首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monitoring the qualitative and quantitative changes of soil organic carbon (SOC) is very much essential to keep the soil viable and productive for long-term sustainability. Impact of long-term (36 years) enforcement of organic and inorganic nutrient management practices on changes in physio-chemical, microbiological properties and enzymatic activities of flooded rice soil was assessed along with soil carbon pools. The results revealed that the fractions of SOC, microbial biomass carbon, culturable microbial counts and dehydrogenase and β-glucosidase activities increased significantly in green manure amended soil. The population of functional microbial groups, namely denitrifiers and methanotrophs was high in farm yard manure applied soil, while methanogens population was high in green manure application. Higher nitrifier population was evident in inorganic or integrated organic and inorganic fertilizer. Continuous application of recommended levels of chemical fertilizers did not greatly affect biological activities in the soil. Fourier Transform Infrared Spectroscopy analysis of humic acid revealed that organic fertilized soil fractions were more aliphatic with greater diversity than did the inorganic fertilized soil fractions. This study emphasizes the importance of organic manure and underscores the recommended dose of inorganic fertilizer to maintain the soil biological properties in flooded rice soil.  相似文献   

2.
A pot experiment was carried out to monitor the recovery of a steaming-reduced microbial biomass (C, N, and P) and fungal ergosterol by sucrose addition. The second objective was to investigate the recovery of a steaming-reduced microbial biomass by white mustard (Sinapis alba) cultivation and its interactions with microbial residues, freshly formed from sucrose addition. Thirty days after steaming, the soil microbial biomass C and N was still significantly reduced by 80%, leading to a rather constant microbial biomass C/N ratio around 7 throughout the experiment. The steaming-induced decreases of microbial biomass P and ergosterol were only roughly 50%, leading to a decrease in the microbial biomass C/P ratio and an increase in the ergosterol-to-microbial biomass C ratio. Sucrose addition led to a 25% reduction in the ergosterol-to-microbial biomass C ratio. Mustard cultivation had significant positive effects on microbial biomass C, N, P, and ergosterol, but the effects were smaller than those of sucrose addition. Cultivating mustard had no significant effects on the C loss or on the incorporation of sucrose C into the microbial biomass. In contrast, the application of sucrose led to a significant decrease in the mustard shoot biomass and especially in the mustard root biomass.  相似文献   

3.
Factory staff must consider all costs to make sound economic decisions on how to improve the performance of evaporators, which includes knowing optimum pH levels to minimize sucrose losses. A factory study was conducted to determine the effects of target final evaporator syrup (FES) pH values across the season on sucrose losses. The factory operated Robert's type calandria evaporators, with two (2787 and 2322 m2) preevaporators in parallel and three sets of triple-body evaporators (1148 m2 each) in parallel; Rt values were 11.4 and 9.5 min in the two preevaporators, respectively, and increased from 10.0 to 21.8 min across the triple bodies. Gas chromatography was used to determine sucrose losses as Delta%glucose/%sucrose ratios on a degrees Brix basis. Most sucrose losses to acid hydrolysis occurred in the preevaporators. Increasing the target pH of the FES or clarified juice (CJ) systematically reduced losses of sucrose; however, scaling effects overrode pH effects in later bodies. Seasonal effects on evaporator sucrose losses were dramatic. In the early season when cane quality was lowest, higher amounts of impurities catalyzed further hydrolysis of sucrose. In the late season, resilient scale built-up across the season contributed to higher hydrolysis. An optimum target FES pH of approximately 6.3-6.5 measured at room temperature (equivalent to a CJ pH of approximately 7.1-7.3) is recommended, with a higher target FES pH in the early season or when processing immature cane, to reduce excessive losses. Across the evaporation station, the juice/syrup pH decreased up to the 2nd body with a consistent increase in the 3rd body due to evaporation of volatile acids into the condensate. Equations to assess the economic implications of evaporator sucrose losses are described. A target FES pH of 5.9 caused a season average sucrose loss of 0.55% equivalent to 1.52 lbs sucrose lost/ton of cane and a minimum USD 390,400 loss in profits. In contrast, a target FES pH of 6.5 reduced this sucrose loss to 0.36% and 1.01 lbs sucrose lost/ton of cane and saved the factory a minimum of USD 131,100.  相似文献   

