首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为探讨唑虫酰胺茶园使用安全性,在福安福云6号绿茶品种茶园开展残留消解动态试验。结果表明,在54~270 g · hm-2施用剂量下,原始附着量和原始残留量随施用剂量的提高线性增加,烘干不能使残留消解;在108、162、216 g · hm -2等推荐使用剂量下,5月份时唑虫酰胺在茶树上的原始残留量高达33.73~67.58 mg · kg -1,降解速度较慢,药后10 d的残留量方低于20 mg · kg -1;在茶园的消解规律符合一级动力学方程,半衰期长达4.02~5.00 d;同一使用剂量在不同季节施药后的残留量有较大差异,9月份的原始残留量显著高于5月份。研究认为唑虫酰胺在茶园使用的食品安全性较低,对于国内市场,建议在茶叶上的残留限量暂定为20 mg · kg -1,安全间隔期15 d。  相似文献   

2.
蒋波  杨仁斌  傅强  邹蓉  许爽  黄尧 《西南农业学报》2012,25(6):2065-2069
为了评价烯啶虫胺在水稻上使用后的残留行为和环境安全性,2010-2011年在湖南、吉林、河北3地进行烯啶虫胺50%可湿性粉剂在水稻环境中的消解动态和最终残留试验,并采用HPLC检测水稻环境中烯啶虫胺的残留量。结果表明:烯啶虫胺50%可湿性粉剂在稻田水、土壤和稻杆中的消解速率非常快,其半衰期分别为:5.77 h、28.52 h、1.60~2.09 d;按推荐剂量在稻田环境中施用烯啶虫胺50%可湿性粉剂3次,距末次施药后14 d以上,收获的稻米中烯啶虫胺的残留量均为未检出(<0.05 mg/kg),此时收获的稻米食用是安全的。  相似文献   

3.
【目的】建立烟草和土壤中氯虫苯甲酰胺残留分析方法,探究氯虫苯甲酰胺在烟草和土壤中的残留动态,为其合理使用及其安全性评价提供科学依据。【方法】采用田间小区试验进行氯虫苯甲酰胺在烟草和土壤中的消解动态和最终残留量研究。田间试验采集的样品用乙腈提取、硅胶柱和氨基固相萃取柱净化,高效液相色谱测定。【结果】干烟叶、烟草植株和土壤中添加氯虫苯甲酰胺0.05~10 mg/kg,其平均回收率为80.8%~95.8%,相对标准偏差(RSD)为2.6%~7.6%,氯虫苯甲酰胺在烟草中的定量限(LOQ)为0.1 mg/kg,在土壤中的定量限(LOQ)为0.05 mg/kg。氯虫苯甲酰胺在烟草植株和土壤中的消解动态符合一级动力学反应模型,在烟草植株中的半衰期为12~13.3 d,在土壤中的半衰期为24.8~27.7 d。云南和山东最终残留试验表明,距最后一次施药14 d,干烟叶中氯虫苯甲酰胺平均残留量在2.1~7.7 mg/kg。【结论】该分析方法操作简便,精密度、准确度和灵敏度都符合农药残留标准要求,适用于烟草和土壤中的氯虫苯甲酰胺残留测定;建议5%氯虫苯甲酰胺悬浮剂防治烟草害虫,按推荐剂量41.25 g a.i./hm~2最多施药2次,安全间隔期为14 d。  相似文献   

4.
采用田间试验方法,对47%烯酰·唑嘧菌悬浮剂在辣椒及其种植土壤中的残留消解动态进行研究,以评价烯酰吗啉和唑嘧菌胺混配型杀菌剂施用于辣椒时的安全性。通过超高效液相色谱串联质谱仪进行定量分析,研究此类杀菌剂在辣椒和种植土壤中的残留与消解情况。目标物消解过程符合一级动力学方程,其中,烯酰吗啉在辣椒和土壤中的半衰期分别为1.8~4.6 d,6.6~12.8 d,最终残留量分别为0.04~0.58 mg·kg~(-1),0.01~0.98 mg·kg~(-1);唑嘧菌胺在辣椒和土壤中的半衰期分别为7.4~23.3 d、3.6~7.0 d,最终残留量分别为0.06~0.27 mg·kg~(-1)和0.01~0.18 mg·kg~(-1)。结果显示,烯酰吗啉和唑嘧菌胺在辣椒及其种植土壤中的残留量均低于国家标准GB/T 2763-2016规定的最大残留限量,正确规范使用时不会在辣椒及其土壤中造成残留超标和环境污染。  相似文献   

