首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Summary Dynamics of barley N, mineral N, and organic N were compared at Ellerslie (Black Chernozem, Typic Cryoboroll) and Breton (Gray Luvisol, Typic Cryoboralf) in central Alberta, using 15N-urea. On average, shoot N and shoot 15N recoveries at Ellerslie (14.1 g m–2, 36%) were greater than at Breton (4.5 g m–2, 17%). Root N (g m–2) did not significantly differ between sites (0–30 cm) but root 15N recovery was greater at Breton (3.4%) than Ellerslie (1.8%). Low levels of shoot N and shoot 15N at Breton were partly due to very wet soil conditions in July, which resulted in premature shoot senescence and low plant N uptake. Although the total 15N recoveries from the system (to 30 cm depth) at Ellerslie (63%) and Breton (56%) were similar, soil 15N was greater at Breton (35%) than at Ellerslie (26%). There were no differences in mineral N between sites but the average 15N recovery in the mineral-N pool was significantly greater at Ellerslie (3.3%) than at Breton (1.6%). There was no difference in 15N recovery in the microbial biomass (3%) between sites, although non-microbial organic 15N was greater at Breton (31 %) than at Ellerslie (20%). The two soils showed differences in the relative size of kinetically active N pools and in relative mineralization rates. Microbial N (0–30 cm) was greater at Ellerslie (13.3 g m–2) than at Breton (9.9 g m–2), but total microbial N made up a larger proportion of total soil N at Breton (1.6%) than at Ellerslie (0.9%). In the 0–10 cm interval, microbial N was 1.7-fold greater and non-microbial active N was 3-fold greater at Breton compared to Ellerslie, when expressed as a proportion of total soil N. Net N mineralization in a 10-day laboratory incubation was 1.4-fold greater in the Black Chernozem (0–10 cm interval) from Ellerslie, compared to the Gray Luvisol from Breton, when expressed per gram of soil. Net N mineralization in the soil from Breton was double that of the soil from Ellerslie, when expressed as a proportion of soil N. Although soil N (g m–2) was 2.5-fold greater at Ellerslie compared to Breton, it was cycled more rapidly at Breton.  相似文献   

2.
In the central highlands of Mexico, mesquite (Prosopis laevigata) and huisache (Acacia schaffneri), N2-fixing trees or shrubs, dominate the vegetation and are currently used in a reforestation program to prevent erosion. We investigated how natural vegetation or cultivation of soil affected oxidation of CH4, and production of N2O. Soil was sampled under the canopy of mesquite (MES treatment) and huisache trees (HUI treatment), outside their canopy (OUT treatment) and from fields cultivated with maize (ARA treatment) at three different sites while production of CO2, and dynamics of CH4, N2O and inorganic N (NH4+, and NO3) were monitored in an aerobic incubation. The production of CO2 was 2.3 times higher and significantly greater in the OUT treatment, 3.0 times higher in the MES treatment and 4.0 times higher in the HUI treatment compared to the ARA treatment. There was no significant difference in oxidation of CH4 between the treatments, which ranged from 0.019 g CH4–C kg–1 day–1 for the HUI treatment to 0.033 CH4–C kg–1 day–1 for the MES treatment. The production of N2O was 30 g N2O–N kg–1 day–1 in the MES treatment and >8 times higher compared to the other treatments. The average concentration of NO3 was 2 times higher and significantly greater in the MES treatment than in the HUI treatment, 3 times greater than in the OUT treatment and 10 times greater than in the ARA treatment. It was found that cultivation of soil decreased soil organic matter content, C and N mineralization, but not oxidation of CH4 or production of N2O.  相似文献   

3.
Summary The connection between faunal composition and soil factors is discussed in this study on vertical distribution of soil nematodes under grass and barley. The investigation was undertaken on the field site of a Swedish integrated research project Ecology of Arable Land. The Role of Organisms in Nitrogen Cycling. Higher nematode number (7.6 × 106 m–2) and biomass (340 mg dry wt. m–2) were found under a 4-year-old grass ley than under barley (5.0 × 106 m–2; biomass, 136 mg dry wt. m–2). Plant feeders dominated under the grass ley (3.2 × 106 m–2 whereas under barley the bacterial feeders (2.4 × 106 m–2) were the most abundant feeding group. Number, biomass, mean individual size and various community parameters indicated a much better nutritive situation for the nematodes under grass than under barley. The vertical changes in the various parameters, including proportion of egg-carrying females, indicated an increasing food shortage for the nematode populations towards greater depths. In the top soil, predation could be an important factor in regulating nematode number.Dedicated to the late Prof. Dr. M.S. Ghilarov  相似文献   

