首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phoma stem canker, caused by Leptosphaeria maculans and L. biglobosa, is the most important disease of oilseed rape in Europe. Differences between L. maculans and L. biglobosa in their life-cycles enable the two species to co-exist on oilseed rape crops over a cropping season. This review considers the factors affecting geographic variation in the severity of phoma stem canker epidemics and in the structure of the population of the pathogens in the UK, where the most severe epidemics occur in the south of England and cankers do not develop in Scotland. It is concluded that this variation is directly related to differences in climate, since weather-based models show that stem canker severity increases with increasing winter/spring temperature and temperatures are greater in the south of the UK. It may also be related to differences in pathogen populations, since surveys showed that the proportion of the more damaging L. maculans in stem cankers was greatest in southern England, with most L. biglobosa in northern England. Regional variation in agronomic practices such as cultivar choice and fungicide use may also indirectly influence phoma stem canker severity. Differences in cultivar choice result in differences in L. maculans race structure, which may influence the severity of epidemics. Differences in fungicide use may also influence pathogen populations, since L. maculans and L. biglobosa differ in their sensitivities to different azole fungicides. These factors are discussed in relation to strategies for sustainable production of oilseed rape by adaptation to threats posed by climate change.  相似文献   

2.
Leptosphaeria maculans,a fungal pathogen of Brassica napus, secretes large amounts of a 28kDa protein (SP2) in liquid culture. This protein shows high sequence similarity to secreted serine proteases from other ascomycetes and is the major component of culture filtrate with protease activity, as analysed on casein zymogels. The sp2 gene is expressed during infection of B.napuscotyledons when L. maculans hyphae are growing between mesophyll cells, as well as at later stages when the fungus invades the vascular tissue.  相似文献   

3.
Blackleg (Phoma stem canker) caused by Leptosphaeria maculans is the most damaging disease of Brassica napus (canola, rapeseed, colza) worldwide and is controlled by sowing blackleg resistant cultivars and crop management strategies that reduce exposure to inoculum and fungicide application. In experiments in south-eastern Australia, canola cultivars inoculated after the three to five leaf growth stage did not develop stem canker. Although mature canola plants are known to be less susceptible to blackleg than seedlings, this highlights for the first time the specific importance of protecting seedlings up to the three to five leaf growth stage in Australia. This would typically correspond to a period of four to six weeks after emergence. Canola plants are likely to be significantly less vulnerable to infection after this growth stage. However, this timing may vary due to the influence of environmental conditions.  相似文献   

4.
Blackleg (phoma stem canker), caused by Leptosphaeria spp., is an important disease of canola (oilseed rape, Brassica napus). Control strategies rely on the use of resistant cultivars, chemical and disease-reducing cropping practices. In Canada, the pathogen population is represented by L. maculans and L. biglobosa, which are considered to be highly and weakly aggressive, respectively. It is largely admitted that L. biglobosa isolates are not able to cause a significant amount of stem canker and develop on the plant only when it becomes senescent, late in the season. The prevalence of L. maculans over L. biglobosa has been considered to be linked to the low aggressiveness of the latter. However, in this study, we show that L. biglobosa isolates could become highly aggressive in terms of lesion appearance on cotyledons, if the right conditions of temperature and relative humidity (RH) are provided. Percent germination of inoculated pycnidiospores was not affected by the RH regimes tested. This is the first study to show the importance of RH as a factor conditioning the pathogenicity of L. biglobosa isolates on canola cotyledons. Concurrent changes in the host defence mechanisms against L. biglobosa isolates in response to variations in the RH were also investigated. Under high RH, the increase in disease caused by the weakly aggressive isolates coincided with a reduced accumulation of lignin at the early stages of infection.  相似文献   