5.
采用液相色谱-串联质谱检测方法,分析测定了3%啶虫脒微乳剂和70%啶虫脒水分散粒剂在露地和大棚条件下烟叶和土壤中的残留和消解动态。结果表明,3%啶虫脒微乳剂烟叶中半衰期为3.26(露地)、5.52 d(大棚),土壤中半衰期为4.71(露地)、6.62 d(大棚);70%水分散粒剂半衰期相对较长,烟叶中为4.61(露地)、6.27 d(大棚),土壤中为5.72(露地)、7.70 d(大棚)。2种剂型露地条件下啶虫脒的原始沉积量及残留量均低于大棚条件,但是露地条件下其消解速率高于大棚条件。最终残留试验表明,两种剂型在末次施药后14 d烟叶中啶虫脒的残留量最高为0.54 mg/kg,以推荐剂量和次数施药的处理啶虫脒残留量更低。建议以农药登记的推荐剂量和次数施药,安全间隔期为14 d。  相似文献   

6.
【目的】了解覆膜栽培方式下,毒死蜱、丙溴磷和三唑磷在金桔果实和土壤中的消解动态及残留规律,为金桔果品安全生产提供参考依据。【方法】采用气相色谱分析技术,对田间试验采收的样品进行农药残留检测。【结果】在金桔和土壤中添加毒死蜱、丙溴磷和三唑磷0. 05~1. 00 mg·kg-1,其平均回收率为84. 6%~105. 8%,相对标准偏差(RSD)为1. 2%~4. 9%。3种农药在金桔和土壤中的定量限(LOQ)均为0. 020 mg·kg-1。毒死蜱、丙溴磷和三唑磷在金桔及土壤中的残留消解动态均符合一级动力学方程。毒死蜱在金桔和土壤中的半衰期分别为5. 1和5. 2 d;丙溴磷在金桔和土壤中的半衰期分别为27. 1和27. 0 d,三唑磷在金桔和土壤中的半衰期分别为27. 7和14. 5 d。按照推荐剂量和2倍推荐剂量对金桔和土壤施用毒死蜱、丙溴磷和三唑磷,距第2次施药7 d后,金桔中的毒死蜱残留量已经低于我国国家标准规定的最大残留量,80 d后金桔和土壤中均未检测出毒死蜱残留;距第2次施药80 d后,金桔中三唑磷残留量低于最大残留量,100 d后未检出;而100 d后仍能检测出丙溴磷在金桔和土壤中的残留,但残留值已经降低至最大残留量以下。【结论】毒死蜱、丙溴磷和三唑磷在金桔中属于易降解农药,安全采收间隔期建议为100 d。  相似文献   

7.
【目的】建立土壤和水中烯啶虫胺残留量的气相色谱检测方法。【方法】分别用2种方法对土壤和水中烯啶虫胺进行提取,从中选择操作性强的方法,并对实际土壤和水样品中烯啶虫胺残留的气相色谱测定条件进行优化。【结果】水体中乙腈和二氯甲烷提取的添加回收率分别为76.5%~87.6%,80.6%~92.7%,相差不大,但后者操作繁琐、耗时耗力,因此选择乙腈作提取剂;用丙酮-水(体积比2∶1)提取土壤样品,回收率远高于乙腈,其在土壤样品中的平均回收率为78.9%~81.0%,相对标准偏差为1.34%~2.65%。烯啶虫胺在水解过程中产生了新的物质,而在土壤降解中未出现影响农药定量的新物质,所以水样品中残留测定以优化后的色谱条件进行。本研究中气相色谱条件对烯啶虫胺的最小检出量为1×10-10 g,定量限为0.05mg/kg。【结论】建立的检测方法灵敏度高,准确度高,线性好,符合农药残留分析要求,可用于土壤和水中烯啶虫胺残留量的测定。  相似文献   

8.
异丙草胺在大豆和土壤中的残留动态研究   总被引:2,自引:0,他引:2  
通过田间小区试验和气相色谱分析技术,研究了酰胺类除草剂异丙草胺在大豆和土壤中的残留降解动态和最终残留量。结果表明,异丙草胺在大豆植株和土壤中降解符合一级化学反应动力学方程C=C0e-kt。异丙草胺在大豆植株中的降解半衰期为1.37~2.33d,土壤中的降解半衰期为19.00~21.20d。该药属于易降解农药(T1/2<30d)。在大豆生长期喷施一次,按推荐剂量2100mL·hm-2和二倍剂量4200mL·hm-2施用72%异丙草胺乳油。在收获期植株和籽粒中均未检出,在土壤中降解大于90%,表明异丙草胺在植株体内的降解速度较在土壤中的降解速度快。在大豆田使用72%异丙草胺乳油除草剂时,建议按推荐剂量2100mL·hm-2施药一次,大豆上最大残留限量值MRL暂定为0.1mg·kg-1。  相似文献   

