首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
为评价两种伊维菌素注射液在家兔体内的生物等效性,采用双周期交叉给药方式,将16只健康家兔随机分成2组,按5 mg/kg体重皮下单剂量注射两种伊维菌素注射液,使用HPLC法测定血浆中的伊维菌素,利用3P97药动软件计算主要药动学参数。结果显示,受试制剂和参比制剂的T_(max)分别为(26.45±8.62)h,(22.33±11.72)h;Cmax分别为(182.73±59.27)ng/m L,(166.77±65.25)ng/m L;AUC_(0-t)分别为(21122±9999)ng·h·L~(-1),(19475±7009)ng·h·L~(-1);AUC_(0-∞)分别为(27390±12197)ng·h·L~(-1),(31559±13412)ng·h·L~(-1)。伊维菌素注射液受试制剂与参比制剂的AUC0-t、AUC0-∞、Cmax、Tmax均无显著性差异(P0.05),双单侧t检验结果显示两种制剂生物等效,可为兽医临床给药方案的制定以及合理用药提供参考。  相似文献   

2.
研究伊维菌素微乳剂在绵羊体内的药代动力学,对比高含量伊维菌素微乳剂与普通注射剂型的生物利用度差异。选取12只绵羊,分为2组,按照0.2 mg/kg体重分别皮下注射10 mg/mL伊维菌素注射液和30 mg/mL伊维菌素微乳剂。分别在给药前0.5 h,给药后2、4、6、8、10、12、16、20、24、36、48、96、144、192、240、336 h在颈静脉采集血液备用,用高效液相色谱荧光检测器对绵羊血浆中的伊维菌素进行检测,并利用内标法计算其含量。通过DAS2.1.1软件进行数据统计分析。结果显示,伊维菌素微乳剂组药时曲线下面积(AUC)为3 812.17 ng/mL·h,达峰浓度(C_(max))为97.71 ng/mL,达峰时间(T_(max))为12 h,消除半衰期(T_(1/2z))为43.46 h;伊维菌素注射液组AUC为2 501.25 ng/mL·h,C_(max)为48.15 ng/mL,T_(max)为24 h,T_(1/2z)为44.96 h。说明伊维菌素微乳剂吸收效果好,达峰时间短,达峰浓度高,生物利用度高。  相似文献   

3.
为阐明联合应用阿苯达唑(ABZ)和伊维菌素(IVM)在胃肠道线虫感染鄂尔多斯细毛羊体内的药动学互作关系,以感染胃肠道线虫的鄂尔多斯细毛羊为研究对象,比较研究了单独或联合应用阿苯达唑和伊维菌素后的药物动力学特征。通过粪便虫卵检查法,选取感染胃肠道线虫的鄂尔多斯细毛羊15只,随机分成3组,每组5只。第1组口服给予阿苯达唑(15mg/kg),第2组皮下注射伊维菌素(0.2mg/kg),第3组皮下注射伊维菌素(0.2mg/kg)的同时口服阿苯达唑(15mg/kg)。于给药后不同时间,由颈静脉采集血样,分离血浆,并用高效液相色谱法测定各时间点血浆阿苯达唑、阿苯达唑亚砜、阿苯达唑砜和伊维菌素浓度,并用PK Solution 2.0药物动力学软件计算出各药动学参数。结果表明,联合用药组绵羊血浆伊维菌素峰浓度(Cmax)、药时曲线下面积(AUC)和平均滞留时间(MRT)分别为44.80ng/mL±6.12ng/mL、5 007.46ng.h/mL±1 301.42ng.h/mL和85.47h±5.03h,均显著(P<0.05)小于单独用药组的对应参数值67.62ng/mL±9.06ng/mL、7 125.08ng.h/mL±908.52ng.h/mL和113.39h±9.00h。口服阿苯达唑组绵羊血浆中仅检测到了阿苯达唑砜和阿苯达唑亚砜,而未检测到阿苯达唑母药。联合用药后,除阿苯达唑砜的达峰时间(T max)显著推迟外,阿苯达唑砜和阿苯达唑亚砜的其他各参数之间均无显著性差异。因此,联合应用IVM和ABZ可影响它们在胃肠道线虫感染鄂尔多斯细毛羊体内的药动学特征,且对伊维菌素药动学特征的影响尤为明显,在临床联合用药过程中应予以重视。  相似文献   

