首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 557 毫秒
1.
In the present study, three recently patented decontamination agents: peroxyacetic acid combined with lactic acid, and two different combinations of hydrogen peroxide with citric acid (with and without propylene glycol), were compared with sodium hypochlorite and tap water washing regarding their effect on equilibrium modified atmosphere packaged (EMAP) fresh-cut iceberg lettuce. Effects of these sanitizers on respiration rate, electrolyte leakage, microbial levels, and sensory quality of the product after decontamination and during storage (3 d at 4 °C followed by 4 d at 7 °C) were elucidated. Hydrogen peroxide based sanitizers provoked a significant increase in the respiration rate and the electrolyte leakage of fresh-cut iceberg lettuce compared with tap water washing. Peroxyacetic acid combined with lactic acid resulted in similar results to those of tap water washing for all the parameters analyzed. However, other aspects of the combination of peroxyacetic and lactic acids (e.g. efficacy for cross-contamination avoidance) should be assessed in the future in order to determine its suitability for fresh-cut iceberg lettuce processing.  相似文献   

2.
Increasing concerns about the possible formation of carcinogenic compounds and the emergence of new, more tolerant pathogens, have raised questions on the use of chlorine in fresh-cut produce. There is a growing need to investigate the efficacy of new commercial sanitizing and other alternative technologies. In the present study, the effectiveness of chlorine and other commercial sanitizer agents (Sanova, Sanoxol 20, Tsunami 100, Purac FCC 80, Citrox 14W and Catallix) was evaluated on epiphytic microorganisms and their influence on the sensory quality of fresh-cut escarole and lettuce. Different sanitizer concentrations (manufacturer's recommended dose and half of this dose) and application systems (submersion and spray) were also compared. The antimicrobial efficacy of the treatments was evaluated, initially after washing, and after 8 days of storage simulating a commercial shelf-life (3 days at 4 °C + 5 days at 8 °C). All the tested washing solutions were more effective in reducing the microbial load than water washes, particularly in fresh-cut escarole. However, the microbial load of fresh-cut escarole and lettuce after 8 days of storage was very similar for most of the treatments despite the different application systems and concentrations of the sanitizers. Clearly epiphytic microorganisms of fresh-cut escarole and lettuce were able to grow rapidly during storage under low temperature, reaching similar or higher values than the unwashed fresh-cut produce at the day of production. The overall visual quality of fresh-cut salad leaves was scored as good or very good (≥6) after 8 days of storage, except for the product washed with Purac. Thus, despite the high number of mesophilic bacteria present in the product, between 6 and 8 log cfu g−1, it was not associated with a detrimental quality. Therefore, the determination of the initial epiphytic reductions of fresh-cut products after washing with different sanitizing agents provides little information about the microbial or sensory quality of the product at the time of consumption.  相似文献   

3.
The risk of undesirable by-products from chlorine disinfection in fresh-cut industries, together with its limited efficacy, has led to a search for alternative agents. The aim of this study was to test several alternative putative antimicrobial substances to reduce Escherichia coli O157:H7, Salmonella spp. and Listeria spp. populations on fresh-cut apple. Carvacrol, vanillin, peroxyacetic acid, hydrogen peroxide, N-acetyl-l-cysteine and Citrox were selected for their results in in vitro assays against E. coli O157:H7 and Listeria spp., to be tested on fresh-cut apple plugs. Apple flesh was inoculated by dipping in a suspension of a mix of the studied pathogens at 106 cfu mL?1, and then treated with the antimicrobial substances. All treatments were compared to deionized water and a standard sodium hypochlorite treatment (SH, 100 mg L?1, pH 6.5). Pathogen population on apple plugs was monitored for up to 6 days at 10 °C. Bacterial reductions obtained by peroxyacetic acid (80 and 120 mg L?1), vanillin (12 g L?1), hydrogen peroxide (5, 10, 20 mL L?1) and N-acetyl-l-cysteine (5 and 10 g L?1) were similar or higher than reduction obtained by SH. In addition, bacterial populations were maintained at low levels throughout storage. No cells of any of the pathogens were detected in the peroxyacetic acid, hydrogen peroxide, Citrox and SH washing solutions after apple treatment. Peroxyacetic acid, hydrogen peroxide and N-acetyl-l-cysteine could be potential disinfectants for the fresh-cut industry as an alternative to chlorine disinfection. However, their effect on sensory quality and effectiveness under commercial processing conditions should be evaluated.  相似文献   