5.
The efficacy of a seed treatment of oilseed rape (OSR) (Brassica napus) with the rhizobacteria Serratia plymuthica (strain HRO-C48) and Pseudomonas chlororaphis (strain MA 342) applied alone or in combination against the blackleg disease caused by Leptosphaeria maculans was tested with different cultivars. Seeds were soaked in bacterial suspensions (bio-priming) to obtain log10 6–7 CFU seed−1. Cotyledons were inoculated with a 10 ul droplet of L. maculans spore suspension of log10 7 spores ml−1 and the disease index (size of lesions) was evaluated 14 days later. A mean disease reduction of 71.6% was recorded for S. plymuthica and of 54% for P. chlororaphis. The combined treatment was not superior to the treatment with S. plymuthica alone. The reduction of the disease caused by S. plymuthica was independent of the cultivar’s susceptibility, whereas the control effect recorded with P. chlororaphis increased with decreasing cultivar resistance to blackleg disease. The bacterial colonization of OSR was restricted to the roots and hypocotyl. No significant difference in bacterial colonization of the rhizosphere was observed between different cultivars, nor between single or combined bacterial seed treatments.  相似文献   

6.
Phoma stem canker of oilseed rape (Brassica napus), caused by Leptosphaeria maculans/L. biglobosa is a globally important disease. Severe phoma stem canker symptoms have been observed on winter oilseed rape in China but the seed yield loss caused by this disease remains unknown. In May 2012 and May 2013, 17 and 13 crops were surveyed, respectively, in seven counties of Hubei Province, central China. Stems with phoma stem canker disease symptoms were sampled for pathogen isolation and identification. Only L. biglobosa was identified by culture morphology and species-specific PCR; no L. maculans was found. To evaluate the yield losses, yield components (number of branches per plant, number of pods per plant, 1000-seed weight, number of seeds per pod) were assessed on healthy and diseased plants sampled from crops in four counties and on plants from inoculated pot experiments (plants of three cultivars were inoculated at the green bud stage by injecting L. biglobosa conidia into the stem between the first and second leaf scars). Results of the field surveys showed that diseased plants had 14–61% less branches and 32–83% less pods than healthy plants, respectively. The estimated seed yield loss varied from 10% to 21% and from 13% to 37% in 2012 and 2013, respectively. In the pot experiments, there were no differences in numbers of branches or pods but there were differences in number of seeds per pod between inoculated and control plants. For the three cultivars tested, the inoculated plants had yield losses of 29–56% compared with the control. This study indicates that L. biglobosa could cause substantial seed yield loss in China.  相似文献   

7.
Experiments over five growing seasons at Rothamsted (1998/99–2002/03), four seasons at Boxworth (1998/99, 1999/2000, 2001/02, 2002/03) in England (Leptosphaeria maculans) and three seasons (1998/99–2000/01) at Poznan in Poland (Leptosphaeria biglobosa) suggest that differences in the development of phoma stem canker epidemics between England and Poland relate to differences in weather patterns between the two countries. The duration of ascospore release was longer in England, where winter weather is mild and wet, than in Poland, where winters are cold and often with snow cover, but there was little difference between two sites in England (Rothamsted and Boxworth). Wetness provided by rainfall was essential for release of ascospores of both L. maculans in England and L. biglobosa in Poland. Temperature did not affect release of ascospores over the range 5–20 °C. Diurnal periodicity in release of ascospores of L. maculans in England and L. biglobosa in Poland was similar. The timing (date) of first release of ascospores of L. maculans or L. biglobosa in autumn was related to rainfall in August and September; with increasing rainfall the date was earlier. The incubation periods from first release of ascospores to first appearance of phoma leaf spots for both L. maculans in England and L. biglobosa in Poland, and from first leaf spots to first stem base canker in England, were described using a thermal time (degree-day) approximation.  相似文献   