4.
喹烯酮及其主要代谢物在猪体内的药动学研究   总被引:1,自引:1,他引:0  
本试验旨在研究喹烯酮及其主要代谢物在猪体内的药物代谢动力学过程。将喹烯酮按40 mg/kg的剂量对7头猪进行灌胃给药,采用HPLC-MS/MS法测定血浆中喹烯酮及其主要代谢物的浓度,药代动力学软件WinNonlin 5.2处理血浆中药物浓度-时间数据。灌胃给药后猪血浆中能检测到原药和N1-脱氧喹烯酮、脱二氧喹烯酮及3-甲基喹噁啉-2-羧酸(MQCA)3种代谢物。喹烯酮的浓度-时间数据符合一级吸收一室开放模型,其主要药代动力学参数为:T1/2Ka=(0.97±0.08)h,T1/2λz=(2.79±0.16)h,CL=(26.03±0.65)L/h·kg,Cmax=(0.26±0.01)μg/mL,Tmax=(2.23±0.06)h,AUC=(1.54±0.04)h·μg/mL;采用统计矩法处理N1-脱氧喹烯酮和脱二氧喹烯酮的浓度-时间数据,N1-脱氧喹烯酮主要药代动力学参数为:Tmax=(6.33±1.37)h,Cmax=(8.81±2.08) ng/mL,T1/2λz=(3.03±1.27)h,AUC=(0.07±0.01)h·ng/mL,MRT=(6.58±0.40)h;脱二氧喹烯酮的主要药动学参数:Tmax=(10.29±0.29)h,Cmax=(6.20±1.11)ng/mL,T1/2λz=(5.84±2.78)h,AUC=(0.15±0.01)h·ng/mL,MRT=(3.64±0.72)h。同时,在少数时间点检测到代谢物MQCA。猪口服喹烯酮后,吸收较快,消除较慢。血浆中检测到N1-脱氧喹烯酮、脱二氧喹烯酮及3-甲基喹噁啉-2-羧酸3种代谢物,且浓度较低、消除缓慢。  相似文献   

5.
喹赛多及其主要代谢物在猪体内的药代动力学研究   总被引:3,自引:1,他引:2  
试验研究了灌服单剂量喹赛多(40 mg/kg体重)后原药及其代谢物在健康猪体内的药代动力学特征。液相色谱-串联质谱法测定血浆中喹赛多及其代谢物的浓度,通过WinNonlin 5.2药代动力学软件分析,用非房室模型统计矩原理计算喹赛多及其代谢产物的药动学参数。主要药动学参数分别为喹赛多:t1/2 (7.52±1.77) h,Cmax(0.02±0.01) μg/mL,AUC(0-36 h) (0.26±0.24) (h·μg)/mL,MRT(11.37±3.21) h;N1(脱一氧喹赛多):t1/2 (3.05±1.12) h,Cmax(0.35±0.18) μg/mL,AUC(0-36 h) (2.13±2.31) (h·μg)/mL,MRT(11.83±3.34) h。N4(脱一氧喹赛多):t1/2 (2.91±1.15) h,Cmax(0.60±0.32) μg/mL,AUC(0-36 h) (3.78±4.28) (h·μg)/mL,MRT(11.00±2.86) h。脱二氧喹赛多:t1/2 (3.85±1.30) h,Cmax(0.46±0.19) μg/mL,AUC(0-36 h) (4.21±2.47) (h·μg)/mL,MRT(13.35±2.65) h。QCA(喹口恶啉-2-羧酸):t1/2 (5.08±0.57) h,Cmax(0.25±0.11) μg/mL,AUC(0-36 h) (3.05±1.46) (h·μg)/mL,MRT(15.15±1.83)h。结果表明,血浆中主要存在形式为代谢物,各代谢物的血药浓度及AUC(0-∞)均高于喹赛多,喹赛多消除半衰期最长,QCA平均滞留时间最长。  相似文献   

6.
伊维菌素微球在家兔体内的药动学   总被引:14,自引:1,他引:13  
皮下注射伊维菌素 (IVM )微球悬液 (5 0mg/kg及 10 0mg/kg)和害获灭 (1%伊维菌素 ,0 5mg/kg) ,RP HPLC UV法定量 ,研究了IVM在家兔体内的药物动力学。害获灭皮下注射给药 ,药 时数据符合一级吸收一室开放模型 ,主要动力学参数为 :t1/2ka=7 2 4± 2 96h ;t1/2ke=36 38± 8 6 6h ;tmax=2 1 4 6± 4 82h ;Cmax=2 2 53± 2 32ng/ml;AUC =174 9± 318ng/1.h ,其动力学参数表现比较明显的个体差异 ,且与其它动物有明显差别。微球皮下注射一周后 ,血药浓度呈较稳定状态 ,到第 4 2天 (高剂量组 )和第 32天 (低剂量组 ) ,血浆中测不出H2 B1a(低于 2 5ng/ml)。以房室模型拟合 ,微球高低剂量组均符合有吸收二室开放模型 ,主要药动学参数均表现显著的个体差异。  相似文献   