4.
The accumulation of bacteria in vase water is often associated with premature senescence in many cut flower species. In the present study, we tested the efficacy of aqueous chlorine dioxide (ClO2) to extend flower display life by preventing the build-up of bacteria in vase solutions. The addition of 2 or 10 μL L−1 ClO2 to clean deionized water extended the vase life of Alstroemeria peruviana ‘Senna’, Antirrhinum majus ‘Potomic Pink’, Dianthus caryophyllus ‘Pasha’, Gerbera jamesonii ‘Monarch’, Gypsophila paniculata ‘Crystal’ and ‘Perfecta’, Lilium asiaticum ‘Vermeer’, Matthiola incana ‘Ruby Red’ and Rosa hybrida ‘Charlotte’ flowers by 0.9–13.4 d (7–77%) relative to control (i.e. 0 μL L−1 ClO2) stems. The beneficial effects of ClO2 treatment were associated with a reduction in the accumulation of aerobic bacteria in vase water and on cut surfaces of flower stems. ClO2 treatment was also effective in maintaining or extending the vase life of A. majus ‘Potomic Pink’, Dendrathema × grandiflorum ‘Albatron’, G. paniculata ‘Perfecta’ and M. incana ‘Ruby Red’ flowers even when stems were placed into water containing 1011 CFU L−1 bacteria. The efficacy of 10 μL L−1 ClO2 in vase water containing 0.2 g L−1 citric acid and 10 g L−1 sucrose to extend the display life of G. jamesonii ‘Lorca’ and ‘Vilassar’ flowers was equal to or greater than other tested biocides (i.e. aluminum sulfate, dichloroisocyanuric acid, 8-hydroxyquinoline sulfate, Physan 20™, sodium hypochlorite). Taken collectively, the results of the present study highlight the potential of aqueous ClO2 for use as an alternative antibacterial agent in flower vase solutions.  相似文献   

5.
Influence of packaging conditions on fresh-cut ‘Gold’ pineapple shelf-life were studied during 20 d of storage at 5 °C. Fresh-cut fruit pieces were packed in polypropylene trays (PP) and wrapped with 64 μm polypropylene film under active (high 40% or low oxygen, 11.4%) or passive modified atmospheres (air or cut fruit coated with 1%, w/v alginate). Changes in headspace composition, titratable acidity, pH, soluble solids content, juice leakage, color, texture, and microbial growth were evaluated over time. For all packaging conditions, oxygen concentration continuously decreased below its initial concentration over 20 d storage, but never reached levels below 2% O2. Meanwhile, CO2 concentration inside all packages continuously increased over time up to 10.6–11.7% from the initial conditions. Ethylene concentrations were always less than 0.4 μl L−1 while ethanol was detected only after 13 d of storage. Color parameters L* and b* significantly decreased over time in all packaging conditions and were directly attributed to the translucency phenomenon in the fruit flesh. When alginate coating was used, juice leakage was significantly reduced in contrast with the substantial juice accumulation observed in the rest of the packaging conditions. Texture profile analysis (TPA) parameters, did not significantly change over time, suggesting that structural characteristics of fresh-cut pineapple pieces were preserved throughout storage. From the microbial point of view, the shelf-life of ‘Gold’ fresh-cut pineapple was limited to 14 d by mesophilic bacterial growth. Further studies are needed to evaluate the sensory aspects, as well as to characterize the flesh translucency phenomenon and reduce juice leakage of fresh-cut pineapple.  相似文献   