4.
Degradation of an acylated starch-plastic mulch film was evaluated in two soil types, a gray lowland soil (A) and a volcanic andosol (V). Weight loss, tensile strength (TS) loss and loss of percentage elongation (%E) were measured under laboratory conditions (black and white mulch films), and in the field (black films). Changes in the counts of total bacteria, total fungi, gram-negative bacteria, total Fusarium, ATP (adenosine triphosphate) content, % nitrification, pH (H2O), and total C and total N contents were determined at 4,8, 12, and 20 months in the field test soils where the mulch was repeatedly applied, and compared with controls. Film weight loss was greater in soil V than in soil A in both the laboratory and the field, and the losses were greater in the laboratory than in the field in both soils A and V. Significant TS losses and considerable %E losses were observed. Values were similar in the laboratory and in the field. No significant changes in the counts of bacteria, fungi, gram-negative bacteria, and Fusarium were observed. The ATP content of the test soils increased slightly compared with the initial values. The ATP content in the control soils initially fell, and then increased in response to weeding. Nitrification remained almost unchanged in the test soils, but fell in the control soils until the last sampling. However, the mulch film underwent a definite process of degradation in the soils, with great loss of physical properties and lesser weight loss. This degradation had no adverse impact on the soil microflora.  相似文献   

5.
During 4 months from 70 to 79% of the carbon of added glucose, cellulose, and Leuconostoc dextranicus polysaccharide had evolved as CO2 from normal agricultural soils of Chile and California. The presence or additions of allophanic material reduced losses of glucose C by about 25% and of the C of the polysaccharides by 36–65%. From wheat straw, the polysaccharide fraction of wheat straw, and protein, C losses were 60, 78 and 67%, respectively, in the normal soils. Reductions related to allophane were about 41–67%. For a number of microbial cells, C loss reductions due to allophanic materials ranged from 31 to 55%. Carbon losses from catechol and ferulic acid were more related to reactivities of the phenols, the soil pH, and the organic matter content of the soil than to the presence or absence of allophanic material.  相似文献   

6.
喷播基质是矿山边坡植被修复的重要材料,但受降雨冲刷后易产生水肥流失问题。以增强喷播基质水肥保持能力为目的,制备以菌糠、醋酸乙烯酯和丙烯酸为原料的保水材料,通过模拟降雨冲刷方法研究其对喷播基质改良的保水保肥和植物修复影响。结果表明:m(菌糠)/m(丙烯酸)为1/3、中和度为80%、交联剂用量为0.09 g、引发剂用量为0.36 g、醋酸乙烯酯用量为6 mL时保水材料在蒸馏水中吸水倍率为123.94 g/g,在0.9%的氯化钠溶液中吸水倍率为84.36 g/g。该保水材料可显著提升喷播基质的抗冲刷性和植物修复效果,且纤维可增强保水材料的效果。在冲刷-蒸发循环中降低18.57%的径流量,延长初始产流时间;使硝态氮、铵态氮、总磷的流失量分别降低15.89%,56.52%,58.21%;黑麦草出芽率、存活率、干重分别增加76.19%,48.45%,33.33%;黑麦草全氮、全磷、全钾含量分别提高77.48%,33.33%,60.66%;根际喷播基质较对照的含水量提高30.50%。研究结果为解决喷播基质修复矿山边坡时的水肥流失问题提供理论依据。  相似文献   

