistance management. Copyright © 2011 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号