首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 484 毫秒
1.
以陕西省永寿县马莲滩林场22年生侧柏人工林为研究对象,比较分析了林分密度具有明显差异的2组侧柏人工林的树冠二维特征,以期为黄土高原地区不同密度侧柏人工林的合理修枝抚育提供理论依据。结果表明:1) 平均冠幅和平均活枝下高均以密度较小林分(2 080~2 120株·hm-2)大于密度较大林分(3 560~3 760株·hm-2),而平均冠长和平均冠长率均以密度较大林分较大;2) 不同密度的侧柏人工林中,相同径阶和相同树高组林木的活枝下高、冠长和冠长率均具有极显著差异,而冠幅只在3 m树高组具有显著差异。表明林分密度对林木冠幅、活枝下高、冠长和冠长率均具有显著影响。因此,对于不同密度的侧柏人工林应采取不同的修枝强度进行人工抚育。  相似文献   

2.
目的通过对闽楠天然次生林胸径和树高生长规律及生长模型的研究,为林木生长预估及林分质量提升经营措施的制订提供参考。方法以江西省安福县闽楠天然次生林为研究对象,通过标准地调查及树干解析等方法获取基础数据,按林木竞争压力水平从小到大将林木分为类型1、类型2和类型3,分析胸径和树高的生长规律;选取5种具有生物学意义的生长方程,根据模型拟合优度与评价指标选取最优基础生长模型,在最优模型的基础上构建含竞争类型哑变量的生长模型。结果(1)利用树干解析数据分析显示,30 ~ 50年为胸径生长速生期,连年生长量最大值达到0.57 cm;35 ~ 45年为树高主要生长速生期,连年生长量最大值为0.37 m。(2)胸径最优基础模型为Gompertz方程,模型R2和预估精度分别为0.756和94.28%,构建的最优哑变量模型的R2和预估精度分别为0.873和95.71%;树高最优基础模型为修正Weibull方程,模型R2和预估精度分别为0.856和96.54%,构建的最优哑变量模型的R2和预估精度分别为0.882和96.96%。(3)由构建的哑变量生长模型拟合的不同竞争类型下的胸径和树高生长曲线得知,胸径和树高总生长量均表现为类型1 > 类型2 > 类型3,类型1胸径最大生长量是类型3的1.6倍。结论竞争压力对闽楠胸径、树高生长均产生影响,较大的林木竞争压力不利于闽楠生长;构建含有竞争类型哑变量模型的拟合优度及预估精度均优于基础模型,有利于提高建模的精度和模型的适用性。   相似文献   

3.
【目的】基于林木分级构建大兴安岭地区兴安落叶松的树高曲线模型,为该地区兴安落叶松的生长规律提供理论依据及森林可持续经营提供技术支撑。【方法】以大兴安岭地区翠岗林场56块固定样地数据为基础,根据单木相对直径(d)把林木分为了优势木、平均木、被压木3个等级,依据调整决定系数(Radj2 )最大、均方根误差(RMSE)和赤池信息量(AIC)最小的标准筛选出天然兴安落叶松各等级林木的最优树高曲线基础模型,并进一步评价和比较分位数回归和哑变量回归对兴安落叶松不同等级林木树高曲线模型模拟精度的影响。【结果】天然兴安落叶松树高曲线的最优基础模型均为Wykoff方程;当将林分分级哑变量同时添加在Wykoff方程的参数a和b上时,模型的拟合效果最好,其中兴安落叶松树高曲线模型的调整系数(Radj2)、均方根误差(RMSE)和赤池信息量(AIC)分别为0.858 8、1.642 4和2 081.902;兴安落叶松中的不同等级林木对应的最优分位数模型与林分整体无差别,均表现为中位数模型最优(即τ=0.5),其树高曲线的3...  相似文献   

4.
【目的】选择7种模型拟合同一立地条件下马尾松和杉木人工林与天然林的树高生长曲线,并从中选出最优模型,为福建省马尾松和杉木人工林与天然林的合理经营奠定基础。【方法】基于福建省第7次森林资源一类清查数据,以同一立地条件下639株(人工林326株、天然林313株)马尾松标准木及687株(人工林498株、天然林189株)杉木标准木为研究对象,利用二次项方程、幂函数方程、对数方程、S曲线方程4种经验方程及Richards模型、Logistic模型、单分子式模型3种理论方程,拟合马尾松人工林和天然林、杉木人工林和天然林4种林分类型的树高曲线,并以调整决定系数、均方根误差、总相对误差和预估精度为评价指标,选择4种林分类型的最优树高模型。【结果】马尾松人工林与天然林分别以幂函数方程、二次项方程拟合效果较好,预估精度分别达到96.812%和96.474%;杉木人工林和天然林用Richards模型拟合效果最好,预估精度分别达到96.742%和96.495%。【结论】通过比较分析,获得了最适合模拟马尾松和杉木人工林与天然林的树高生长曲线模型。  相似文献   