7.
采取一定技术手段实现秸秆的有效贮存,是保证秸秆沼气工程全年稳定运行的前提。干黄秸秆因其处于可溶性碳源与氮源双重缺乏状态,对贮存过程会有一定影响。该文以干黄玉米秸秆为原料,通过补充可溶性碳源(蔗糖)与蛋白氮源(豆粕)调节秸秆初始C/N比后,分析其对秸秆湿贮存过程及后续甲烷产量的影响。当原料初始C/N比分别为30:1、25:1和20:1时。经60 d湿贮存试验结果表明,与仅添加蔗糖处理组相比,对贮存过程的pH值和干物质损失无显著影响(P>0.05),但有效降低了半纤维素含量,乳酸产量分别提高了19.0%、22.2% 和31.7%;通过分析贮存前后的细菌群落多样性,结果表明,可提高秸秆湿贮存过程中有益菌(乳酸菌)的相对丰度,腐败菌(梭菌属)的相对丰度降至0%;对湿贮存前后原料进行产甲烷潜力测试,结果表明,与贮存前相比,累积甲烷产量分别提高3.9%、6.1%和10.8%。综上所述,通过补充可溶性碳源与蛋白氮源调节干黄秸秆C/N比,可改善干黄秸秆湿贮存过程的品质、稳定性和生物可降解性,并有效提高后续甲烷产量。研究结果可为秸秆沼气工程的贮存环节提供技术支撑。  相似文献   

8.
Summary The relative importance of ammonia volatilization and denitrification as loss processes following the application of urea to flooded rice by the traditional method was assessed at four sites with different characteristics in the Philippines. The effect of reducing ammonia loss on denitrification and total N loss was also studied. The total N loss was determined by a 15N-balance method and ammonia volatilization was assessed by a bulk aerodynamic method following the application of urea to small plots (4.8×5.2 m). As run-off was prevented and leaching losses were negligible, the denitrification loss was assessed as the difference between total N loss and ammonia loss. When urea was broadcast into the floodwater at transplanting, the ammonia loss varied from 10% to 56% of the applied N. Loss was smallest at Aguilar where wind speeds were low and the greatest at Mabitac where floodwater pH values and temperatures were high and the winds were strong. The ammonia loss was reduced at all sites by incorporating the urea into the soil by harrowing. However, the reduction achieved varied markedly between sites, with the largest reduction (from 56% to 7% loss of the applied N) being observed at Mabitac. The total N lost from the basal application into the floodwater ranged from 59% to 71% of the applied N. Incorporating the urea by harrowing reduced the total N loss at two sites, increased the total N loss at the third site, and had no effect at the fourth site. The denitrification losses ranged widely (from 3% to 50% of the applied N) when urea was broadcast into the floodwater at the four sites. The denitrification loss was low when the ammonia loss was high (Mabitac) and high when the ammonia loss was low (Aguilar). Reducing ammonia losses by incorporating the urea into the flooded soil resulted in increased denitrification losses at three of the sites and appeared to have no effect on denitrification at the fourth site. The results show that reducing the ammonia loss by incorporating urea into the soil does not necessarily result in reduced total N loss, and suggest that the efficiency of fertilizer N will be improved only when both N-loss processes are controlled simultaneously.  相似文献   

9.
施用芝麻饼肥对植烟根际土壤酶活性和微生物碳、氮的影响   总被引:38,自引:1,他引:38  
采用盆栽试验研究了施用芝麻饼肥对烟草根际土壤酶活性和微生物C、N的影响。结果表明,施用芝麻饼肥可明显提高根际土壤酶活性和土壤微生物C和N含量,芝麻饼肥和化肥配施(CF)与单施化肥(F)相比,根际土壤脂肪酶、转化酶和脲酶活性分别提高了24.85%~60.00%、23.08%~39.46%和4.17%~56.21%;根际土壤微生物C、N含量分别提高79.88%~97.14%和29.73%~74.96%。表明施用芝麻饼肥土壤生物过程活跃,有利于土壤有机物质的转化和烤烟正常生长所需的营养供应。在烟草不同生育期,根际土壤微生物C和微生物N含量动态变化不同,土壤微生物C含量在现蕾期达到最高值,而土壤微生物N含量高峰出现在团棵期。随着烟草的生长发育土壤微生物N逐渐降低,表明一部分微生物N又被释放出来,以供烟草生长发育需要;到成熟期明显降低,反映出土壤微生物N在协调土壤N素供应方面的重要作用。适量饼肥与化肥配合施用,有利于平衡烟草N素营养,改善烟叶品质。  相似文献   