8.
Black rot, caused by Xanthomonas campestris pv. campestris (Xcc) is a severe seedborne disease of Brassica crops around the world. Nine races are recognized, being races 1 and 4 the most aggressive and widespread. The identification of Xcc races affecting Brassica crops in a target area is necessary to establish adequate control measures and breeding strategies. The objectives of this study were to isolate and identify Xcc strains from northwestern Spain by using semi-selective medium and pathogenicity tests, determine the existing races of Xcc in this area by differential series of Brassica spp., and evaluate the use of repetitive DNA polymerase chain reaction-based fingerprinting (rep-PCR) to differentiate among the nine existing Xcc races. Seventy five isolates recovered from infected fields were identified as Xcc. Race-typing tests determined the presence of the following seven pathogen races: 1, 4, 5, 6, 7, 8 and 9. Race 4 was the most frequent in Brassica oleracea and race 6 in Brassica rapa crops, therefore breeding should be focussed in obtaining resistant varieties to both races. Cluster analysis derived from the combined fingerprints showed four groups, but no clear relationship to race, crop or geographical origin was found. Rep-PCR analysis was found not to be a reliable method to discriminate among Xcc races, therefore race typing of Xcc isolates should be done by using the differential series of Brassica spp. genotypes or another alternative approach.  相似文献   

9.
Brassica napus (canola, oilseed rape), an important break crop for cereals across the Australian wheat belt, is being rapidly adopted as a dual‐purpose (forage and grain) crop in mixed farming systems. Stem canker caused by the fungus Leptosphaeria maculans is the most important disease of B. napus in Australia. The primary source of inoculum is airborne ascospores released during autumn/winter which coincides with the grazing of dual‐purpose crops. Field experiments were defoliated by sheep to determine the effect of grazing on blackleg stem canker severity at plant maturity in B. napus cultivars differing in their resistance level and grazed at different times. One cultivar was sown on different dates to investigate the impact of grazing at the same time, but at different growth stages. Defoliation by mowing was compared to defoliation by livestock. Similar amounts of dry matter remained after defoliation by machinery (0·66 t ha?1) or livestock (0·52 t ha?1). However, stem canker severity was higher in the grazed (40% of crown cross‐section diseased) compared with the mown (25%) treatment, which was higher than the ungrazed control (9%). Stem canker severity generally increased with grazing, but the increase was eliminated or reduced in cultivars with good resistance. Grazing during vegetative plant growth minimized the increase in stem canker severity compared with grazing during reproductive growth. Currently, cultivars with good L. maculans resistance are recommended in high disease situations. To avoid excessive yield loss in dual‐purpose B. napus crops due to L. maculans it is recommended that such cultivars are grown even in low‐moderate disease situations.  相似文献   

10.
Phytophthora cinnamomi is an aggressive pathogen on Lupinus luteus (yellow lupin), causing root rot, wilting and death of this crop, common in oak-rangeland ecosystems ('dehesas') in south-western Spain. The oomycete, the main cause of Quercus decline in the region, was isolated from roots of wilted lupins in the field. Artificial inoculations on four cultivars of L. luteus reproduced the symptoms of the disease, both in pre- and post-emergence stages, recovering the pathogen from necrotic roots. These results suggest the potential of yellow lupin as inoculum reservoir for the infection of Quercus roots. This is the first report of P. cinnamomi as root pathogen of L. luteus.  相似文献   

11.
Pleiochaeta root rot (PRR) caused by Pleiochaeta setosa is a serious, widespread fungal disease in lupin crops, especially in Lupinus albus (broad-leaf lupin, or white lupin). PRR resistance is common in the gene pool of L. albus with various landraces from the Mediterranean region being the most resistant, and suitable for use in breeding new cultivars. Heritability of resistance is sufficient to make good gains from selection but only when controlled-environment (CE) screening is used. Field disease nurseries on loamy soil gave much lower heritability of resistance. Field disease nurseries had spatially variable spore counts despite continuous lupin cropping, and this was partly responsible (along with climatic conditions) for their reduced precision compared to tests conducted in a CE. Giving infected L. albus roots a single, most-severe-lesion score on a 0–9 scale was adequate for CE screening but not as precise or discriminating as the more time-consuming method of six scores per root. Replication in CE experiments was reduced to two pots of 16 seedlings each without sacrificing genotype discrimination.  相似文献   