4.
Enhancement of soil organic carbon (SOC) stocks through mulching has been proposed, and although this practice can alter several soil properties, its impact on the temporal variability of carbon dioxide (CO2) emission from soils has not been widely investigated. To that end, we monitored CO2 fluxes from a central Ohio Luvisol (fine, mixed, mesic Aeric Ochraqualf) amended with wheat (Triticum aestivum L.) straw applied at rates of 0 (M0), 8 (M8) and 16 (M16) Mg dry matter ha−1 per year and supplemented with fertilizer (244 kg N ha−1 per year) or without. The experimental design was a randomized complete block design with three replications. The intensity of CO2 emission was higher in the late winter (mean: 2.79 g CO2-C m−2 per day) and summer seasons (2.45 g CO2-C m−2 per day) and lowest in the autumn (1.34 g CO2-C m−2 per day). While no significant effect of N fertilization on CO2 emission was detected, soil mulching had a significant effect on the seasonal variation of CO2 fluxes. The percentage of annual CO2 emitted during the winter and spring was similar across treatments (17–22%); however, 43% of the annual CO2 loss in the M0 plots occurred during the summer as opposed to 26% in the mulch treatments. A close relationship (F=0.47X+4.45, R2=0.97, P<0.001) was found between annual CO2 flux (F, Mg CO2-C ha−1) and residue-C input (X, Mg C ha−1). Litter and undecomposed residue amounted to 0.32 and 0.67 Mg C ha−1 per year in the M8 and M16 plots, respectively. After 4 years of straw application, SOC stocks (0–10 cm) were 19.6, 25.6 and 26.5 Mg C ha−1 in the M0, M8 and M16 treatments, respectively. The results show that soil mulching has beneficial effect on SOC sequestration and strongly influence the temporal pattern of CO2 emission from soils.  相似文献   

5.
 Soil microbial biomass and the emission of CO2 from the soil surface were measured in yellow soils (Ultisols) of the karst areas of southwest China. The soils are relatively weathered, leached and impoverished, and have a low input of plant residues. The measurements were made for a 1-year period and show a reciprocal relationship between microbial biomass and surface CO2 efflux. The highest (42.6±2.8 mg CO2-C m–2 h–1) and lowest (15.6±0.6 mg CO2-C m–2 h–1) CO2 effluxes are found in the summer and winter, respectively. The cumulative CO2 efflux is 0.24 kg CO2-C m–2 year–1. There is also a marked seasonal variation in the amount of soil microbial biomass carbon, but with the highest (644±71 μg C g–1 soil) and lowest (270±24 μg C g–1 soil) values occurring in the winter and summer, respectively. The cumulative loss of soil microbial biomass carbon in the top 10 cm of the soil was 608 μg C g–1 year–1 soil over 17 sampling times. The mean residence time of microbial biomass is estimated at 105 days, suggesting that the carbon in soil microbial biomass may act as a source of the CO2 released from soils. Received: 13 July 1999  相似文献   

