首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的筛选分离纯化柳叶水甘草碱的最佳大孔吸附树脂,并确定其最佳工艺条件。方法以柳叶水甘草碱含量为考察指标,采用静态和动态吸附-解吸附方法,考察6种大孔吸附树脂对柳叶水甘草碱的吸附能力,其中D101型大孔吸附树脂的吸附量和洗脱率均较高,并优化其工艺条件。结果优化后的分离工艺为:上样液浓度1.2 mg·m L~(-1),流速为0.5BV·h~(-1),洗脱剂为60%乙醇(6BV)。所得柳叶水甘草碱纯度可达(65.21±0.73)%。结论该工艺稳定、合理、可行,得到的柳叶水甘草碱纯度较高,适用于其分离纯化。  相似文献   

2.
探究大孔吸附树脂富集纯化番泻豆荚中番泻苷的最佳工艺。以番泻豆荚为原料,采用高效液相测定番泻苷A、B含量,以吸附率及解吸率为指标,采用静态吸附试验对5种大孔树脂进行筛选,优选出吸附解吸性能最佳的大孔树脂,并对纯化条件进行优化,确定最佳工艺参数。结果表明:AB-8型树脂对番泻豆荚中番泻苷有较好的吸附及解吸附效果,其最佳工艺为:树脂饱和吸附量按生药计为0.21 g/g,径高比为1∶8,上样流速为1 BV/h,洗脱流速为2 BV/h,以3 BV水除杂,3 BV 30%乙醇洗脱,纯化后产品中番泻苷A、B总含量高达26.05%。结论:AB-8型树脂适合富集纯化番泻豆荚中番泻苷。  相似文献   

3.
采用AB-8大孔树脂对油茶皂素进行分离纯化,并优化其分离纯化条件.静态吸附动力学研究和解吸试验结果表明:AB-8大孔树脂属于快速吸附型树脂,解吸率较高,适用于油茶皂索分离纯化;AB-8树脂动态吸附和洗脱试验结果表明最优分离纯化条件为:上样流速为2.6 BV/h,以80%乙醇作为洗脱剂,洗脱流速为2 BV/h,洗脱液用量...  相似文献   

4.
大孔吸附树脂分离纯化桂花总黄酮工艺研究   总被引:2,自引:1,他引:1  
[目的]研究大孔吸附树脂分离纯化桂花总黄酮的工艺条件。[方法]以贵州产桂花为原料,以桂花总黄酮吸附量及回收率等为考察指标,选用AB-8型大孔吸附树脂对桂花总黄酮进行分离纯化,分别采用静态试验和动态试验等考察AB-8型大孔树脂对桂花总黄酮的分离纯化最佳工艺条件及效果。[结果]pH值、洗脱剂、温度、上柱液浓度、径高比、流速、总黄酮与树脂质量比等工艺条件对桂花总黄酮的吸附洗脱量和回收率等影响很大。AB-8型大孔树脂分离纯化桂花总黄酮最佳工艺条件为上柱液pH值4~5;洗脱剂为浓度70%乙醇,料液比为1∶4(g/ml),上柱总黄酮质量与树脂质量比为1∶9.4,上柱液总黄酮浓度为17.86 mg/ml,流速为2~3ml/min;冲洗杂质用水体积2~3 BV,流速为3~4 ml/min;径高比为1.5∶21.6;温度升高,吸附量下降但洗脱率加大。[结论]优选出了大孔吸附树脂分离纯化桂花总黄酮工艺条件,为桂花总黄酮的工业化生产提供试验依据。  相似文献   