6.
Aureobasidium pullulans strains Ach 1-1 and 1113-5 are two effective biocontrol agents against Botrytis cinerea and Penicillium expansum on stored apples. In the present work, a monitoring system allowing their identification and quantification was developed. The methodology used consisted of the development of both molecular markers and a semi-selective medium. The random amplified polymorphic DNA (RAPD) technique was applied to a collection of 15 strains of A. pullulans, including Ach 1-1 and 1113-5. Five specific RAPD fragments were amplified for strain Ach 1-1 and three others for strain 1113-5. Among them, a fragment of 528 bp specific to strain Ach 1-1 (generated with the OPR-13 RAPD primer) and another one of 431 bp specific to strain 1113-5 (amplified with the OPQ-03 RAPD primer) were selected, cloned, sequenced, and used to design sequence-characterized amplified region (SCAR) primers. Three different SCAR markers were amplified: two specific to strain Ach 1-1 (189 bp and 387 bp) and one specific to strain 1113-5 (431 bp). These SCAR primers can clearly identify strains Ach 1-1 and 1113-5 among 14 strains of A. pullulans and among eight yeast strains commonly present on apple fruit surfaces. Their selectivity was also tested using DNA extracted from epiphytic microflora of the apple surface. As a semi-selective medium, PDA medium supplemented with 0.5 mg L−1 euparen, 1 mg L−1 sumico, 2.5 mg L−1 hygromycin B, 30 mg L−1 streptomycin sulphate, and 1 mg L−1 cycloheximide was selected. It inhibited the development of the air microflora and appeared highly toxic for the epiphytic microflora of apple surface without altering the growth of the targeted strains Ach 1-1 and 1113-5. The combination of the semi-selective medium and SCAR markers provides a valuable monitoring tool to specifically identify and quantify A. pullulans strain Ach 1-1 and strain 1113-5 and could be used in future studies to evaluate their population dynamics under various laboratory and practical conditions.  相似文献   

7.
In this study, the efficacy of UV-C illumination for inactivate Escherichia coli, Listeria innocua or Salmonella enterica, individually or in a mixture, in vitro and on apple slices was determined. Apple slices inoculated with a 107 cfu/mL suspension of above indicated pathogens were irradiated on both sides with UV-C illumination, with doses of 0.5 and 1.0 kJ/m2. UV-C illumination disinfection efficacy was compared to that of washings with sodium hypochlorite at 100 ppm of free chlorine and with distilled water. Bactericidal activity of each treatment was assessed after 30 min and after 7 and 15 days of storage at 4 °C. Results showed that UV-C illumination at 1.0 kJ/m2 could be an alternative to the wash with hypochlorite solutions. On the in vitro study, these doses completely inhibited the growth of the three bacteria either as pure cultures or in a mixture. In fresh-cut apple, the pathogens were also affected by the UV-C illumination, the 1.0 kJ/m2 dosage being the one that resulted in higher bacteria inhibition in almost every case. The UV-C treatment did not affect the quality properties of fresh-cut apple.  相似文献   

8.
‘Blanquilla’ pears processed as fresh-cut products are highly sensitive to browning and softening. Common postharvest methods, such as the use of antibrowning compounds and/or modified atmosphere packaging, fail to preserve ‘Blanquilla’ pear slices long enough to be marketable. However, treatment with 1-MCP before cutting and peeling considerably improved their textural properties (9.2 N vs. 1.1 N with and without 1-MCP treatment, respectively) and color (a* values of 1 vs. 5 after 15 d at 4 °C, for slices pear treated with 1-MCP and without treatment, respectively). These positive changes were closely related to a decrease in respiratory activity determined on whole pears after 3 months of storage in air at 0 ± 1 °C and 95% R.H. (0.40 ± 0.05 mmol CO2 kg−1 h−1 vs. 0.77 ± 0.04 mmol CO2 kg−1 h−1 with and without 1-MCP treatment, respectively) and ethylene production (1.18 ± 0.36 nmol C2H4 kg−1 h−1 vs. 5.751 ± 1.12 nmol C2H4 kg−1 h−1 for samples treated with and without 1-MCP, respectively). The use of 1-MCP allows fresh-cut ‘Blanquilla’ pears to be sold up to about 5 d after processing. Treatment with 1-MCP could be a viable alternative to common technologies for extending the shelf-life of ‘Blanquilla’ pears as a fresh-cut product.  相似文献   