7.
《中国兽医学报》2017,(5):883-887
将18头健康成年中国荷斯坦奶牛随机分成高、中、低3组,每组每头分别肌肉注射氨基丁三醇前列腺素F2α注射液10(50mg),5(25mg),2.5mL(12.5mg),采用酶联免疫吸附法(ELISA)测定血药浓度,用残数法逐头奶牛拟合药动学曲线方程并计算药动学参数,研究氨基丁三醇前列腺素F2α在奶牛体内的药代动力学。结果表明,药时数据符合有吸收一室模型,高,中,低组的主要药动学参数:吸收速率常数Ka分别为(18.22±2.17),(15.30±0.64),(20.09±5.03)h-1;吸收半衰期t1/2Ka分别为(0.04±0.004),(0.05±0.002),(0.04±0.01)h;分布和消除速率常数Ke分别为(1.32±0.14),(1.27±0.12),(1.40±0.16)h-1;消除半衰期t1/2Ke分别为(0.53±0.06),(0.55±0.05),(0.50±0.06)h;达峰时间tmax均为0.17h;达峰质量浓度Cmax分别为(6.34±0.59),(5.94±0.27),(4.81±0.16)μg/L;药时曲线下面积AUC0~t分别为(14.40±2.19),(10.14±1.07),(13.15±4.34)μg/(L·h)。奶牛单剂量肌肉注射氨基丁三醇前列腺素F2α注射液后,机体对药物吸收迅速,消除快,浓度约10min达到峰值,100min后达到注射前的水平。根据药时曲线峰浓度,AUC值及相关的临床药效学试验结果,建议临床使用剂量为5mL(25mg)。  相似文献   

8.
为预测土霉素在鸡体内的药动学特点,建立了土霉素在鸡体内的血流限速生理房室模型。结果显示,土霉素在鸡体内的药动学参数:Tmax(达峰时间)为2.22h,Cmax(峰浓度)为0.62μg/mL,AUC(药时曲线下面积)为7.61(μg/mL)×h,Ka(吸收速率常数)为1.21h-1,Ke(消除速率常数)为0.10h-1,T1/2Ka(吸收半衰期)为0.57h,T1/2Ke(消除半衰期)为6.73h,V(表观分布容积)为6.38L/kg,CL(血浆清除率)为0.66L/h·kg。其结果表明,土霉素在鸡体内的药动学特点为:吸收迅速,分布广泛,消除缓慢。因此,运用生理房室模型可以预测药物的药动学参数。  相似文献   

9.
探讨新型制剂伊维菌素微球在山羊体内的药效学。选取32只山羊〔平均体重(27.05±1.20)kg〕,随机分成4组(Ⅰ),每组7Ⅳ),每组79只。Ⅰ组0.3 mg/kg体重,皮下注射伊维菌素注射液;Ⅱ和Ⅲ组3 mg/kg体重,分别皮下注射伊维菌素PLA5微球和PLGA微球混悬液;Ⅳ组作为对照组,不给药,对山羊粪便虫卵数(EPG)进行检测。Ⅰ、Ⅱ组和Ⅲ组山羊在第14天虫卵减少率均为100%,虫卵全部转阴;在给药后91 d虫卵减少率分别为0、74.3%和80.0%、;在给药后123 d分别为0、61.8%和0。伊维菌素对山羊胃肠道线虫虫卵具有较好的驱除作用,PLGA微球和PLA5微球的药效维持长达120 d左右,表现出长效作用。  相似文献   