10.
Investigating the impact of apple-dominated areas on nitrogen (N) and phosphorus (P) losses at a basin scale was essential for the sustainable development of apple industry in China. This study conducted a survey on fertilizer application and built a Soil and Water Assessment Tool (SWAT) model to quantitatively analyze the N and P losses in the Qixia apple-dominated area. Additionally, the decreases in N and P losses through adjusting the fertilizer application modes were evaluated. Results showed that average N and P losses in the Wulong River Basin (WRB) were 44.4 and 0.365 kg ha−1 in 2011–2017, respectively, and apple orchards accounted for 73.3% and 51.4% of the total N and P losses in the basin. Under nine fertilizer scheduling scenarios, three fertilizer schedule scenarios, automatic fertilizer application (S-AUTO), “one shot” mode (S1), and regulated fertilizer application (S-BSD), had the lowest N and P losses in apple orchards. The decreases in N loss ranged from 20.6% to 26.1% at the subbasin scale and 14.8%–30.7% at the basin outlet when applying the S-AUTO, S1, and S-BSD fertilizer application modes in Qixia apple orchards and all apple orchards in the WRB. The reductions in P loss varied from 22.0% to 46.1% at the subbasin scale and 14.6%–25.6% at the basin outlet. In orchard-dominated basin, N and P losses can be effectively reduced by optimizing the orchard fertilizer scheduling strategies.  相似文献   

11.
Several decontamination agents including water, sodium hypochlorite, peroxyacetic acid, neutral electrolyzed oxidizing water, and chlorine dioxide gas were tested for their effectiveness to reduce the natural microflora on grated carrots. Microbial reductions of the total aerobic count obtained after the different treatments varied between 0.11 and 3.29 log colony-forming units (cfu)/g. Whether or not a decontamination step induced significant changes in the sensory attributes of grated carrots is highly dependent on the type and concentration of disinfectant. To maintain the nutritional value, the influence of the decontamination agents on carotenoid content, alpha-tocopherol content, total phenols, and antioxidant capacity was studied. Besides the part of the nutrients that was leached away from the cutting areas by water, the nutrient losses caused by adding sanitizers were rather limited. Compared with the untreated carrots alpha-tocopherol content was, however, significantly reduced when 250 ppm of peroxyacetic acid (-80%) or 200 ppm of sodium hypochlorite (-59%) was used. Additional losses in carotenoid content were caused by contact with chlorine dioxide gas (-9%). On the condition of an optimized decontamination process toward time and concentration, the microbial quality of fresh-cut carrots could be improved without negatively influencing their sensory quality and nutrient content.  相似文献   

12.
为增强氨杀灭土壤病原微生物、防控作物土传病害的效果,采用室内培养和盆栽试验的方法,研究了硝化抑制剂DMPP和(或)碳酸氢铵预处理潮土15 d,对土壤理化性质和土壤细菌、真菌、氨氧化菌、辣椒疫霉菌数量的影响以及对辣椒疫病的防效,并对辣椒疫病的发病率与土壤理化及微生物学性状进行相关性分析,为开发新的防控辣椒疫病的技术提供依据。结果表明,施加DMPP的土壤铵态氮含量显著高于对照,而土壤pH、硝态氮和亚硝态氮含量显著低于对照。碳酸氢铵和DMPP配合施用处理土壤15 d,土壤细菌amo A基因拷贝数和辣椒疫霉菌ITS基因拷贝数分别降低34.9%(P0.05)和93.8%(P0.05);土壤16S r RNA基因拷贝数比未添加DMPP处理高出54.7%(P0.05);DMPP对土壤氨氧化古菌amo A基因拷贝数无显著影响。栽植辣椒28 d后,DMPP和碳酸氢铵配合施用处理的辣椒疫霉菌ITS基因拷贝数最低(2.1×10~5 copies·g~(-1)),其次为DMPP(15.4×10~5 copies·g~(-1));对照辣椒根际疫霉数量最高(37.1×10~5 copies·g~(-1)),分别比碳酸氢铵处理、DMPP处理和DMPP和碳酸氢铵配合施用处理高0.4倍、1.4倍和16.8倍。碳酸氢铵或DMPP处理过的土壤栽植辣椒28 d后,对照辣椒疫病发病率最高(95.00%),仅施用碳酸氢铵处理发病率次之(85.00%),DMPP和碳酸氢铵配合施用处理的发病率最低(32.20%),其防治效果达66.11%。辣椒疫病的发生率与土壤电导率、硝态氮含量、疫霉菌数量正相关,与土壤pH、铵态氮含量、细菌及真菌数量负相关。综上,碳酸氢铵和DMPP配合施用降低潮土氨氧化细菌的数量,从而增加铵态氮而降低硝态氮含量,提高了土壤pH,进而降低土壤疫霉菌数量,因而能有效防控辣椒疫病。  相似文献   