9.
The aim of this work was to investigate the loss of freshness of fresh-cut pineapple samples stored at different temperatures using non-destructive spectroscopic methods. Three lots of fresh cut pineapples (Ananas comosus L. cv. Golden Ripe, from Costa Rica), packaged in PVC trays (250 g) were analyzed during storage at three different temperatures (5.3, 8.6 and 15.8 °C). Loss of quality of these fruit was evaluated by chemical and microbiological parameters and using NIR and MIR spectroscopy. The FT-NIR spectra were acquired in reflectance mode directly on the slice of fresh-cut pineapple, over the range 12,500–3900 cm−1, while FT-IR spectra were collected over the range 4000–700 cm−1 using an horizontal ATR cell. Some chemical and microbiological parameters were also measured. Principal component analysis (PCA) was applied to the second derivative of the spectra to uncover molecular modifications occurring over the storage time. A clear discrimination between “fresh” and “old” samples was obtained and a stability time corresponding to the time of the initial loss of freshness was defined at each temperature. The stability times revealed by NIR spectroscopy were in good accordance with those evaluated by MIR. At each temperature the stability times (i.e. the initial loss of freshness times) defined by spectroscopic techniques (4–5 d at 5.3 °C, 3–4 d at 8.6 °C and 1 d at 15.8 °C) were associated with a mesophilic bacteria count ranging between 105 and 106 CFU g−1 and lower than the maximum limit for mesophilic bacteria (<5 × 107 CFU g−1) given by French hygienic regulations at consumption.These results show that NIR and MIR spectroscopy could support conventional techniques (chemical and microbiological analysis) in studying shelf-life of fresh-cut fruit. In particular these techniques define the initial loss of freshness time, indicating a product which rapidly will be no longer acceptable if stored beyond that time. The main advantage of using IR spectroscopic techniques is to rapidly draw a profile of the product related to its change in quality.  相似文献   

10.
Postharvest diseases limit the storage period and marketing life of figs. The efficacy of chlorine dioxide by fogging was tested for the control of postharvest diseases of black fig (Ficus carica L. cv. Bursa Siyahi). Fruit were fogged with various concentrations of chlorine dioxide in a cold storage unit for 60 min at room temperature. Treated fruit were stored either in air or modified atmosphere bags for 7 d at 1 °C followed by 2 d shelf-life at 20 °C. Fogging at 300–1000 μL L−1 significantly reduced natural incidence of decay, most of which was gray mold. The efficacies of fogging at 500 and 1000 μL L−1 were at the same level and fogging at 1000 μL L−1 was superior to that at 300 μL L−1 in fruit stored in air. Modified atmosphere packaging did not improve the efficacy of fogging in reducing decay incidence. The epiphytic population on the fruit surface was similarly reduced by chlorine dioxide fogging. All treatments significantly reduced total microorganisms, fungal and bacterial populations in fruit. In addition, microorganisms in the storage atmosphere were significantly reduced. None of the treatments affected the visual quality and taste of fruit.  相似文献   

11.
Quality, microbiological and enzymatic characteristics of fresh-cut lettuce (Lactuca sativa var. longifolia, ‘Duende’), grown in floating system with three electrical conductivities of nutrient solutions (2.8, 3.8 and 4.8 mS cm?1), were investigated in order to evaluate the effect of salinity on product shelf-life during cold storage (9 d at 4 °C). Pre-harvest salinity of 3.8 and 4.8 mS cm?1 improved the properties of fresh-cut lettuce, since CO2 production was reduced with a subsequent control of the decay process. Fresh-cut processing caused an activation of polyphenol oxidase and peroxidase; in all cases the product obtained by salinity treatments was less subject to oxidase activity and browning phenomena during storage. Increased salinity reduced the number of mesophilic bacteria and of moulds and yeasts, assessed by plate counts on different culture media; in contrast, Enterobacteriaceae levels were unaffected by pre-harvest treatments. The research demonstrated that an increase in nutrient solution electrical conductivity, through the use of floating system, affects fresh-cut lettuce characteristics, improving shelf-life of the product.  相似文献   