10.
为比较研究制备的伊维菌素长效透皮制剂与普通伊维菌素注射剂药物代谢及药效时间,本研究制备伊维菌素含量分别为0.5%、1.0%和1.5%的长效透皮制剂,采用高效液相色谱法检测不同药量相同体积伊维菌素长效透皮制剂和普通伊维菌素注射剂(1.0%)在家兔体内的药代动力学,并通过PKSolver药代动力学处理软件对数据进行分析。结果显示,0.5%、1.0%、1.5%伊维菌素长效透皮剂和1.0%普通注射剂吸收半衰期分别为0.81、0.52、1.02和0.12 d;达峰时间为1.55、0.97、1.62和0.42 d;峰浓度为47.36、72.02、115.30和99.53 ng/mL;消除半衰期为3.61、5.92、5.59和1.79 d;平均滞留时间为5.27、7.37、5.13和2.16 d;药时曲线面积为1 488.70、3 081.98、3 161.20和480.00 ng·d/mL,伊维菌素长效透皮剂体内维持有效药物浓度的时间长达35 d,普通注射剂仅为9 d。结果表明,伊维菌素长效透皮剂效果稳定,可进行更深入的研究。  相似文献   

11.
The plasma kinetic profile of ivermectin during the last trimester of pregnancy was studied in ewes after a single subcutaneous administration of 0.2 mg/kg body weight (BW). Sheep were randomly distributed into two groups. Ewes in group 1 (control, n=6) were left unmated, whereas in group 2 (pregnant, n=6) ewes were estrus-synchronized and mated with rams. Both groups were housed under similar conditions of management and feeding. At 120 days of pregnancy, both groups were given a subcutaneous injection of 0.2 mg/kg BW of ivermectin. Blood samples were taken by jugular puncture according to a fixed protocol between 1 h and 40 days post-treatment. After plasma extraction and derivatization, samples were analyzed by high performance liquid chromatography with fluorescence detection. A computerized pharmacokinetic analysis was performed, and the data were compared by means of the Student t-test. The results showed that plasma concentrations of ivermectin remained longer in the pregnant than in the control group. The mean values of pharmacokinetic parameters C(max), t(max), and area under the concentration-time curve (AUC) were similar for both groups of sheep. The mean residence time (MRT) values for the pregnant group (8.8+/-1.4 days) were higher (P<0.05) than those observed in the control group (5.3+/-1.9 days). It can be concluded that pregnancy increases the residence time of ivermectin in the plasma of pregnant sheep when it is administered subcutaneously.  相似文献   

12.
When 400 micrograms ivermectin/kg was administered subcutaneously to rabbits infected with the ear mite Psoroptes cuniculi it significantly reduced the clinical score, and when 500 micrograms ivermectin/kg was administered subcutaneously to guinea pigs with mange due to Trixacaurus caviae it resulted in a clinical cure. In rabbits a subcutaneous dose of 400 micrograms/kg produced high and sustained concentrations of ivermectin in the tissues and body fluids for at least 13 days and its rate of depletion from tissues was similar to that observed in sheep and rats. The mean (+/- sem) maximum concentration in plasma was 42.0 +/- 9.7 ng/ml 37.2 +/- 5.0 hours after administration and the area under the concentration-time curve was 3543 +/- 580 ng/ml hours. After the administration of 500 micrograms ivermectin/kg to guinea pigs orally, subcutaneously or topically the drug could be detected in the plasma only after subcutaneous administration. The mean concentration 72 hours after its administration to four guinea pigs was 0.7 +/- 0.3 ng/ml.  相似文献   

13.
Belgian Blue (BB) cattle are very sensitive to mange caused by Psoroptes ovis and, in contrast to the case in Holstein cattle, single treatments with ivermectin do not result in complete elimination of the parasite. The objective of the present study was to determine the concentration of ivermectin in plasma, skin and hair following subcutaneous administration to Holstein and BB calves and to assess the influence of breed on drug pharmacokinetics and availability. Two groups of six healthy female Holstein and BB calves were treated with ivermectin (SC formulation) at a dose of 0.2 mg/kg. Blood, skin and hair were collected before treatment and up to 21 days after treatment. Ivermectin was analyzed in plasma and tissue by high-performance liquid chromatography (HPLC). The peak concentrations (Cmax), time-peak concentrations (Tmax), the area under the plasma concentration-time curves (AUC) and the mean residence time (MRT) were determined. The patterns of plasma and tissue ivermectin concentrations were similar in the two breeds of animals, however, the AUC and Cmax levels for plasma and skin were significantly higher in the BB calves. In hair, ivermectin was detected later than in plasma and skin, with the Tmax ranging between 4 days (Holstein group) and 6 days (BB group). The possible reasons for the significantly higher levels in plasma and skin in BB calves compared to Holstein calves are discussed.  相似文献   