6.
Crop residue and fertilizer management practices alter some soil properties, but the magnitude of change depends on soil type and climatic conditions. Field experiments with mainly barley (and canola, wheat, triticale, or pea in a few years) under conventional tillage were conducted from 1983 to 2009 at Breton (Gray Luvisol (Typic Haplocryalf) loam) and Ellerslie (Black Chernozem (Albic Argicryoll) clay loam), Alberta, Canada, to determine the effects of straw management (straw removed (S Rem) and straw retained (S Ret)) and N fertilizer rate (0, 25, 50, and 75 kg N ha−1) on total organic C (TOC) and N (TON), light fraction organic C (LFOC), and N (LFON) in the 0–7.5 and 7.5–15 cm, pH in the 0–7.5, 7.5–15, and 15–20 cm and extractable P, ammonium-N, and nitrate-N in the 0–15, 15–30, 30–60, and 60–90 cm soil layers. The S Ret and N fertilizer treatments usually had higher mass of TOC, TON, LFOC, and LFON in soil at Breton, but only of LFOC and LFON in soil at Ellerslie compared with the corresponding S Rem and zero-N control treatments. The responses of soil organic C and N to management practices were more pronounced for N fertilization than straw management. There were significant correlations among most soil organic C or N fractions, especially at Breton. Linear regressions between crop residue C or N input, or rate of fertilizer N applied and soil organic C or N were significant in most cases at Breton, but only for LFOC and LFON at Ellerslie. At Breton, compared with zero-N rate, the C sequestration efficiency of additional crop residue C input was 5.8%, 20.1%, and 20.4% in S Ret and 17.2%, 28.0%, and 30.1% in S Rem treatments at the 25, 50, and 75 kg N ha−1 rates, respectively. The effects of crop residue management and N fertilization on chemical properties were generally similar for both contrasting soil types. There was no effect of crop residue management on soil pH, extractable P and residual nitrate-N. Extractable P and pH in the top 0–15 cm soil decreased significantly with N application in both soil types. Residual nitrate-N (though quite low in Breton soil) increased with application of N and also indicated some downward movement in the soil profile up to 90 cm depth in Ellerslie soil. There was generally no effect of any treatment on ammonium-N in soil. In conclusion, straw retention and N application improved organic C and N in soil, and generally differences were more pronounced for light fraction than total organic C and N, and between the most extreme treatments (S Rem0 vs. S Ret75). Application of N fertilizer reduced extractable P and pH in the surface soil, and showed accumulation and downward leaching of nitrate-N in the soil profile.  相似文献   

7.
Field evolution of CH4 and CO2 from soils under four dominant land uses in the Mardi watershed, western Nepal, were monitored at 15-day intervals for 1 year using closed chamber techniques. The CH4 oxidation rate (mean±SE, g CH4 m–2 h–1) in the forest (22.8±6) was significantly higher than under grazing land (14±2) and an upland rainfed maize and millet system (Bari) (2.6±0.9). Irrigated rice fields (Khet) showed an oxidation rate of 6±0.8 g CH4 m–2 h–1 in the dry season (December–May) but emitted a mean rate of 131 g CH4 m–2 h–1 in the rainy season and autumn (June–October). The evolution of CO2 ranged from 10 mg CO2 m–2 h–1 in the Bari in January to 1,610 mg CO2 m–2 h–1 in the forest in July. Higher evolution of CO2 (mean±SE, mg CO2 m–2 h–1) was observed in the Bari (399±39) and forest (357±36) compared to Khet (246±25) and grazing (206±20) lands. The annual emission of CO2 evolution varied from 86.6 to 1,836 g CO2 m–2 year–1. The activation energy for CH4 and CO2 varied between 16–283 and 80–117 kJ mol–1, respectively. The estimated temperature coefficient for CO2 emission varied from 2.5 to 5.0. Temperature explained 46–51% of the variation in CO2 evolution, whereas it explained only 4–36% of the variation in CH4 evolution.  相似文献   

8.
Summary The effects of simulated acid rain on litter decomposition in a calcareous soil (pHH 2 O 5.8) were studied. Litterbags (45 m and 1 mm mesh size) containing freshly fallen beech leaf litter were exposed to different concentrations of acid in a beech forest on limestone (Göttinger Wald. Germany) for 1 year. Loss of C, the ash content, and CO2–C production were measured at the end of the experiment. Further tests measured the ability of the litter-colonizing microflora to metabolize 14C-labelled beech leaf litter and hyphae. The simulated acid rain strongly reduced CO2–C and 14CO2–C production in the litter. This depression in production was very strong when the input of protons was 1.5 times greater than the normal acid deposition, but comparatively low when the input was 32 times greater. acid deposition may thus cause a very strong accumulation of primary and secondary C compounds in the litter layer of base-rich soils, even with a moderate increase in proton input. The presence of mesofauna significantly reduced the ability of the acid rain to inhibit C mineralization. The ash content to the 1-mm litterbags indicated that this was largely due to transport of base-rich mineral soil into the litter.  相似文献   