12.
The infection processes of ascospores and pycnidiospores of Leptosphaeria maculans were studied on cotyledons of six cultivars of spring-type Brassica napus: one with resistance controlled by a single dominant gene (cv. Surpass 400), three with polygenic resistance (cvs. Dunkeld, Grouse, and Outback), and two susceptible cultivars (Westar and Q2). On all cultivars, ascospore germination, penetration, and development of symptoms on cotyledons were much earlier than that with pycnidiospores. At 2h after inoculation ascospores began to germinate, by 4h about 50% had germinated, and by 6–8h 85%–90% had germinated. In contrast, pycnidiospores began to germinate 1 day after inoculation (dai) and reached only 50% germination by 3 dai. Ascospores began germinating from terminal cells and then later from the interstitial cells. Pycnidiospores germinated predominantly from one end and sometimes from both ends. Germ tubes from ascospores penetrated stomata as early as 4h after inoculation, whereas those from pycnidiospores penetrated at 2 dai. Symptom development with ascospores was 2 days earlier than that with pycnidiospores. Symptoms on Surpass 400 were evident as early as 3–5 dai with ascospores and 5–7 dai with pycnidiospores. However, on other cultivars, symptoms were not evident until 10 dai with ascospores and 12 dai with pycnidiospores. This report is the first on differences in the infection processes by the two spore types. Ascospore and pycnidiospore attachment, germination, and penetration did not differ between resistant and susceptible cultivars, but there were major differences after penetration. Under high humidity, 80%–90% of stomata of susceptible Westar and Q2 had aerial hyphae emerging from stomatal pores. However, fewer stomata (5%–10%) had aerial hyphae on Surpass 400 by 10 dai with ascospores and 12 dai with pycnidiospores, but even these were usually poorly developed. Host differences in spring-type B. napus in relation to production of aerial hyphae have not previously been reported. In Surpass 400, rapid necrosis of guard cells occurred within a few hours of penetration by either type of spore, and subsequently one or a few cells immediately adjacent to the penetration site died. This necrosis then spread to the cells around the penetration site to form a hypersensitive response (in the form of a small, dark lesion) to both ascospores and pycnidiospores. This is the first detailed report on interactions between spring-type B. napus and L. maculans in relation to single dominant gene-based resistance. Neither the cultivars with polygenic resistance nor the susceptible cultivars had such a response.  相似文献   

13.
To investigate whether the reported fitness cost of virulence at the AvrLm4 locus in Leptosphaeria maculans is common to other loci, near-isogenic (NI) isolates differing at AvrLm1 locus were produced in vitro. Fitness of virulent (avrLm1) or avirulent (AvrLm1) isolates on Brassica napus without the corresponding R (resistance) gene Rlm1 was investigated in controlled environment (CE) and field experiments. Results indicate that there is a measurable fitness cost for avrLm1 compared to AvrLm1 isolates in terms of number of lesions, size of lesions, distance grown through leaf tissue towards the petiole in CE experiments and systemic growth from leaf lesions to stems in field experiments. There were differences in fitness cost between the AvrLm1 and AvrLm4 loci. There was a cultivar effect on fitness cost of virulence at the AvrLm1 locus but not at the AvrLm4 locus. In CE experiments, the optimal temperature for leaf infection was greater for AvrLm4 isolates than for AvrLm1 isolates. Field experiment results suggest that on the same host AvrLm4 isolates are more fit than AvrLm1 isolates in warmer seasons. The fitness cost at the AvrLm4 locus was generally greater than at the AvrLm1 locus, suggesting that the corresponding R gene Rlm4 may be more suitable than Rlm1 for redeployment in commercial cultivars after an interval of a few years.  相似文献   

14.
Maize seed that was either treated with the fungicide Cruiser Extreme 250 ® (fludioxonil + azoxystrobin + mefenoxam + thiamethoxam) or not treated was planted at two Iowa locations in 2007. Root, mesocotyl and crown rot severity, incidence of Fusarium spp. colonisation and chlorophyll florescence (CF) were assessed at growth stages V2, V4 and V6, and stalk rot severity at R6. At both locations, seed treatment reduced disease severity and incidence of Fusarium spp. infection at all growth stages assessed. Measurements of CF decreased significantly with increased disease severity and incidence of Fusarium spp. at V2 and V4 at both locations, indicating that seedling disease negatively affected photosynthetic performance. Mesocotyl rot severity at V4 predicted crown rot severity at V6 at both locations, as well as crown rot at V6 and stalk rot at R6 at one location.  相似文献   