5.
研究香椿人工林在不同坡位的生长差异,为香椿人工林的培育生产提供参考。以32~39年生香椿人工林为对象,按照不同坡位(上、中、下)设置样地,测定样地内的香椿生长指标;使用Weibull函数对不同坡位林分直径分布结构进行分析;通过林木分级统计并分析各样地林分特征;解析不同坡位香椿人工林的生长过程。结果表明,试验区香椿人工林呈中高度郁闭,下坡位香椿平均树高为13.71 m,胸径为21.32 cm,南北冠幅为5.29 m,均显著最高,而上坡对应各生长指标显著最低。不同坡位香椿人工林径阶分布的Weibull模型拟合效果为下坡>上坡>中坡,拟合形状参数c均在1.0~3.6,为单峰左偏状分布,c下坡c上坡c中坡,下坡趋向于竞争期更稳定的自然稀疏后期。下坡林分林木分级集中在Ⅱ、Ⅲ级,占81.48%,而上坡Ⅰ、Ⅱ、Ⅲ、Ⅳ级林木占比分别为19.23%、21.79%、37.18%、20.51%,并存有少量Ⅴ级木,林木分级分布相对分散。解析香椿人工林生长过程显示,胸径、树高、材积总生长量均为下坡>中坡>下坡。试验区下坡的香椿人工林树高、胸径及冠幅均有生长优势。全试验区林分径阶分布呈单峰左偏状分布,下坡林分趋向于更稳定的自然稀疏后期,且林木分级多集中于Ⅱ、Ⅲ级,胸径、树高、材积总生长量最高。  相似文献   

6.
基于交角的林木竞争指数应用研究   总被引:1,自引:0,他引:1  
【目的】基于交角的林木竞争指数(CI)简洁,能同时表达出竞争木上方的遮盖和侧翼的挤压。探讨不同林分用胸径(D)或通过胸径-树高(D-H)曲线预估树高后替代实测树高计算该竞争指数的可行性,以期给出基于交角的林木竞争指数的最优经验计算途径。【方法】以3个地区共6块样地的天然林和人工林为研究对象,利用全站仪测定并记录林木坐标、树种、胸径、树高、冠幅和健康状况,并计算和分析各样地林木通过胸径得到的竞争指数(CID),通过胸径-树高曲线预估树高后得到的竞争指数(CI_(D-H))与通过实测树高得到的竞争指数(CIH)间的关系。【结果】不同森林类型林分通过胸径和胸径-树高曲线预估树高后计算得到林木竞争指数的2个经验计算途径都是可行的,且都能表达出通过实测树高计算得到林木竞争指数(CIH)结果的95%以上。2个经验计算途径的效果与胸径-树高曲线模型精度呈显著正相关,当胸径-树高曲线模型精度低(R20.53)时,CI_(D-H)效果略差。【结论】由于CI_(D-H)计算过程较复杂,且当林分胸径-树高曲线模型精度较低时,竞争指数CI_(D-H)的应用效果比竞争指数CI_D略差,因此以胸径替代实测树高可作为该竞争指数的最佳经验计算途径。  相似文献   