12.
The effects of 40, 70 or 100 mg L?1 free chlorine neutral and acidic electrolyzed water (NEW and AEW) during the washing and disinfection step, on quality attribute changes during shelf life of fresh-cut mizuna baby leaves, were studied. Physiological, nutritional, enzymatic, sensory, and microbial changes throughout 11 days at 5 °C were monitored. Results were compared to those reached with a conventional industrial treatment of 100 mg L?1 NaClO at pH 6.5 and with a control washing with deionised water. Both NEW and AEW showed an inhibitory effect on natural microflora growth and retained the main quality attributes. Total chlorophyll content was preserved after shelf life. Initial total phenolic contents ranged between 1868 and 2518 mg CAE kg?1 fw for AEW 40 and AEW 100 treatments respectively and slightly increased throughout shelf life. In contrast, after shelf life the total antioxidant activity recorded on the processing day decreased around 35%. Throughout shelf life EW induced an increase in catalase activity while superoxide dismutase activity decreased. Scanning electron microscopy of the leaves showed that neither NEW nor AEW affected their surface structure. To the best of our knowledge, the effects of NEW and AEW on bioactive quality parameters, as well as on antioxidant enzyme activities for fresh-cut baby leaves are first reported here. EW provides an alternative sanitizing technique to NaClO for maintaining the quality of fresh-cut mizuna baby leaves up to 11 days at 5 °C.  相似文献   

13.
The effects of postharvest application of aminoethoxyvinylglycine (AVG) and 1-methylcyclopropene (1-MCP) on ethylene production and fruit quality, and thus on transportation and shelf-life, were evaluated in melting-flesh peaches. AVG (150 mg L−1) significantly reduced ethylene production, and the effect was enhanced in combination with 1-MCP (1 μL L−1). However, fruit treated with AVG alone softened to untreated control levels 2 d after harvest (DAH). Treatment with 1-MCP significantly reduced the rate of softening until 2 DAH, but the fruit rapidly softened thereafter, and reached untreated control levels by 4 DAH. A combination of AVG and 1-MCP significantly reduced fruit tissue softening throughout ripening. The effect of each chemical on flesh firmness indicated that 1-MCP affected fruit response in the early stages of ripening up to 4 DAH, and AVG significantly reduced softening in the latter stages from 4 to 9 DAH. Peaches treated with AVG and 1-MCP retained their ground color during ripening, but the effect of each chemical on color is unclear. The present study indicates that combined treatment with AVG and 1-MCP significantly delays the ripening of melting-flesh peaches.  相似文献   

14.
Red fleshed watermelons are an excellent source of the phytochemical lycopene. However, little is known about the stability of lycopene in cut watermelon. In this study, lycopene stability and other quality factors were evaluated in fresh-cut watermelon. Twenty melons each of a seeded (Summer Flavor 800) and a seedless (Sugar Shack) variety were cut into 5 cm cubes and placed in unvented polystyrene containers, sealed, and stored at 2 °C for 2, 7, or 10 days. At each storage interval, melons were evaluated for juice leakage, changes in carotenoid composition, color, soluble solids content (SSC), and titratable acidity. Headspace carbon dioxide and ethylene were monitored during storage intervals. Juice leakage after 10 days of storage averaged 13 and 11% for the seeded and seedless melons, respectively. Lycopene content decreased 6 and 11% after 7 days of storage for Summer Flavor 800 and Sugar Shack melons, respectively. β-Carotene and cis lycopene contents were 2 and 6 mg kg−1 for Summer Flavor 800 and Sugar Shack, respectively, and did not change with storage. After 10 days of storage, CIE L1 values increased while chroma values decreased, indicating a lightening in color and loss of color saturation in melon pieces. Symptoms of chilling injury, such as greatly increased juice leakage, or lesions on cubes, were not seen on the fresh-cut cut watermelon after 10 days storage at 2 °C. Puree pH increased and SSC decreased slightly after storage. Carbon dioxide levels increased and oxygen levels decreased linearly during storage, creating a modified atmosphere of 10 kPa each of CO2 and O2 after 10 days. Fresh-cut cut watermelon held for 7 or more days at 2 °C had a slight loss of SSC, color saturation, and lycopene, most likely caused by senescence.  相似文献   