15.
Clubroot, caused by Plasmodiophora brassicae, has become a serious threat to canola (Brassica napus) production in western Canada. Experiments were conducted to evaluate the effect of rate of metam sodium fumigant (dithiocarbamate; sodium N-methyldithiocarbamate; trade name Vapam) and application methods including watering, soil surface covering, and soil incorporation on clubroot of canola. At higher rates (0.4–1.6 mL?1 L soil) metam sodium increased canola seedling emergence and plant health, and reduced root hair infection, gall weight and clubroot severity under greenhouse conditions. Metam sodium application improved subsequent plant growth and reduced clubroot severity, but land preparation and volume of water applied did not affect efficacy. The incorporation of metam sodium into the soil and plastic covering after application improved fumigant efficacy. The study showed that soil fumigation with metam sodium can reduce clubroot severity and improve plant health in the subsequent canola crop.  相似文献   

16.
In winter oilseed rape experiments at Rothamsted in 2000/01 to 2002/03 growing seasons, the severity of phoma stem canker epidemics in summer depended on the timing of phoma leaf spot epidemics in the previous autumn, and hence on the timing of Leptosphaeria maculans ascospore release. The first major release of L. maculans ascospores was earlier in 2000 (26 September) and 2001 (18 September) than in 2002 (21 October). Consequently, the autumn phoma leaf spot epidemic was also earlier in 2000 and 2001 than in 2002. The resulting stem canker epidemics were severe by harvest (July) in 2001 and 2002 but not in 2003. No correlation was found between the severity or duration of phoma leaf spotting (lesion days or lesion °C-days) and the subsequent severity of phoma stem canker epidemics. Rates of leaf production and loss were similar in the three growing seasons. Out of ca. 25 leaves produced on plants during each season, leaf numbers 10–14 generally remained on plants for the longest. Treatment with flusilazole + carbendazim in autumn decreased the severity of phoma leaf spotting for several weeks after treatment, decreased the severity of stem canker the following summer and increased yield significantly in 2001 and 2002 but not in 2003. The most effective timings for flusilazole + carbendazim application were when leaves 7–11 were present on most plants and at least 10% of plants were affected by phoma leaf spot. Two half-dose applications of fungicide reduced phoma stem canker and increased yield more than a single full dose application when phoma leaf spot epidemics were early (<800 °C-days after sowing).  相似文献   

17.
Phyllody disease associated with 16SrIX phytoplasma was observed in the range of 4.1–11% in 10 different lines of toria [Brassica rapa L. subsp. dichotoma (Roxb.)] in experimental fields of the Indian Agricultural Research Institute, New Delhi, India during 2008 and 2009. The toria phyllody (TP) phytoplasma was detected in all the symptomatic and 13.3% of asymptomatic toria plants by nested PCR. The phytoplasma was detected in midrib, flower part, siliquae, stem, and root of infected plants as well as seeds. TP was transmitted by grafting and by dodder to toria and nine other rapeseed/mustard species as confirmed by nested PCR. However, symptoms of phytoplasma infection were induced only in toria, yellow sarson [Brassica rapa L. subsp. trilocularis (Roxb.)], brown sarson [Brassica rapa L. subsp. sarson (Prain)], rapeseed (B. napus subsp. oleifera), and rocket or taramira (Eruca sativa) but not in mustard (B. juncea), black mustard (B. nigra), Ethiopian mustard (B. carinata), B. tournefortii and white mustard (Sinapis alba). Transmission of TP phytoplasma to periwinkle (Catharanthus roseus) was successful only through dodder, but no transmission to tomato (Lycopersicon esculentum) or brinjal (Solanum melongena) was found. TP phytoplasma was detected in Laodelpax striatellus, an abundant planthopper in toria fields, which indicates that this planthopper may be a potential vector for TP phytoplasma.  相似文献   