5.
《安徽农业科学》2020,(4):168-174
[目的]建立大孔吸附树脂分离纯化牛蒡叶中绿原酸的工艺。[方法]通过单因素试验研究提取液种类、浓度、pH、提取温度、料液比以及提取时间等参数对绿原酸提取率的影响,确定最佳提取工艺;以大孔吸附树脂对牛蒡叶中绿原酸的分离效率为评价指标,通过静态和动态吸附/解吸附试验优化分离纯化工艺。[结果]pH=1的蒸馏水为提取溶剂,料液比1∶20(g∶mL)、提取温度80℃、回流1 h时对牛蒡叶中绿原酸的提取效果最佳,平均提取率为1.82%;考察了6种大孔吸附树脂对牛蒡叶绿原酸的分离纯化性能,以吸附/解吸附性能为评价指标,确定了LX-218为最佳大孔吸附树脂。LX-218型MAR分离纯化牛蒡叶绿原酸的最佳工艺条件为:上样量为30 BV(树脂床体积),上样浓度为0.7倍提取原液浓度(相当于原生药),上样液pH=3,以4 BV/h流速吸附,5 BV pH=5的60%乙醇以5 BV/h的流速解吸附。在优化的工艺条件下,牛蒡叶绿原酸得率为84.41%,纯度为55.26%。[结论]LX-218型大孔吸附树脂对牛蒡叶绿原酸有较好的吸附容量和解吸附率,优化的生产工艺条件适用于牛蒡叶绿原酸的工业化生产。  相似文献   

6.
以草珊瑚黄酮含量为考察指标,研究5种大孔吸附树脂对草珊瑚黄酮的吸附分离能力,筛选出最佳的大孔吸附树脂,并研究其动态吸附特性.结果表明,X-5型大孔吸附树脂纯化效果最好,其最佳纯化工艺条件:草珊瑚总黄酮上样液的质量浓度为3 mg/mL,上样速率2 BV/h,pH值为4;洗脱剂为70%乙醇,洗脱速率为2 mL/min,洗脱剂用量为2.5 BV.按该条件纯化后的草珊瑚总黄酮纯度为70.40%,为纯化前的3.3倍.该工艺简单易行,纯化效果好,适合工业化生产.  相似文献   

7.
利用大孔吸附树脂对独活(Heracleum hemsleyanum Diels)中的总香豆素类成分进行纯化。采用静态与动态吸附-解吸相结合的方法,以解吸量及解吸率为主要指标对工艺条件进行优化,确定了最佳纯化工艺条件。结果表明,采用LX-36型大孔吸附树脂纯化效果较好,其最佳工艺条件为上柱药液浓度相当于原药0.1 g/m L,上柱药液p H为2.5~5.5,吸附速率为5 BV/h,上样量相当于树脂量的50%,解吸液乙醇体积分数为95%,解吸速率为1 BV/h,解吸液用量为5 BV,经LX-36型大孔吸附树脂分离纯化后的独活干浸膏中总香豆素的含量由原来的8.42%升高到27.09%。表明LX-36型大孔吸附树脂适于独活总香豆素的初步纯化。  相似文献   

8.
[目的]以荔枝核为原料,优化荔枝核多酚纯化工艺,提高荔枝多酚资源利用率。[方法]以多酚纯度以及收率为衡量指标,通过对比7种大孔树脂的静态吸附与解吸,确定纯化荔枝核多酚的最佳树脂;通过大孔树脂动态吸附与洗脱,考察吸附量、洗脱溶剂、洗脱溶剂用量、洗脱速度等因素,确定荔枝核多酚纯化的最佳工艺。[结果]筛选出大孔树脂LSA-12作为最佳纯化材料,LSA-12纯化荔枝核多酚的最佳工艺为吸附量1∶4.61(g∶mL)(总固形物∶树脂体积)、洗脱溶剂70%乙醇、洗脱溶剂用量1.5 BV、洗脱速度1.0 BV/h。在该条件下,所得荔枝核多酚平均纯度为71.98%,平均收率为80.93%。[结论]大孔树脂LSA-12纯化荔枝核多酚效果良好,该工艺可在生产中推广应用。  相似文献   

9.
拟研究大孔吸附树脂纯化大黄中游离蒽醌的最佳工艺。先以大黄中总游离蒽醌和苯乙烯酸的静态吸附率和解吸率为指标,对6种不同型号的大孔吸附树脂进行筛选,然后通过静态和动态吸附解吸试验优化纯化工艺。结果表明,HPD-400型大孔吸附树脂对大黄中游离蒽醌和苯乙烯酸的吸附与解吸性能较好,且其吸附等温线方程较符合Langmuir模型;确定最佳吸附条件如下:pH值4.5,上样液浓度4 mg/mL,最大上样量7 BV;最佳洗脱条件如下:先用70 BV的0.2 mol/L NaHCO_3溶液从大黄中分离出苯乙烯酸及杂质,再用15 BV的95%乙醇洗脱游离蒽醌;总游离蒽醌纯度由41.17%提高到了82.60%。HPD-400型大孔吸附树脂可以有效纯化大黄游离蒽醌。  相似文献   