14.
The tissue concentration and efficacy of ivermectin after per os and subcutaneous administration were compared in goats experimentally infected with Trichostrongylus colubriformis (ivermectin-susceptible strain, INRA). Infected goats (n = 24) were treated per os (n = 9) or subcutaneously (n = 9) with ivermectin, 0.2 mg/kg, or kept as not treated controls. The faecal egg counts and small intestine worm counts were determined. Ivermectin concentration was measured in the plasma, gastrointestinal tract, lung, skin or hair, liver and adipose tissues at 0, 2, 7 and 17 days post-treatment. The efficacy of ivermectin against T. colubriformis infection in goat was 98.7 and 99.9% for subcutaneous and oral administration, respectively. Ivermectin concentration declined with time and only residual concentration was measured at 17 days post-treatment in plasma and gastrointestinal tract. Ivermectin concentration was higher after subcutaneous compared to per os injection in most of the tissue examined. In skin, hair and subcutaneous adipose tissue ivermectin persisted at significant concentrations 17 days post-treatment for both routes of administration. In our experimental conditions, ivermectin provides similar efficacy against T. colubriformis after subcutaneous or per os administration in goat. However, the lower ivermectin levels in tissues after per os administration suggest that the lasting of efficacy may be shortened after per os compared to subcutaneous administration especially in animals with poor body condition in pasture where re-infection occurs quickly after anthelmintic treatment.  相似文献   

15.
Pharmacokinetics of moxidectin and doramectin in goats.   总被引:8,自引:0,他引:8  
The pharmacokinetic behaviour of doramectin after a single subcutaneous administration and moxidectin following a single subcutaneous or oral drench were studied in goats at a dosage of 0.2 mg kg(-1). The drug plasma concentration-time data were analysed by compartmental pharmacokinetics and non-compartmental methods. Maximum plasma concentrations of moxidectin were attained earlier and to a greater extent than doramectin (shorter t(max) and greater C(max) and AUC than doramectin). MRT of doramectin (4.91 +/- 0.07 days) was also significantly shorter than that of moxidectin (12.43 +/- 1.28 days). Then, the exposure of animals to doramectin in comparison with moxidectin was significantly shorter. The apparent absorption rate of moxidectin was not significantly different after oral and subcutaneous administration but the extent of absorption, reflected in the peak concentration (C(max)) and the area under the concentration-time curve (AUC), of the subcutaneous injection (24.27 +/- 1.99 ng ml(-1) and 136.72 +/- 7.35 ng d ml(-1) respectively) was significantly greater than that of the oral administration (15.53 +/- 1.27 ng ml(-1) and 36.72 +/- 4.05 ng d ml(-1) respectively). The mean residence time (MRT) of moxidectin didn't differ significantly when administered orally or subcutaneously. Therefore low oral bioavailability and the early emergence of resistance in this minor species may be related. These results deserve to be correlated with efficacy studies for refining dosage requirements of endectocides in this species.  相似文献   

16.
The yak (Bos grunniens) belongs to the cattle family Bovidae and lives in the mountains of China and adjacent areas. Due to the physiological adaptations of yak to its environment and the lack of data, the ivermectin pharmacokinetic was studied following a single subcutaneous dose at the recommended dose for cattle (0.2 mg kg(-1)). The observed peak plasma concentration (Cmax) was 48.93 ng ml(-1) and the time to reach Cmax (Tmax) was 0.73 day. These results show a faster rate of absorption than in cattle. The values for the absorption half-life (t(1/2a)), the distribution half-life (t(1/2alpha)) and the terminal half-life (t(1/2beta)) were 0.31, 0.74 and 4.82 days, respectively. The calculated area under the concentration-time curve (AUC) was 146.2 ng day ml(-1) and the mean residence time (MRT) was 3.57 days. The availability of ivermectin appears low in yaks in comparison to cattle but equivalent to that reported in horses and is likely to be due to physiological characteristics of this species.  相似文献   

17.
The concentration-time profile of ivermectin in serum was determined for 3 Hereford heifers. The mean maximum serum concentration, 29 ng of ivermectin/ml, was obtained 48 hours after single subcutaneous injection of 200 micrograms/kg of body weight. The fecundity of mites placed on 9 treated animals at 5, 9, 12, 15, 18, and 21 days after injection was reduced by 96% to 99%. At 24 days after treatment, when serum concentration had decreased to about 2 ng/ml, the capability of mites to produce eggs increased to 50% of mites from nontreated calves. At 27 and 30 days after the drug was injected, egg production by mites on treated calves was equivalent to that of mites on nontreated calves. The reduced fecundity resulted from an almost complete cessation of oviposition by females after only a 1-day exposure to ivermectin-treated calves.  相似文献   