7.
长白落叶松?水曲柳混交林冠幅预测模型   总被引:1,自引:1,他引:0  
  目的  基于黑龙江省尚志市帽儿山林场和一面坡林场长白落叶松?水曲柳混交林24块标准地的3 164株长白落叶松样木及3 574株水曲柳样木的数据,分别构建了长白落叶松和水曲柳的冠幅模型。  方法  通过分析不同混交方式林分内长白落叶松和水曲柳冠幅的变化规律及其与林木竞争因子的关系,从6种常用的线性和非线性基础冠幅模型中选取最优模型,并将混交比例Si和树木在混交带内位置P作为哑变量,加入其他树木变量和林分变量,分别构建长白落叶松和水曲柳的冠幅模型,并对所构建的模型进行评价。  结果  长白落叶松和水曲柳冠幅在不同混交比例Si和混交带不同位置P下差异显著;冠幅与DDH(林木胸径与林分优势木胸径之比)和HDH(林木树高与林分优势高之比)成正相关,与大于对象木的胸高断面积之和(BAL)成负相关,与距离无关的竞争因子可以反映树木的竞争压力,对冠幅具有影响;长白落叶松冠幅与冠长率(CR)成正相关,与高径比(HD)成负相关;水曲柳冠幅与水曲柳优势木平均高(H0Fra)成正相关,与高径比(HD)成负相关。包含混交比例哑变量Si和混交带位置哑变量P的长白落叶松和水曲柳冠幅模型拟合冠幅(CW)的Ra2分别为0.564 2和0.545 9,加入树木变量和林分变量后长白落叶松和水曲柳冠幅模型拟合CW的Ra2分别为0.674 5和0.589 6。  结论  包含混交带位置哑变量P、混交比例哑变量Si、树木变量(CR和HD)、林分变量(H0Fra)的长白落叶松和水曲柳冠幅模型具有较好的拟合效果及预测精度。因此,本研究所构建的冠幅模型可以很好地预测混交林内长白落叶松和水曲柳的冠幅,为进一步研究混交林树木树冠结构奠定了基础。   相似文献   

8.
应用2015年调查的黑龙江省江山娇实验林场48块杂种落叶松人工林样地的4129株样木数据,分析了冠幅(CW)与胸径(DBH)的相关关系,选出较好的冠幅—胸径线性关系模型作为基础模型;经过再参数化分析,选入对冠幅影响较大的单木因子和林分因子构建冠幅的通用线性模型;再采用混合效应模型的方法建立精确的冠幅预测模型。结果表明:冠幅与胸径呈较好的线性相关,冠长率(CR)、高径比(HDR)和林分断面积(BAS)对冠幅的影响最大,最终构建了样地水平的线性混合效应模型为杂种落叶松人工林单木冠幅预测模型。模型的修正决定系数Ra2为0.6567,比基础模型(Ra2为0.5701)增加了15.19%;均方根误差(RMSE)和赤池信息准则与基础模型相比,均减少了10%以上;模型采用留一交叉验证法进行检验,其平均绝对偏差(MAE)为0.3491 m、平均相对偏差绝对值(MAPE)为18.36%,拟合效率(EF)为0.6164。考虑该模型的实用性,基于留一法,利用随机抽样,对比分析了不同样本量(2,3,4,…,30株树)对随机效应校正下的模型预测效果,结果表明每个样地随机调查5株树的冠幅,即可达到较好的预测效果。  相似文献   

9.
探究不同密度杉木人工林林分结构与生长的差异,为杉木人工林的可持续经营提供科学依据。以清远市11年生3个不同密度(2 100、3 100、4 100株·hm-2)杉木人工纯林为研究对象,每个密度设置6个固定标准样地(20 m×20 m),选取大小比数、角尺度、直径结构、树高结构以及树冠结构5个参数探究林分结构特征,选取林分平均胸径、平均树高、蓄积和林木单株材积等指标探究林分生长特征,通过方差分析探讨林分密度对杉木人工林林分结构和生长的影响。结果表明,1)林分生长指数受林分密度影响差异显著(P<0.05),4 100株·hm-2杉木人工林的平均胸径、树高、单株材积显著低于其他2种密度林分,3 100株·hm-2杉木人工林的蓄积显著高于其他2个密度林分。2)林分直径结构和树高结构在较高的林分密度下,小径级的林木较多,其分布曲线呈现为截尾正态分布。3)3 100株·hm-2的平均冠幅显著大于其他2种林分,4 100株·hm-2的平均树冠表面积以及树冠体积显著小于其他2种林分,3种...  相似文献   

10.
为研究榆林沙区樟子松胸径-树高生长模型,填补榆林沙区樟子松在胸径-树高生长模型研究的空白,为榆林沙区樟子松林分生长预测、生产经营管理提供参考依据,以榆林沙区樟子松人工林为研究对象,选用15个常用的胸径-树高生长模型,通过5个评价指标(R2、决定系数(RMSE)、平均绝对残差(MAE)、残差平均和(SSE)、Akaike信息量准则(AIC))进行对比分析拟合,从而进一步确定,适宜的榆林沙区樟子松胸径-树高生长模型。结果表明:除了Gompertz(1825)模型(14号模型)无法输出参数,剩余的模型均可以。在剩余的14个模型中,双曲线型(2号模型)、混合型(5号模型)、二次多项式(6号模型)、Korf(10号模型)、修正Veibull(11号模型)这5个模型评价指标较优,拟合效果较好。综合比较分析可知,这5种基础胸径-树高模型中,修正Veibull模型可以更好地拟合樟子松胸径-树高的关系,精度也比较准确,建议选用修正Veibull模型。  相似文献   