13.
Land application of dairy slurry can result in incidental losses of phosphorus (P) to runoff in addition to increased loss of P from soil as a result of a buildup in soil test P (STP). An agitator test was used to identify the most effective amendments to reduce dissolved reactive phosphorus (DRP) loss from the soil surface after land application of chemically amended dairy cattle slurry. This test involved adding slurry mixed with various amendments (mixed in a beaker using a jar test flocculator at 100 rpm), to intact soil samples at approximate field capacity. Slurry/amended slurry was applied with a spatula, submerged with overlying water and then mixed to simulate overland flow. In order of effectiveness, at optimum application rates, ferric chloride (FeCl2) reduced the DRP in overlying water by 88%, aluminium chloride (AlCl2) by 87%, alum (Al2(SO4)3·nH2O) by 83%, lime by 81%, aluminium water treatment residuals (Al‐WTR; sieved to <2 mm) by 77%, flyash by 72%, flue gas desulphurization by‐product by 72% and Al‐WTR sludge by 71%. Ferric chloride (€4.82/m3 treated slurry) was the most cost‐effective chemical amendment. However, Al compounds are preferred owing to stability of Al–P compared with Fe–P bonds. Alum is less expensive than AlCl2 (€6.67/m3), but the risk of effervescence needs further investigation at field‐scale. Phosphorus sorbing materials (PSM) were not as efficient as chemicals in reducing DRP in overlying water. The amendments all reduced P loss from dairy slurry, but the feasibility of these amendments may be limited because of the cost of treatment.  相似文献   

14.
畜禽养殖粪水酸化贮存及氮素减损增效研究进展   总被引:1,自引:0,他引:1  
畜禽粪水酸化贮存能够有效调控粪水贮存中微生物、环境与氮素间的作用关系,实现粪水氮素的减损增效,是一种具有广泛应用前景的关键技术。该研究系统综述了粪水酸化贮存中氮素的迁移转化机理,比较评价了常见酸化剂和不同酸化贮存工艺的应用效果,分析了酸化贮存技术对粪水氮素减损增效的影响。梳理总结得到,粪水酸化存储中氮素的迁移转化机制主要包括有机氮矿化、铵态氮固持、无机氮转化的抑制及硝化3个关键环节,可以依靠改变微生物作用和化学平衡状态实现氮素的减损;与其他酸化工艺相比,长期酸化工艺具有酸化效果更加稳定、应用范围较为广泛等优势;粪水酸化技术能够大幅降低NH3排放,以及部分N2O的排放,进而提高粪肥还田后土壤肥效,但不合理的酸化贮存技术及施用方式也会降低粪水肥效,甚至引起二次污染;未来应重点从氮素迁移转化路径的定量分析、复合酸化剂的开发、粪肥施用效果及风险的评估应对等方面进行深入研究。  相似文献   

15.
为促进甘蔗酒精生产废液的资源化利用,为农作物提供有效的肥料资源及相关水肥管理模式,对比研究了甘蔗地上施用甘蔗酒精生产废液、化肥及不施肥等处理对水分、铜和氯养分吸收及流失的影响,并对施用甘蔗酒精生产废液的食品安全性和对地表水环境污染的影响进行了评价.结果表明,与化肥处理CK_2相比,甘蔗酒精生产废液的施用提高了土壤的水分利用率,降低了甘蔗中铜的含量及铜的径流流失,提高了甘蔗中氯的含量,但各处理蔗汁或径流水中的铜、氯含量或浓度远低于国家标准值.认为在该试验条件下富含有机质的甘蔗酒精生产废液在蔗地上施用,对蔗糖及地表水环境质量没有不良影响,值得推广应用.  相似文献   