10.
大孔吸附树脂分离纯化竹叶兰总黄酮的最佳工艺条件为上样液浓度2.50 g/L,上样速率3.0 BV/h,洗脱剂80%乙醇,洗脱速率3.0 BV/h,洗脱剂用量4.0 BV,按此工艺条件纯化后的竹叶兰总黄酮纯度达81.58%。AB-8型大孔吸附树脂对竹叶兰总黄酮有较好的吸附和解吸效果。  相似文献   

11.
为研究大孔树脂分离纯化千斤拔总黄酮的最佳工艺,以总黄酮的含量为指标,通过静态吸附解析试验比较7种不同类型大孔吸附树脂的吸附解析特性,确定AB-8型大孔吸附树脂适用于千斤拔总黄酮的分离纯化。通过动态吸附试验确定了大孔吸附树脂分离纯化千斤拔总黄酮的最佳工艺条件。结果表明:大孔树脂分离纯化千斤拔总黄酮的最佳工艺为:上样液质量浓度相当于原生药质量浓度为0.12g·mL-1,最大上样量为12.83mg·mL-1,上样液的pH为5.0,上样流速为2.0mL·min-1,洗脱液乙醇体积分数为70%,洗脱剂用量为7BV,洗脱流速为1.5mL·min-1。在此条件下,千斤拔总黄酮的纯度由31.26%提高至65.7%,说明该工艺稳定可靠,可用来分离纯化千斤拔总黄酮。  相似文献   

12.
大孔树脂纯化柿叶总黄酮的工艺研究   总被引:2,自引:1,他引:1  
以黄酮的吸附率与解吸率为指标,考察10个不同型号的大孔树脂对柿叶黄酮的吸附与解吸能力,确定NKA-2为较理想的树脂.对NKA-2树脂的纯化条件进行优化,得到最佳工艺条件为:以4mg/mL的浓度(溶液pH=3)、2 BV/h的速率5 BV上样,以6 BV的70%乙醇、2 BV/h的速率洗脱.经NKA-2处理后的柿叶总黄酮可达52%,纯化了33.8%.  相似文献   

13.
[目的]以荔枝皮为原料,优化荔枝皮多酚的纯化工艺,提高荔枝多酚资源利用率。[方法]以多酚纯度及收率为衡量指标,通过对比7种大孔树脂的静态吸附与解吸,确定纯化荔枝皮多酚的最佳树脂;通过大孔树脂动态吸附与洗脱,考察吸附量、洗脱溶剂、洗脱溶剂用量、洗脱速度等因素,确定荔枝皮多酚纯化的最佳工艺。[结果]筛选出DM21大孔树脂作为最佳纯化材料,DM21纯化荔枝皮多酚的最佳工艺如下:吸附量93.4 mg/mL、洗脱溶剂为90%乙醇、洗脱溶剂用量1.5 BV、洗脱速度1.5 BV/h。在此最优条件下,荔枝皮多酚平均纯度为32.27%,平均转化率为69.03%。[结论]大孔树脂DM21纯化荔枝皮多酚效果良好,值得推广应用。  相似文献   

14.
AB-8型大孔树脂对桑葚红色素的分离纯化研究   总被引:1,自引:0,他引:1  
丁杰 《安徽农学通报》2009,15(15):216-218
为确定AB-8型大孔树脂分离纯化桑葚中红色素的最佳工艺条件,以吸附量和解吸率为指标,研究了各种因素对红色素在浸提和从AB-8型大孔树脂洗脱过程的影响。结果表明:最佳浸提条件为浸提时间2h、乙醇浓度75%、物料比1∶3、温度为60℃;最佳洗脱条件为pH=2、洗脱液体积2BV、流速1BV/h、乙醇的体积分数80%。  相似文献   