9.
Summary The development of a number of components was analysed in an agro-ecosystem study with four cropping regimens, barley without and with N fertilization, grass ley, and lucerne. A great variation in N inputs (1–39 g N m-2 year-1) and cropping systems produced a variation in primary production (260–790 g C m-2 year-1) and input of organic material to the soil (150–270 g C m-2 year-1). This was reflected in variations of total soil animal biomass (1.6–5.1 g C m-2) and in variations in the abundance of various animal groups, nematodes (5.6–9.8×106m-2), micro- (2.6–4.8×10-4 m-2), and macroarthropods (0.9–4.2×103 m-2). In contrast, total bacteria, fungi, flagellates, and amoebae varied quite independently of the organic matter input. Mineralization processes covaried more with C and N inputs and total animal biomass than with microbial biomass. it is suggested that the rather constant microbial biomass was a result of an adjustment in the grazing pressure of microbial-feeding animals to the level of microbial production.Dedicated to the late Prof. Dr. W. Kühnelt  相似文献   

10.
The effects of soil texture (silt loam or sandy loam) and cultivation practice (green manure) on the size and spatial distribution of the microbial biomass and its metabolic quotient were investigated in soils planted with a permanent row crop of hops (Humulus lupulus). The soil both between and in the plant rows was sampled at three different depths (0–10, 10–20, and 20–30 cm). The silt loam had a higher overall microbial biomass C concentration (260 g g-1) than the sandy loam (185 g g-1), whereas the sandy loam had a higher (3.1 g CO2-C mg-1 microbial Ch-1) metabolic quotient than the silt loam (2.6 g CO2-C mg-1 microbial C h-1), on average over depth (0–30 cm) and over all treatments. There was a sharp decrease in the microbial biomass with increasing depth for all plots. However, this was more pronounced in the silt loam than in the sandy loam. There was no distinct influence of sampling depth on the metabolic quotient. The microbial biomass was considerably higher in the rows than between the rows, especially in the silt loam plots. There was no significant difference between plots without green manure and plots with green manure for either the microbial biomass or the metabolic quotient.  相似文献   

11.

Purpose

The mineralization/immobilization of nutrients from the crop residues is correlated with the quality of the plant material and carbon compartments in the recalcitrant and labile soil fractions. The objective of this study was to correlate the quality and quantity of crop residues incubated in the soil with carbon compartments and CO2-C emission, using multivariate analysis.

Materials and methods

The experiment was conducted in factorial 4?+?2?+?5 with three replicates, referring to three types of residues (control, sugarcane, Brachiaria, and soybean), and two contributions of the crop residues in constant rate, CR (10 Mg ha?1 residue), and agronomic rate, AR (20, 8, and 5 Mg ha?1 residue, respectively, for sugarcane, soybean, and Brachiaria), evaluated five times (1, 3, 6, 12, and 48 days after incubation). At each time, we determined the CO2-C emission, nitrogen and organic carbon in the soil, and the residues. In addition, the microbial biomass and water-soluble, labile, and humic substance carbons fractionated into fulvic acids, humic acids and humin were quantified.

Results and discussion

Higher CO2-C emissions occurred in the soil with added residue ranging from 0.5 to 1.1 g CO2-C m?2 h?1 in the first 6 days of incubation, and there was a positive correlation with the less labile organic soil fractions as well as residue type. In the final period, after 12 days of soil incubation, there was a higher relation of CO2-C emission with carbon humin. The sugarcane and soybean residue (20 Mg ha?1) promoted higher CO2-C emission and the reduction of carbon residue. The addition of residue contributed to an 82.32 % increase in the emission of CO2-C, being more significant in the residue with higher nitrogen availability.

Conclusions

This study shows that the quality and quantity of residue added to soil affects the carbon sequestration and CO2-C emission. In the first 6 days of incubation, there was a higher CO2-C emission ratio which correlates with the less stable soil carbon compartments as well as residue. In the final period of incubation, there is no effect of quality and quantity of residue added to soil on the CO2-C emission.
  相似文献   

12.
We measured microbial biomass C and soil organic C in soils from one grassland and two arable sites at depths of between 0 and 90 cm. The microbial biomass C content decreased from a maximum of 1147 (0–10 cm layer) to 24 g g-1 soil (70–90 cm layer) at the grassland site, from 178 (acidic site) and 264 g g-1 soil (neutral site) at 10–20 cm to values of between 13 and 12 g g-1 soil (70–90 cm layer) at the two arable sites. No significant depth gradient was observed within the plough layer (0–30 cm depth) for biomass C and soil organic C contents. In general, the microbial biomass C to soil organic C ratio decreased with depth from a maximum of between 1.4 and 2.6% to a minimum of between 0.5 and 0.7% at 70–90 cm in the three soils. Over a 24-week incubation period at 25°C, we examined the survival of microbial biomass in our three soils at depths of between 0 and 90 cm without external substrate. At the end of the incubation experiment, the contents of microbial biomass C at 0–30 cm were significantly lower than the initial values. At depths of between 30 and 90 cm, the microbial biomass C content showed no significant decline in any of the four soils and remained constant up to the end of the experiment. On average, 5.8% of soil organic C was mineralized at 0–30 cm in the three soils and 4.8% at 30–90 cm. Generally, the metabolic quotient qCO2 values increased with depth and were especially large at 70–90 cm in depth.  相似文献   