9.
气相色谱电子捕获法测定氟啶胺在辣椒和土壤中动态残留   总被引:5,自引:0,他引:5  
 【目的】建立辣椒和土壤中氟啶胺残留的分析方法,探明氟啶胺在辣椒田中使用后的残留行为,为安全施药提供依据。【方法】采用田间试验法研究氟啶胺在辣椒和土壤中的残留消解动态。【结果】氟啶胺在辣椒中半衰期为2.5~3.7 d,土壤中为1.2~4.2 d。使用氟啶胺50%悬浮剂,制剂用量为495 g•ha-1。(有效成分247.5 g•ha-1),施药4次, 距末次施药后7 d收获的辣椒中氟啶胺残留量小于0.06 mg•kg-1,低于韩国规定的最大残留限量值(0.3 mg•kg-1)。【结论】该分析方法操作简单,精密度、准确度和灵敏度都符合农药残留标准要求,适用于辣椒和土壤中的氟啶胺残留测定;建议氟啶胺50%悬浮剂在辣椒上防治病害,最多使用4次,用量为247.5~495 g•ha-1(有效成分123.75~247.5 g•ha-1),安全间隔期为7 d。  相似文献   

10.
采用气象色谱法测定了烯啶虫胺在水稻田土壤、田水及水稻体内的残留消解动态。结果表明,施药后30d烯啶虫胺在土壤、水和水稻植株中消解率均大于80%。从消解速率测定结果看,在本实验条件下,烯啶虫胺在上述环境介质中较易降解。  相似文献   

11.
研究和建立了氟啶虫胺腈在土壤、棉籽和棉叶中的高效液相色谱检测方法,并在天津和杭州两地开展了氟啶虫胺腈在棉花中的田间残留试验研究。样品采用乙腈提取,正己烷萃取,氟罗里硅土柱层析净化,正己烷/丙酮(体积比6∶4)混合液洗脱,减压浓缩至干,甲醇定容,高效液相色谱配可变波长紫外检测器进行检测。当分别在空白土壤、棉籽和棉叶样品中添加浓度为0.05~2.5mg·kg-1的氟啶虫胺腈标准品时,其平均添加回收率在76.81%~94.43%之间,相对标准偏差(RSD)在0.54%~7.20%之间;氟啶虫胺腈的最小检出量为1 ng,在所有样品中的最低检出浓度均为0.05mg·kg-1。田间残留试验结果表明,氟啶虫胺腈在土壤和棉叶中的消解规律符合一级动力学模型Ct=C0e-kt,消解半衰期分别为1.36~5.10 d和6.13~9.37d。最终残留试验结果表明,在棉花田手动喷雾施用50%氟啶虫胺腈水分散粒剂,按推荐剂量和1.5倍推荐剂量施药,兑水喷雾处理2~3次,每次施药间隔7 d,在距最后1次施药7、14 d和21d时,氟啶虫胺腈在棉籽和土壤中的残留量均小于方法最低检出浓度0.05mg·kg-1。  相似文献   

12.
[目的]评价虫酰肼在水稻及稻田中的残留动态和生态安全性.[方法]采用田间试验方法,研究了虫酰肼在稻田水、土壤和水稻植株中的消解动态,测定了虫酰肼在水稻和土壤中的最终残留量.样品用乙腈提取,提取液用二氯甲烷萃取,经弗罗里硅土-活性炭柱净化,采用HPLC-UVD测定.[结果]在稻米、稻田水、土壤、水稻植株和稻壳的空白样品中分别添加3个质量水平虫酰肼的平均回收率为86.79% ~ 110.47%,平行测定的变异系数为1.39% ~ 6.08%;虫酰肼在稻田水、土壤和水稻植株中的消解半衰期分别为3.73 ~ 9.05、7.76 ~ 13.32、3.14~7.31d;用20%虫酰肼悬浮剂210 g/hm2(推荐使用剂量)和315 g/hm2(高剂量)间隔7d分别施用2次和3次,稻米中虫酰肼的最高残留量为0.103 mg/kg,低于我国规定的虫酰肼在糙米中的最大残留限量(MRL)2 mg/kg.[结论]在水稻移栽田施用20%虫酰肼悬浮剂210 g/hm2,间隔7d,最多施药2次,距末次施药21 d以上,收获的糙米食用是安全的.  相似文献   