15.
Modified atmosphere packaging (MAP) has the potential to extend the shelf-life of fresh-cut lettuce mainly by limiting the oxidation processes. However, exposure to light conditions has been described as causing browning and quality loss. The influence of O2 partial pressures (pO2) and light exposure during storage on the shelf-life of fresh-cut Romaine lettuce was studied. Fresh-cut lettuce was exposed daily during storage to different light conditions: light (24 h), darkness (24 h) and photoperiod (12 h light + 12 h darkness). Changes in respiration rate, headspace gas composition, sensory quality, colour, electrolyte leakage, stomatal opening, water loss, texture and compositional constituents related to browning such as vitamin C and individual and total phenolic compounds were evaluated. Different weight samples (75–275 g), packaged with an initial pO2 of 0.5–2.0 kPa balanced with N2, reached pO2 from 0.1 to 1.5 at the steady-state. Atmospheres with low pO2 (0.2–0.5) at the steady-state preserved lettuce quality by the control of browning and the prevention of off-odours and off-flavours. Light exposure during storage positively influenced the number of open stomata (74% in light vs 24% in darkness) which contributed slightly to weight loss. Consumption of O2 in samples exposed to light differed significantly from those stored in photoperiod or darkness (10.6 ± 7.0, 18.3 ± 3.5 and 25.8 ± 8.6 nmol O2 kg?1 s?1, respectively). Packages exposed to light showed higher pO2 compared with packages stored in darkness while those exposed to photoperiod had intermediate values. Moreover, location of the packages in the shelves affected package headspace gas composition and thus, packages near the front of the shelves showed higher pO2 than those at the back. The different light conditions did not influence the content of vitamin C or the individual and total phenolic compounds. This study shows that under light conditions respiration activity was compensated by photosynthesis resulting in a higher pO2. Thus, browning of fresh-cut Romaine lettuce can be promoted by light exposure during storage as it increases headspace pO2.  相似文献   

16.
Sustainable agriculture requires assessments of nitrogen fluxes and monitoring of potential nitrate losses. Watershed studies are particularly valuable to calculate nitrogen balances and quantify the relative importance of different sources of inputs and outputs. A nitrogen balance was calculated from September 2004 to October 2006 in an agricultural watershed named Valle Volta (Northern Italy) located in a Nitrate Vulnerable Zone. The area, consisting of 17.4 km2 of arable land, with limited presence of urban areas and roads, is entirely below the sea level (3 m b.s.l. in average). Soils are typically Vertic Cambisols and Thionic Fulvisols with fine texture (silty clay or silty clay loam). About 45% of the agricultural soil is pipe-drained. The ground water level is maintained at 4.6 m b.s.l. by the activity of pumps that raise excess waters into a river. Water fluxes in and out from the basin were daily registered, and dissolved inorganic nitrogen concentration (N–NO3 + N–NH4) analyzed periodically. Data about fertilizers applications, seeds and crop yield were obtained from farmers’ interviews. Biological nitrogen fixation (BNF) was estimated on the base of dry matter yield. Major N inputs derived from fertilizers (174–188 Mg watershed−1 year−1), followed by BNF (126–131 Mg watershed−1 year−1). Maize was the crop receiving the highest fertilization rates, accounting for more than 40% of total fertilizer inputs. Saleable products were the main form of N leaving the watershed (317–338 Mg watershed−1 year−1). Nitrate was the main N form in irrigation and efflux water; its concentration was higher from autumn to spring, with peaks of 10–20 mg N L−1 in efflux water, while it was low in summer. Nitrogen losses with efflux water were higher in spring and in autumn. Overall, losses of nitrate by efflux water were limited if compared with literature data. Water balance in the area remained near zero at the beginning and the end of the first year, confirming the suitability of the area for this kind of study. The potential net contribution of each hectare of agricultural soil of Valle Volta basin to the N load toward the Adriatic sea is about 5.5 kg N. Our study demonstrated that in the Valle Volta watershed, total N outputs and inputs are of similar magnitude, indicating that crop management and especially N fertilization techniques has reached good levels of ecological sustainability.  相似文献   