11.
目的森林生物量和碳储量是研究许多林业问题与生态问题的基础。因此,准确测定生物量和碳储量十分重要。建立生物量模型是生物量和碳储量估测的重要手段。以人工小黑杨为研究对象,进行各分项生物量最优模型的选取,构建3种小黑杨可加性生物量模型系统,即基于胸径变量的一元可加性生物量模型系统、基于胸径和树高变量的二元可加性生物量模型系统以及基于最优变量的多元可加性生物量模型系统,为全国性生物量监测提供可靠的理论与技术支持。方法采用聚合型可加性模型来建立生物量模型;模型参数估计采用非线性似乎不相关回归模型方法;采用“刀切法”评价所建立的3种立木可加性生物量模型。结果仅含有胸径的异速生长方程是一种最为简单的模型形式,且具有较高的预测精度。包含树高和树冠属性因子(冠幅和冠长)的生物量模型能提高模型的预测能力,尤其能显著提高树枝、树叶和树冠生物量模型的预测能力。所建立的3种小黑杨可加性生物量模型拟合效果较好,其调整后确定系数(Ra2)均大于0.81,平均相对误差(ME)为-1.0%~10.0%,平均相对误差绝对值(MAE)均小于25%,所有模型的平均预测精度在85%以上。多元可加性生物量模型优于一元可加性生物量模型和二元可加性生物量模型。结论为了使模型参数估计更有效,所建立的生物量模型需要考虑立木总生物量及各分项生物量的可加性。虽然获取树冠属性因子需要花费大量人力和财力,但随着林地环境的变化,多元可加性生物量模型在结合生长模型精确估计小黑杨生物量方面具有一定的优势。总的来看,所建立的立木生物量模型均可对小黑杨生物量进行很好的估算。   相似文献   

12.
以永嘉县四海山林场7 块天然阔叶林样地中602株林木为例,首先选用6种常用的树高曲线方程模拟该阔叶林主要树种的树高曲线,根据决定系数、均方根误差、平均相对误差3个统计量以及残差图检验,确定1个用于构建混合效应模型的基础模型。然后确定树种间的差异和样地间的差异作为随机效应,构建两水平的非线性混合效应模型,并利用AIC、BIC等指标评价不同混合模型的效果。结果表明,在树种水平和样地水平均同时考虑2个参数的随机效应时,模拟温州地区天然阔叶树树高曲线混合效应模型拟合效果最好,能够显著提高模型的拟合精度、大幅度减小模型误差;混合效应模型随机参数的方差协方差表明,天然阔叶树的树高曲线的变化主要受树种的影响,其次是样地的影响。  相似文献   

13.
  目的  基于帽儿山红松人工林63块样地2 972株红松数据,利用非线性混合模型构建红松枝下高模型,为进一步研究生长与收获模型提供理论依据。  方法  本文首先使用8个常用的枝下高模型,选出最优基础模型;其次,研究林分变量或单木变量对枝下高的影响,建立含林分变量的枝下高模型;最终在基础模型和含林分变量模型的基础上,考虑样地效应对红松枝下高的影响,构建红松枝下高基础混合效应模型和广义混合效应模型。模型用4种抽样方式(随机抽取、抽取最大树、抽取最小树、抽取平均树)和8种样本大小(1 ~ 8株树)对基础混合效应模型和广义混合效应模型进行抽样检验。  结果  Logistic模型拟合精度好,符合生物学意义,且模型形式简单,选为最优基础模型。除树高、胸径以外,大于对象木断面积之和、优势木高和冠幅与枝下高有显著相关性,加入后明显提升模型的拟合精度。枝下高广义混合效应模型的拟合效果要优于其他模型。模型检验结果表明:当应用基础混合效应模型预测时,建议抽取胸径最小的4个样本;当应用广义混合效应模型预测时,建议随机抽取4个样本。  结论  枝下高广义混合效应模型在拟合效果和预测精度方面优于其他3种模型,建议将此模型作为人工红松枝下高模型。当应用广义混合效应模型预测时,建议随机抽取4个样本。   相似文献   