15.
分析了茶叶生产废料中表没食子儿茶素没食子酸酯(EGCG)的纯化工艺,并采用大孔树脂对其进行分离纯化。结果表明,运用静态吸附与动态吸附相结合的方法分析得到,适用于茶叶生产废料中EGCG分离纯化用的大孔吸附树脂为D101。其最佳分离纯化条件为:将20.0 mg/m L上柱液以1.5 BV/h上柱4.5 BV,使用20%乙醇以0.5 BV/h洗脱4.0 BV。  相似文献   

16.
对山刺玫(Rosa davurica Pall.)果总黄酮的大孔树脂纯化工艺进行了优化研究,以比吸附量和比解吸量为考察指标,进行了D-101大孔树脂纯化工艺的优化。结果表明,其最佳工艺条件为生药浓度0.025 g/m L;最佳上样量为0.23 g/g(生药量/树脂量);最佳吸附时间为30 min;上柱液p H为2.0~4.0;吸附速率为1 BV/h;洗脱液为3 BV 70%乙醇,洗脱流速为1 BV/h。在此最佳条件下得到的山刺玫果提取物总黄酮含量由20%提高到85%左右。采用D-101型大孔树脂纯化山刺玫果总黄酮的效果较好,且操作简单,为山刺玫果的综合利用提供了依据。  相似文献   

17.
根据葛根总黄酮的理化性质,对葛根水提醇沉液采用大孔树脂进行分离纯化研究,以葛根总黄酮提取率为评价指标,筛选出大孔树脂分离纯化葛根总黄酮的最佳工艺为:选用D-100型大孔树脂,吸附速度为2 BV/h,除杂洗脱用水量为4 BV,洗脱剂乙醇浓度为70%,乙醇用量为3 BV.  相似文献   

18.
大孔树脂在纯化杜仲总黄酮中的应用   总被引:2,自引:0,他引:2  
为确定大孔树脂分离杜仲总黄酮的最佳工艺条件,以吸附率及解吸率为考察指标,确定最佳型号树脂、静态和动态吸附及解吸的相关影响因素.结果表明,D-100型大孔树脂时杜仲总黄酮有良好的吸附性,其吸附分离的工艺条件的药液浓度为0.4mg·mL-1,以2mL·min-1吸附速率进行吸附,5倍柱体积70%乙醇,洗脱速率为1 mL·min-1时洗脱效果最佳.该方法简单易行,分离效果好,适于杜仲总黄酮的分离纯化.  相似文献   

19.
张翠英  章洪王阶 《安徽农业科学》2014,(23):7752-7753,7768
[目的]利用大孔吸附树脂优化丹参中高纯度丹酚酸B的纯化工艺。[方法]大孔吸附树脂纯化考察包括树脂类型的选择、上样量、除杂溶剂、洗脱溶剂等多方面因素。[结果]确定丹参中丹酚酸B的纯化树脂为大孔吸附树脂HP300、上样量为1∶2(丹参∶树脂)、2BV水除杂、3 BV的40%乙醇洗脱。收集40%乙醇洗脱部分回收溶剂喷雾干燥,丹酚酸B纯化物中丹酚酸B的含量为73.6%、68.9%。[结论]大孔吸附树脂优化的纯化条件为丹酚酸B进一步研究开发奠定了实验基础。  相似文献   

20.
大孔吸附树脂分离纯化博落回总生物碱的研究   总被引:5,自引:0,他引:5  
以博落回总生物碱含量及回收率等为考察指标,研究大孔吸附树脂分离纯化博落回总生物碱工艺,结果表明:AB-8型大孔吸附树脂对博落回总生物碱静态饱和吸附量为104.65 mg/(g干树脂),洗脱率为95.9%,动态饱和吸附量为96.5 mg/(g干树脂),总生物碱回收率为91.24%、纯度为90%以上,是试验树脂中分离纯化博落回总生物碱的最佳大孔吸附树脂。分离纯化博落回总生物碱最佳工艺条件为:AB-8型大孔吸附树脂,洗脱剂为90%乙醇,洗脱剂用量为2~3倍树脂体积,上柱总生物碱量与树脂比为1∶10.5,上柱液总生物碱浓度为21.57 mg/m l,流速2~3 m l/m in,上柱液pH值为7~8。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号