18.
The differential interactions of V. longisporum (VL) and V. dahliae (VD) on the root surface and in the root and shoot vascular system of Brassica napus were studied by confocal laser scanning microscopy (CLSM), using GFP tagging and conventional fluorescence dyes, acid fuchsin and acridin orange. VL and VD transformants expressing sGFP were generated by Agrobacterium-mediated transformation. GFP signals were less homogenous and GFP tagging performed less satisfactory than the conventional fluorescence staining when both were studied with CLSM. Interactions of both pathogens were largely restricted to the root hair zone. At 24 h post-inoculation (hpi), hyphae of VL and VD were found intensely interwoven with the root hairs. Hyphae of VL followed the root hairs towards the root surface. At 36 hpi, VL hyphae started to cover the roots with a hyphal net strictly following the grooves of the junctions of the epidermal cells. VL started to penetrate the root epidermal cells without any conspicuous infection structures. Subsequently, hyphae grew intracellularly and intercellularly through the root cortex towards the central cylinder, without inducing any visible plant responses. Colonisation of the xylem vessels in the shoot with VL was restricted to individual vessels entirely filled with mycelium and conidia, while adjacent vessels remained completely unaffected. This may explain why no wilt symptoms occur in B. napus infected with VL. Elevated amounts of fungal DNA were detectable in the hypocotyls 14 days post-inoculation (dpi) and in the leaves 35 dpi. Root penetration was also observed for VD, however, with no directed root surface growth and mainly an intercellular invasion of the root tissue. In contrast to VL, VD started ample formation of conidia on the roots, and was unable to spread systemically into the shoots. VD did not form microsclerotia in the root tissue as widely observed for VL. This study confirms that VD is non-pathogenic on B. napus and demonstrates that non-host resistance against this fungus materializes in restriction of systemic spread rather than inhibition of penetration.  相似文献   

19.
The understanding of the molecular biology of Polymyxa betae, the protist vector of Beet necrotic yellow vein virus, remains limited because of the obligate nature of this root endoparasite and the limited data on the genome of Beta vulgaris, its most common host plant. The aim of this work was to assess the infection of P. betae in Arabidopsis thaliana in order to learn more about the P. betae genome and its interaction with the host. The susceptibility of a set of ecotypes of various origins to a monosporosorus and aviruliferous isolate of P. betae was analyzed in a series of bioassays conducted under controlled conditions. P. betae was detected in roots of A. thaliana using light microscopy and PCR. The infection severity was relatively low in this species compared with B. vulgaris, but the different stages of the life cycle were present. The phenotype of P. betae in A. thaliana root cells differed from the phenotype in B. vulgaris: the spore-forming phase was more prevalent in comparison with the sporangial phase, and the sporosori contained a lower number of spores. The compatible interaction between P. betae and A. thaliana obtained after the inoculation of zoospores and optimal conditions for the development of P. betae provide a new model system that can be used to improve the knowledge on the P. betae genome and on the mechanisms of the spore-forming phase of P. betae.  相似文献   

20.
Fusarium species involved in the Fusarium crown rot (FCR) complex affect wheat in every stage of development from seedling to grain fill. This study was designed to compare the aggressiveness of the FCR complex members including F. culmorum, F. pseudograminearum and F. graminearum in causing seedling blight, decreased plant vigour and crown rot. To assess their relative pathogenicity, two hard red spring wheat cultivars and two durum wheat cultivars were inoculated in the field with five isolates from each of the three species for two years. Significant differences in patterns of pathogenicity were identified. In particular, F. culmorum caused greater seedling blight while F. pseudograminearum and F. graminearum caused greater crown rot. Greatest yield reductions were caused by F. pseudograminearum. Cultivar differences were identified with respect to seedling disease and late season crown rot. No interactions were identified between cultivar performance and isolates or species with which they were challenged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号