17.
‘Galia’ (Cucumis melo var. reticulatus L. Naud. cv. Galia) fruit were harvested at the three-quarter slip stage and treated with 1 μL L−1 1-methylcyclopropene (1-MCP) at 20 °C for 24 h. The fruit were processed and stored as fresh-cut cubes and intact fruit for 10 d at 5 °C. Ethylene production of fresh-cut cubes was approximately 4–5-fold higher than intact fruit at day 1. Afterward, the ethylene production of fresh-cut cubes declined significantly whereas that of intact fruit remained relatively constant at about 0.69–1.04 ng kg−1 s−1. 1-MCP delayed mesocarp softening in both fresh-cut and intact fruit and the symptoms of watersoaking in fresh-cut fruit. Continuously stored fresh-cut cubes and cubes derived from intact fruit not treated with the ethylene antagonist softened 27% and 25.6%, respectively, during 10 d storage at 5 °C while cubes derived from 1-MCP-treated fruit softened 9% and 17%, respectively. Fresh-cut tissue from 1-MCP-treated fruit exhibited slightly reduced populations of both total aerobic organisms and Enterobacterium, although the differences did not appear to be sufficient to explain the differences in keeping quality between 1-MCP-treated and control fruit. Based primarily on firmness retention and reduced watersoaking, 1-MCP treatment deferred loss of physical deterioration of fresh-cut ‘Galia’ cubes at 5 °C by 2–3 d compared with controls.  相似文献   

18.
Two trials were carried out on Butterhead lettuce (March–May 2008 and April–June 2009) to investigate the effect of the application of nitrogen fertilizer (0, 50 and 100 kg ha−1 of N) and of strobilurin (Azoxystrobin, methyl (E)-2-{2-[6-(2-cyanophenoxy)pyrimidin-4-yloxy]phenyl}-3-methoxyacrylate) on (i) yield and morphological traits at harvest, (ii) physical (weight loss and dry matter), visual (chlorophyll content and main colour indices), physiological (relative water content, osmotic potential, and electrolytic leakage), and nutritional (ascorbic acid, nitrate, and polyphenol content) quality of raw material and their changes after storage of fresh-cut leaves. Cool storage lasted 7 and 12 days in the first and second experiment, respectively. In the first cycle, under early-spring conditions, lettuce yield was lower by 38% and, even if the product was lighter coloured [higher L* (+6%) and lower CHL (−21%)], it had lower dry matter content (−32%), higher electrolyte leakage (EL) (+14%) and WLTrans (+8%) compared with the raw product from the second cycle. In both years, the increase of N supply and the application of Azoxystrobin improved yield (by 8.5% and 10%, respectively). The response in N fertilization was more evident under early-spring (2008) compared to late-spring (2009) conditions (12.3% vs. 4.8%), and when (2008) the highest N rate interacted with the application of Azoxystrobin (+12.9% compared with the other treatments). The nitrate content in leaves was always reduced by Azoxystrobin application (−43%) and increased with the N supply (+53%). In the second experiment, when storage was prolonged for 12 days, strobilurin improved postharvest shelf-life by reducing chlorophyll degradation (−27%), senescence (−19%, measured as EL), and browning (−53%, measured as h° index decrease). Azoxystrobin lowered also the total polyphenol content of raw material (−12.5%), which can be linked to less browning during storage. During postharvest storage, irrespective to the preharvest dose, N supply kept the visual quality and physiological senescence indices constant (L*, h° and EL). The suitability of the Butterhead lettuce to fresh-cut processing depends on climatic growing conditions. Preharvest Azoxystrobin supply improves the nutritional quality of the raw material, reducing leaf nitrate content, and the shelf-life in prolonged storage. The N rate of 100 kg ha−1 of N is suitable under less favourable growing conditions, while the rate of 50 kg ha−1 is better for more favourable climatic conditions, especially if a moderate contribution in available N from soil organic matter mineralization and no leaching from heavy rains is expected.  相似文献   