13.
It is crucial to advance the understanding of the soil carbon dioxide (CO2) flux and environmental factors for a better comprehension of carbon dynamics in subtropical ecosystems. Red soil, one of the typical agricultural soils in subtropical China, plays important roles in the global carbon budget due to their large potential to sequester C and replenish atmospheric C through soil CO2 flux. We examined the relationship between soil CO2 flux and environmental determinants in four different land use types of subtropical red soil-paddy (P), orchard (O), woodland (W) and upland (U) using static closed chamber method. Objectives were to evaluate the relationship of soil temperature, water-filled pore space (WFPS), and dissolved organic carbon (DOC) with the soil CO2 flux. Soil CO2 fluxes were measured on each site about every 14 days between 09:00 and 11:00 a.m. during 14-July 2004 to 25-April 2007 at the experimental station of Heshengqiao at Xianning, Hubei, China. Soil CO2 fluxes revealed seasonal fluctuations, with the tendency that maximum values occurred in summer, minimum in winter and intermediate values in spring and autumn except for paddy soil when it was submerged. Further, significant differences in soil CO2 fluxes were observed among the four soils, following the order of P > O > U  W. Average soil CO2 fluxes were estimated as 901 ± 114, 727 ± 55, 554 ± 22 and 533 ± 27 (±S.D.) g CO2 m−2 year−1 in paddy, orchard, upland and woodland soils, respectively. Variations in soil CO2 flux were related to soil temperature, WFPS, and dissolved organic carbon with a combined R2 of 0.49–0.75. Soil temperature was an important variable controlling 26–59% of soil CO2 flux variability. The interaction of soil temperature and WFPS could explain 31–60% of soil CO2 flux variations for all the land use types. We conclude that soil CO2 flux from red soil is under environmental controls, soil temperature being the main variable, which interact with WFPS and DOC to control the supply of readily mineralizable substrates.  相似文献   

14.
Summary Total S, organic S and sulfate were measured in foliage, litter, roots, soil and solutions at a hardwood site within the Adirondack Mountains of New York. Sulfate as a percentage of total S was similar in foliage and litter (10%), but was greater in roots (30%). Sulfur constituents in the hardwood forest ecosystem were dominated by C-bonded S (60 g m–2) and ester sulfate (16 g m–2) which are formed by biological processes. Because sulfur mineralization (1.42 g m–2 yr–1) was greater than wet precipitation inputs (0.82 g m–2 yr–1), those factors that influence mineralization-immobilization processes are important in evaluating S cycling and sulfate fluxes in this ecosystem. Ester sulfate was formed within the forest floor by the soil biota and was leached to mineral horizons. Annual turnover of this pool was high (25%) within the mineral forest floor. Forest-floor C-bonded S was derived from root and above-ground litter, and substantial amounts were leached to mineral horizons. Calculated storage + outputs (1.64 g m–2 yr–1) was much greater than wet inputs (0.82 g m–2 yr–1).  相似文献   

15.
Composition and effects of additions of fibric (Oi) and hemic/sapric (Oe + Oa) layer extracts collected from a 20-year-old stand of radiata pine (Pinus radiata) on soil carbon dioxide (CO2) evolution were investigated in a 94-day aerobic incubation. The 13C nuclear magnetic resonance spectroscopy indicated that Oi layer extract contained greater concentrations of alkyl C while Oe + Oa layer extract was rich in carboxyl C. Extracts from Oi and Oe + Oa layers were added to a forest soil at two different polyphenol concentrations (43 and 85 μg g−1 soil) along with tannic acid (TA) and glucose solutions to evaluate effects on soil CO2 efflux. CO2 evolution was greater in amended soils than control (deionized water) indicating that water-soluble organic carbon (WSOC) was readily available to microbial degradation. However, addition of WSOC extracted from both Oi and Oe + Oa layers containing 85 μg polyphenols g−1 soil severely inhibited microbial activity. Soils amended with extracts containing lower concentrations of polyphenols (43 μg polyphenols g−1 soil), TA solutions, and glucose solutions released 2 to 22 times more CO2-C than added WSOC, indicating a strong positive priming effect. The differences in CO2 evolution rates were attributed to chemical composition of the forest floor extracts.  相似文献   