16.
有机物料输入稻田提高土壤微生物碳氮及可溶性有机碳氮   总被引:27,自引:6,他引:27  
土壤微生物量碳、氮和可溶性有机碳、氮是土壤碳、氮库中最活跃的组分,是反应土壤被干扰程度的重要灵敏性指标,通过设置相同有机碳施用量下不同有机物料处理的田间试验,研究了有机物料添加下土壤微生物量碳(soil microbial biomass carbon,MBC)、氮(soil microbial biomass nitrogen,MBN)和可溶性有机碳(dissolved organic carbon,DOC)、氮(dissolved organic nitrogen,DON)的变化特征及相互关系。结果表明化肥和生物碳、玉米秸秆、鲜牛粪或松针配施下土壤微生物量碳、氮和可溶性有机碳、氮显著大于不施肥处理(no fertilization,CK)和单施化肥处理,分别比不施肥处理和单施化肥平均高23.52%和12.66%(MBC)、42.68%和24.02%(MBN)、14.70%和9.99%(DOC)、22.32%和21.79%(DON)。化肥和有机物料配施处理中,化肥+鲜牛粪处理的微生物量碳、氮和可溶性有机碳、氮最高,比CK高26.20%(MBC)、49.54%(MBN)、19.29%(DOC)和32.81%(DON),其次是化肥+生物碳或化肥+玉米秸秆处理,而化肥+松针处理最低。土壤可溶性有机碳质量分数(308.87 mg/kg)小于微生物量碳(474.71 mg/kg),而可溶性有机氮质量分数(53.07 mg/kg)要大于微生物量氮(34.79 mg/kg)。与不施肥处理相比,化肥和有机物料配施显著降低MBC/MBN和DOC/DON,降低率分别为24.57%和7.71%。MBC和DOC、MBN和DON随着土壤有机碳(soil organic carbon,SOC)、全氮(total nitrogen,TN)的增加呈显著线性增加。MBC、MBN、DOC、DON、DOC+MBC和DON+MBN之间呈极显著正相关(P<0.01)。从相关程度看,DOC+MBC和DON+MBN较MBC、DOC、MBN、DON更能反映土壤中活性有机碳和氮库的变化,成为评价土壤肥力及质量的更有效指标。结果可为提高洱海流域农田土壤肥力,增强土壤固氮效果,减少土壤中氮素流失,保护洱海水质安全提供科学依据。  相似文献   

17.
Properties of organic farming composts were examined during the composting process: pH, electrical conductivity, C/N ratio, total N content, NH4+ content, NO3?content, ash content, and organic matter content. In addition to these properties the respiration rate, microbial population counts, hydrolysis of Fluorescein Diacetate (FDA) and the activity of the enzyme amidase were studied. Composts at several stages of maturity were incubated in soil, and their N mineralization rates were measured. The end of the thermophilic stage was characterized by irreversible decrease in pile temperature to under 55°C, followed by stabilization of the chemical properties. This stage in the composting process is also characterized by decrease in CO2 evolution rate, changes in microbial populations and specific patterns in FDA hydrolysis and amidase activity. Based on this evidence, we suggest that biological parameters can be considered as indicators for compost maturity.  相似文献   

18.
Summary Poultry manure (PM) is commonly applied to cropland as a fertilizer, usually at rates determined by the nitrogen content of the manure. Limited information is available, however, on the volatilization of ammonia from poultry manure-amended soils, despite the effect these losses may have on the fertilizer value of the manure. This study was initiated to determine the influence of incorporation and residue cover on NH3 losses from PM-amended soils. In the first experiment, a dynamic flow technique was used to measure NH3 losses from 18 manures applied to a bare soil surface at a rate of 12 Mg ha-1. In the second experiment, 3 of the 18 manures were incorporated either immediately, 24 h or 72 h after application. The third experiment compared the same three manures applied to a bare soil surface or to corn or soybean residues. Surface application of the manures resulted in the loss of from 4 to 31% of the total N applied in the manures. Incorporation of the PM with soil significantly reduced NH3 loss with the greatest decrease following immediate incorporation. Crop residues either had no effect or slightly reduced NH3 volatilization losses relative to PM application to a bare soil surface. Ammonia volatilization was not well correlated with individual manure properties, but a multiple regression approach using manure pH and total N content offered some promise as a means to segregate manures of the basis of volatilization potential.  相似文献   