19.
Ethylene production is enhanced by wounding during fresh-cut processing and the accumulation of this gas within the packages of fresh-cut fruit can be detrimental to their quality and shelf-life. The effect of 1-methylcyclopropene (1-MCP), an ethylene action blocker, applied before or after processing, on the quality of fresh-cut kiwifruit, mangoes and persimmons was evaluated during storage at 5 °C. Fresh-cut ‘Hayward’ kiwifruit slices softened at a slower rate and their ethylene production rate was decreased in response to 1-MCP application (1 μL L−1 for 6 h at 10 °C) either before or after processing. A 2-min dip in 0.09 M (1%, w/v) CaCl2 synergistically increased the effect of 1-MCP on firmness retention and 1-MCP did not affect the color (L* value) of fresh-cut kiwifruit slices. Softening and browning (decreasing L* value) were delayed when 1-MCP was applied directly on fresh-cut ‘Kent’ and ‘Keitt’ mango slices. Respiration rate of mango slices was not influenced by 1-MCP whereas the ethylene production was affected only towards the end of their shelf-life. Fresh-cut ‘Fuyu’ persimmons treated with 1-MCP after processing presented higher ethylene production rate, slower softening rate and slower darkening of color (decrease in L* value), whereas the respiration rate was not affected.  相似文献   

20.
Peroxyacetic acid (PAA) is a strong oxidizer and exerts antimicrobial properties. The effect of a decontamination step with 80 and 250 mg L−1 PAA on shelf-life of grated carrots stored under equilibrium modified atmospheric packaging at 7 °C was determined and compared with the shelf-life of unwashed and water-washed carrots. Microbial parameters, including total aerobic plate count, numbers of lactic acid bacteria, Lactobacillae and yeasts, and sensory quality were evaluated. Next to these parameters, atmospheric gas composition, pH and nutrient content were also monitored. The suggested packaging configuration prevented CO2 accumulation, but at the end of the study anoxic conditions were reached for unwashed carrots and carrots washed with 80 mg L−1 PAA. The microbial shelf-life of water-washed carrots was 4 d based on the yeast count, whereas the flavour was not acceptable after 5 d. The total aerobic plate count and the yeast count determined the shelf-life of carrots treated with 80 mg L−1 PAA on 5 d, whereas the flavour was unacceptable after 7 d. None of the microbial parameters determined the shelf-life of carrots washed with 250 mg L−1 PAA. However, this treatment had already a pronounced adverse effect on the initial sensory quality. Water washing already decreased the content of all individually studied nutrients (−16 to −28%), except for lutein content and the antioxidant capacity. Additional losses after adding PAA on day 0 were found for α-tocopherol and phenols. Regardless of the applied treatment, α- and β-carotene remained stable during storage, whereas ζ-carotene, lutein and α-tocopherol were unstable. The phenol content and the antioxidant capacity of unwashed, water-washed and 80 mg L−1 PAA-treated carrots increased significantly at the end of the storage period, whereas no changes were found in carrots treated with 250 mg L−1 PAA.On the condition that carrots were packed under an adequate EMA, the 80 mg L−1 PAA treatment showed possibilities for extending shelf-life without pronounced effects on nutrient content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号