16.
Summary A Pakistani soil (Hafizabad silt loam) was incubated at 30°C with varying levels of 15N-labelled ammonium sulphate and glucose (C/N ratio of 30 at each addition rate) in order to generate different insitu levels of 15N-labelled microbial biomass. At a stage when all of the applied 15N was in organic forms, as biomass and products, the soil samples were analysed for biomass N by the chloroform (CHCl3) fumigation-extraction method, which involves exposure of the soil to CHCl3 vapour for 24 h followed by extraction with 500 mM K2SO4. A correction is made for inorganic and organic N in 500 mM K2SO4 extracts of the unfumigated soil. Results obtained using this approach were compared with the amounts of immobilized 15N extracted by 500 mM K2SO4 containing different amounts of CHCl3. The extraction time varied from 0.5 to 4 h.The amount of N extracted ranged from 27 to 270 g g–1, the minimum occurring at the lowest (67 g g–1) and the maximum at the highest (333 g g–1) N-addition rate. Extractability of biomass 15N ranged from 25% at the lowest N-addition rate to 65%a for the highest rate and increased consistently with an increase in the amount of 15N and glucose added. The amounts of both soil N and immobilized 15N extracted with 500 mM K2SO4 containing CHCl3 increased with an increase in extraction time and in concentration of CHCl3. The chloroform fumigation-extraction method gives low estimates for biomass N because some of the organic N in K2SO4 extracts of unfumigated soil is derived from biomass.  相似文献   

17.
Biosolids, mainly from textile industries and the rest from households, were vermicomposted with Eisenia fetida, cow manure and oat straw for 2 months at three different moisture contents (60%, 70% and 80% dry weight base) in triplicate to reduce pathogens and toxic organic compounds, and to find the best medium for growth of E. fetida. The vermicompost with the best stability and maturity and a weight loss of 18% was obtained with 1,800 g biosolid, no straw and 800 g manure at 70% water content. This vermicompost had the following properties: pH 7.9; organic C content of 163 g kg–1; an electrolytic conductivity of 11 mS cm–1; a humic-to-fulvic acid ratio of 0.5 (HA/FA); total N content of 9 g kg–1; water soluble C (Cw) less than 0.5%; cation exchange capacity of 41 cmolc kg–1; a respiration rate of 188 mg CO2-C kg–1 compost-C day–1; a NO3/CO2 ratio greater than 8; and a NH4+/NO3 ratio lower than 0.16. The vermicompost gave a germination index for cress (Lepidium sativum) of 80% after 2 months while the earthworm production increased 1.2-fold and volatile solids decreased five times. In addition, the vermicompost contained less than 3 CFU g–1Salmonella spp., no fecal coliforms and Shigella spp. and no eggs of helminths. Concentration of sodium was 152 mg kg–1 dry compost, while concentrations of chromium, copper, zinc and lead were below the limits established by the USEPA.  相似文献   

18.
The annual carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) dynamics were measured with static chambers on two organic agricultural soils with different soil characteristics. Site 1 had a peat layer of 30 cm, with an organic matter (OM) content of 74% in the top 20 cm. Site 2 had a peat layer of 70 cm but an OM content of only 40% in the top 20 cm. On both sites there were plots under barley and grass and also plots where the vegetation was removed. All soils were net sources of CO2 and N2O, but they consumed atmospheric CH4. Soils under barley had higher net CO2 emissions (830 g CO2-C m−2 yr−1) and N2O emissions (848 mg N2O-N m−2 yr−1) than those under grass (395 g CO2-C m−3 yr−1 and 275 mg N2O-N m−2 yr−1). Bare soils had the highest N2O emissions, mean 2350 mg N2O-N m−2 yr−1. The mean CH4 uptake rate from vegetated soils was 100 mg CH4-C m−3 yr−1 and from bare soils 55 mg CH4-C m−2 yr−1. The net CO2 emissions were higher from Site 2, which had a high peat bulk density and a low OM content derived from the addition of mineral soil to the peat during the cultivation history of that site. Despite the differences in soil characteristics, the mean N2O emissions were similar from vegetated peat soils from both sites. However, bare soils from Site 2 with mineral soil addition had N2O emissions of 2-9 times greater than those from Site 1. Site 1 consumed atmospheric CH4 at a higher rate than Site 2 with additional mineral soil. N2O emissions during winter were an important component of the N2O budget even though they varied greatly, ranging from 2 to 99% (mean 26%) of the annual emission.  相似文献   