14.
  目的  树冠外轮廓模型不仅能够描述任意位置处树冠半径,而且能够推导预测树冠体积与树木地上部分生物量。根据福建地区98块杉木Cunninghamia lanceolata人工林样地的413株杉木调查数据,构建了具有同一套模型参数的树冠外轮廓模型和树冠体积预测联立方程组系统。  方法  选取4种常用的可积分树冠外轮廓备选模型,利用积分法对备选模型进行推导,得到树冠体积预测模型;将模型方程分别两两联立建立树冠外轮廓与体积相容性联立方程组,并利用SAS软件模块中的似乎不相关回归过程估计联立方程组模型系统的参数。为了消除模型异方差,采用加权回归方法拟合模型,并对不同模型系统的拟合精度、预测精度进行对比分析。  结果  基于模型4的联立方程组拟合精度高、预测性能好,其树冠外轮廓和体积拟合精度分别达到0.829 5和0.861 0,预测结果精度分别为0.803 9和0.856 0;通过似乎不相关回归法解决了联立方程组共线性问题,加权回归方法一定程度上消除了模型中存在的异方差性。  结论  所构建的树冠外轮廓-体积一致性模型方程实现了树冠外轮廓与体积模型之间互相推导,为进一步估测树木地上部分生物量提供了理论依据。  相似文献   

15.
以福建省将乐国有林场杉木(Cunninghamia lanceolata)人工林标准地和解析木数据为依托,使用R语言,构建杉木单木胸径-树高模型、冠幅模型、胸径生长量模型(大树、小树)、树高生长量方程(大树)以及材积模型,并计算树皮因子。通过赤池信息准则(AIC)、贝叶斯信息准则(BIC)和对数似然值,结合R2值选择最优模型,并对所建模型进行精度检验。结果表明:各模型的预估精度最高的为树皮因子模型,精度达到99.01%,预估精度最低的模型为直径生长量模型,精度为83.54%,其余模型精度均达到95%以上;经t检验,所有模型估计值与实际值差异不显著,模型均可用于森林植被模拟系统。  相似文献   

16.
以宽甸县泉山国营林场38块标准林地为材料,应用数学模拟方程确定子天然阔叶混交林株数(N)按径阶(D)呈反丁字型分布,林分株数按树高(H)呈近似常态分布,曲线左偏且平缓。林分平均胸径和平均树高及平均材积处于林分株数累积百分数的70%位置,并明确了它们的变动范围这对正确调查林分数量及生长预测将起重要作用。  相似文献   

17.
杨梅人工林相容性单株生物量模型构建   总被引:1,自引:0,他引:1       下载免费PDF全文
  目的  构建杨梅Myrica rubra一元相容性单株生物量模型,为杨梅人工林可持续经营及生物量精确估测提供理论依据。   方法  基于48株杨梅标准木实测数据,在以地径、树高、冠幅为自变量建立独立单株生物量模型基础上,运用非线性误差变量模型法,对浙江仙居县杨梅人工林相容性单株生物量模型进行研究。   结果  拟合出的独立单株生物量模型中,以地径(x1)为自变量的幂函数模型决定系数为最大,叶片生物量(y1)、枝干生物量(y2)、根系生物量(y3)及总生物量(y0)模型分别为y1=0.004x12.795、y2=0.003x13.048、y3=0.002x13.141和y0=0.010x12.995。以地径、树高、冠幅构建的3个相容性单株生物量模型拟合效果均较好,其中又以地径为自变量的模型决定系数和预估精度最大,模型最优,相关参数c0、b0、r1、r2、r3和r4分别为0.084 0、2.162 7、0.780 0、0.779 9、0.224 3和0.204 5。随地径、树高和冠幅增大,叶片、枝干、根系生物量的分配规律基本相似,枝干、根系生物量占总生物量的比例呈上升趋势,叶片生物量则逐渐下降。各组分生物量随杨梅林龄增大从大到小快速演变为枝干、根系、叶片。   结论  在运用杨梅一元相容性单株生物量模型进行估算时,以地径为自变量的幂函数模型决定系数最大,且模型决定系数和预估精度最大。地径是最适合用于估算杨梅生物量的变量。 图1表4参31  相似文献   

18.
[目的]分析抚育间伐对红松人工林枝条数量的影响,建立基于间伐效应的生物数学模型,为制定更加科学合理的间伐体制提供理论依据.[方法]基于黑龙江省林口林业局和东京城林业局不同林分条件及抚育间伐强度下的红松人工林49株解析木4370组枝解析数据,利用R语言的nlme包,建立了基于抚育间伐效应的枝条密度单水平非线性混合模型,并...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号