19.
Abstract

Surface‐applied urea fertilizers are susceptible to hydrolysis and loss of nitrogen (N) through ammonium (NH3) volatilization when conditions favorable for these processes exist. Calcium chloride (CaCl2) and ammonium thiosulfate (ATS) may inhibit urease activity and reduce NH3 volatilization when mixed with urea fertilizers. The objective of this study was to evaluate the effectiveness of CaCl2 and ATS as urea‐N loss inhibitors for contrasting soil types and varying environmental conditions. The proposed inhibitors were evaluated in the laboratory using a closed, dynamic air flow system to directly measure NH3 volatilization. The initial effects of CaCl2 on ammonia volatilization were more accentuated on an acid Lufkin fine sandy loam than a calcareous Ships clay, but during volatilization periods of ≥ 192 h, cumulative N loss was reduced more on the Ships soil than the Lufkin soil. Calcium chloride delayed the commencement of NH3 volatilization following fertilizer application and reduced the maximum N loss rate. Ammonium thiosulfate was more effective on the Lufkin soil than the Ships soil. For the Lufkin soil, ATS reduced cumulative urea‐N loss by 11% after a volatilization period of 192 h. A 20% (v/v) addition of ATS to urea ammonium nitrate (UAN) was most effective on the coarse textured Lufkin soil whereas a 5% addition was more effective on the fine textured, Ships soil. Rapid soil drying following fertilizer application substantially reduced NH3 volatilization from both soils and also increased the effectiveness of CaCl2 but not ATS. Calcium chloride and ATS may function as limited NH3 volatilization inhibitors, but their effectiveness is dependent on soil properties and environmental conditions.  相似文献   

20.
The effect of initial straw N content (0.41, 0.57 and 0.92% N) and straw placement (either above the soil surface, on the soil surface, or buried at 5, 10 or 15 cm depth) on barley straw decomposition (weight loss and N content) under field conditions was examined in a coarse sand soil and in a sandy loam soil. The straw, which was enclosed in mesh bags, was exposed on the 20 September and sampled 8 times during the succeeding 14 months.Soil moisture contents were similar at 5,10 and 15 cm; this was also true for moisture contents of straw samples recovered from these depths, whereas straw exposed above or on the soil surface was much drier on the April–July sampling dates. The differences in soil temperatures observed between soil depths did not affect weight losses significantly.During the first month after burial, straw showed an average weight loss of 35%. Subsequent weight loss patterns were similar for straw buried at 5, 10 and 15 cm in the sandy loam. 50% of the straw weight was lost by late spring, and after 1 yr the loss was 80–90%. Weight loss rates were 0.07% day−1 during November–May and 0.22% day−1 during May–December. Straw exposed above the soil surface lost 13% of its weight during the first month and subsequently 0.09% day−1. Straw exposed on the soil surface showed a somewhat irregular weight loss pattern.Straw with 0.92% N showed a higher first-month weight loss (44%) than straw with 0.41 and 0.57% N (32%), but subsequent weight loss patterns were essentially similar. Seasonal differences in weight loss rates were smaller in the coarse sand than in the sandy loam. Average weight loss rate for straw in the coarse sand was 0.16% day−1 during the January–November period.N was initially leached from straw buried in the coarse sand and from straw placed above or on the soil surface. Leaching losses of N increased with initial straw N content and ranged from 7 to 40%. Subsequent changes in the N content of straw could not be directly related to initial straw N content. Straw buried in the sandy loam immobilized N from burial until spring; changes in N contents followed a similar pattern. At maximum straw N immobilization, N contents had increased by 35 to 47%. Straw then released N at a relatively constant rate and, after 14 months, N losses corresponded to 47–60% of the initial straw N content. In the sandy loam, maximum N immobilization was calculated to be 9–11 kg Nha−1 for a straw application of 5t ha−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号