19.
In view of the significance of agricultural soils in affecting global C balance, the impact of manipulation of the quality of exogenous inputs on soil CO2–C flux was studied in rice–barley annual rotation tropical dryland agroecosystem. Chemical fertilizer, Sesbania shoot (high quality resources), wheat straw (low quality resource) and Sesbania + wheat straw (high + low quality), all carrying equivalent recommended dose of N, were added to soil. A distinct seasonal variation in CO2–C flux was recorded in all treatments, flux being higher during rice period, and much reduced during barley and summer fallow periods. During rice period the mean CO2–C flux was greater in wheat straw (161% increase over control) and Sesbania + wheat straw (+129%) treatments; however, during barley and summer fallow periods differences among treatments were small. CO2–C flux was more influenced by seasonal variations in water-filled pore space compared to soil temperature. In contrast, the role of microbial biomass and live crop roots in regulating soil CO2–C flux was highly limited. Wheat straw input showed smaller microbial biomass with a tendency of rapid turnover rate resulting in highest cumulative CO2–C flux. The Sesbania input exhibited larger microbial biomass with slower turnover rate, leading to lower cumulative CO2–C flux. Addition of Sesbania to wheat straw showed higher cumulative CO2–C flux yet supported highest microbial biomass with lowest turnover rate indicating stabilization of microbial biomass. Although single application of wheat straw or Sesbania showed comparable net change in soil C (18% and 15% relative to control, respectively) and crop productivity (32% and 38%), yet they differed significantly in soil C balance (374 and −3 g C m−2 y−1 respectively), a response influenced by the recalcitrant and labile nature of the inputs. Combining the two inputs resulted in significant increment in net change in soil C (33% over control) and crop yield (49%) in addition to high C balance (152 g C m−2 y−1). It is suggested that appropriate mixing of high and low quality inputs may contribute to improved crop productivity and soil fertility in terms of soil C sequestration.  相似文献   

20.
Field experiments (established in autumn 1979, with monoculture barley from 1980 to 1990 and barley/wheat–canola–triticale–pea rotation from 1991 to 2008) were conducted on two contrasting soil types (Gray Luvisol [Typic Haplocryalf] loam soil at Breton; Black Chernozem [Albic Agricryoll] silty clay loam soil at Ellerslie) in north-central Alberta, Canada, to determine the influence of tillage (zero tillage and conventional tillage), straw management (straw removed [SRem] and straw retained [SRet]), and N fertilizer rate (0, 50 and 100 kg N ha?1in SRet, and only 0 kg N ha?1in SRem plots) on seed yield, straw yield, total N uptake in seed + straw (1991–2008), and N balance sheet (1980–2008). The N fertilizer urea was midrow-banded under both tillage systems in the 1991 to 2008 period. There was a considerable increase in seed yield, straw yield, and total N uptake in seed + straw with increasing N rate up to 100 kg N ha?1 under both tillage systems. On the average, conventional tillage produced greater seed yield (by 279 kg ha?1), straw yield (by 252 kg ha?1), and total N uptake in seed + straw (by 6.0 kg N ha?1) than zero tillage, but the differences were greater at Breton than Ellerslie. Compared to straw removal treatment, seed yield, straw yield, and total N uptake in seed + straw tended to be greater with straw retained at the zero-N rate used in the study. The amounts of applied N unaccounted for over the 1980 to 2008 period ranged from 1114 to 1846 kg N ha?1 at Breton and 845 to 1665 kg N ha?1 at Ellerslie, suggesting a great potential for N loss from the soil-plant system through denitrification, and N immobilization from the soil mineral N pool. In conclusion, crop yield and N uptake were lower under zero tillage than conventional, and long-term retention of straw suggests some gradual improvement in soil productivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号