18.
The plasma concentration profiles of four randomly chosen ivermectin (IVM) generic formulations (IVM G1-G4) were compared after their subcutaneous (SC) administration to healthy calves. The disposition of other avermectin-type endectocide compounds, doramectin (DRM) and abamectin (ABM), was also assessed in the same pharmacokinetic trial. Forty-two parasite-free Aberdeen Angus male calves were randomly allocated into six treatment groups. Animals in each group (n = 7) received SC treatment (200 microg/kg) with one of the commercially available endectocide formulation used in the trial. Blood samples were taken into heparinised vacutainer tubes from the jugular vein prior to and up to 35 days post-treatment. The recovered plasma was analysed by HPLC with fluorescence detection. Large kinetic differences were observed among the DRM, ABM and IVM formulations under evaluation. The DRM plasma concentration profiles were higher than those measured for ABM and all the IVM generic formulations. The higher and sustained plasma concentrations of DRM accounted for greater area under concentration-time curve (AUC) and longer mean residence time (MRT) values compared to those obtained for both ABM and the IVM generic preparations. The pattern of IVM absorption from the site of subcutaneous administration showed differences among the generic formulations under evaluation. The IVM G2 preparation showed higher peak plasma concentration and AUC values (P < 0.05) compared to those obtained after the administration of the IVM G1 formulation. Longer (P < 0.05) MRT values were obtained after the administration of the IVM G3 compared to other IVM generic preparations. The kinetic behaviour of ABM did not show significant differences with that described for most of the IVM formulations. This study demonstrates that major differences on drug kinetic behaviour may be observed when using different endectocide injectable formulations in cattle.  相似文献   

19.
The therapeutic efficacies of ivermectin (subcutaneous injection) and eprinomectin (topical treatment) given at two different dosage levels to goats naturally infested with Amblyomma parvum were assessed. Treatments included subcutaneous injection of ivermectin at 0.2 and 0.4mg/kg and extra-label pour-on administration of eprinomectin at 0.5 and 1mg/kgb.w. Ivermectin and eprinomectin failed to control Amblyomma parvum on goats. Treatment with ivermectin resulted in a low number of engorged female ticks in relation to untreated control goats and, at the highest dose rate (0.4mg/kg), the female engorgement weights were significantly lower and the pre-oviposition period significantly longer than those observed in ticks recovered from untreated control goats. The tick efficacy assessment was complemented in a separate group of tick-free goats with a pharmacokinetic characterization of eprinomectin (topically administered at 0.5, 1.0 and 1.5mg/kg) and ivermectin (subcutaneous treatment given at (0.2 and 0.4mg/kg) in goats. Heparinized blood samples were taken between 0 and 21 days post-treatment. Higher and more persistent drug plasma concentrations were recovered after the subcutaneous treatment with ivermectin compared to those obtained for eprinomectin topically administered. The understanding of the relationship among the pattern of drug absorption, the kinetic disposition and the resultant clinical efficacy is relevant to improve the poor performance observed for ivermectin and eprinomectin against A. parvum on goats.  相似文献   

20.
OBJECTIVE: To evaluate bioavailability and other pharmacokinetic variables of a commercial formulation of ivermectin after IV administration to sheep. ANIMALS: 6 healthy adult sheep. PROCEDURES: A single dose of a commercial formulation of ivermectin (200 microg/kg) was administered IV to each sheep. After a washout period of 3 weeks, each sheep was administered ivermectin by SC injection. Plasma samples were obtained for up to 36 and up to 42 days after IV and SC administration, respectively. Ivermectin concentrations were quantified by use of high-performance liquid chromatography with fluorescence detection. RESULTS: Results obtained indicated that after IV administration, ivermectin is cleared slowly from plasma, tends to distribute and accumulate in the peripheral compartment, and is slowly eliminated from the body. After SC administration, noncompartmental analysis revealed that bioavailability of ivermectin is nearly complete (98.20%), has a slow mean absorption time of 0.96 days, and reaches a maximum plasma concentration of 19.55 ng/mL at 3.13 days. CONCLUSIONS AND CLINICAL RELEVANCE: The commercial formulation of ivermectin used in this study can be administered SC to sheep on the basis of a nearly complete bioavailability. In addition, the maximum plasma concentration and interval from SC injection until maximum plasma concentration is obtained are higher than those reported by other authors who used other routes of administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号