13.
为茶叶上安全使用西玛津及制定其最大残留限量(MRL)国家标准提供科学依据,通过田间试验和室内检测,研究西玛津在茶园土壤中的残留消解动态及在茶叶和土壤中的残留特性与安全风险。结果表明:西玛津在土壤中的半衰期为8.7~9.7d,药后30d消解89%以上。地面喷雾50%西玛津可湿性粉剂1 875g a.i./hm~2和2 812.5g a.i./hm~2,施药7d后收获的茶叶中西玛津残留量均低于0.05 mg/kg(MRL)。西玛津在茶叶上的安全间隔期为7d。  相似文献   

14.
采用田间试验的方法,研究了酰胺唑在柑橘及土壤中的残留动态;应用GLC法测定了酰胺唑及其代谢物在柑橘和土壤中的残留量。试验结果表明,酰胺唑及其代谢物在柑橘和土壤中消解较快,其半衰期分别为4.5~7.2d和3.7~5.0d;施药(霉能灵5%WP)83.3mg·L-1,使用3次,末次施药距收获间隔14d、28d,酰胺唑及其代谢物的残留量在柑橘肉中低于0.0084mg·kg-1,在土壤中为0.057~0.526mg·kg-1;该药属易分解农药(T1/2<30d),按推荐使用剂量使用是安全的。  相似文献   

15.
[目的]研究噻虫啉在土壤和稻谷中的残留情况。[方法]通过田间试验和液相色谱分析技术研究480g/L噻虫林悬浮剂在水稻土壤中的消解动态及在稻谷上的最终残留量。[结果]吉林、湖南和广东2年3地的田间试验结果表明,施药浓度为315g/hm^2时,噻虫啉在水稻土壤中半衰期为0.1~0.5d。在有效成分为315、210g/hm^2的剂量条件下,施药2~3次,测得稻壳最终残留量低于7.830mg/kg,糙米最终残留量低于0.1mg/kg。[结论]综合多方面因素,按照推荐剂量210g/hm^2处理,建议我国噻虫啉在水稻上的MRL值暂定为0.1mg/kg,安全间隔期为7d,施药次数不超过2次。  相似文献   

16.
【目的】了解烯酰吗啉在马铃薯和土壤中的消解动态,为其防治马铃薯晚疫病时的安全合理用药提供依据。【方法】首先建立一种用气相色谱仪测定烯酰吗啉残留量的检测方法,然后于2012和2013年在山东、吉林进行田间试验,对烯酰吗啉在马铃薯植株、块茎、土壤中的消解动态和最终残留量进行检测,并对施药后可能产生的膳食安全风险进行评估。【结果】2012年和2013年烯酰吗啉在马铃薯植株中的半衰期分别为0.7d(吉林)、0.6d(山东)和2.5d(吉林)、1.2d(山东),在马铃薯土壤中的半衰期分别为0.7d(吉林)、0.5d(山东)和4.3d(吉林)、9.6d(山东)。烯酰吗啉施用剂量、施药次数不同,则其在马铃薯植株、块茎及土壤中的最终残留量也不同,烯酰吗啉最终残留量在马铃薯植株中均低于1.240mg/kg,在土壤中均低于3.405mg/kg,在马铃薯块茎中均低于或等于检测方法的最低定量限0.02mg/kg,也低于我国制定的烯酰吗啉在马铃薯中的最大残留限量0.05mg/kg。采收后马铃薯块茎中烯酰吗啉的估计暴露量为1.64×10-5 mg/kg,风险商值为8.18×10-5(远小于1),膳食风险较低。【结论】50%烯酰吗啉可湿性粉剂推荐施药剂量为450g/hm2,施药次数不超过3次,施药间隔期7d,采收安全间隔期14d,此条件下食用收获期的马铃薯可靠安全。  相似文献   

17.
[目的]研究噻虫嗪在甘蔗和土壤中的残留及消解动态,并评价噻虫嗪残留对消费者的健康风险和土壤中非靶标生物蚯蚓的环境风险,为噻虫嗪在甘蔗上的安全使用提供科学依据.[方法]分别于2015和2016年在海南和广西开展10%噻虫嗪颗粒剂在甘蔗和土壤中的残留消解试验和最终残留试验,并根据蔗茎和土壤中噻虫嗪及其代谢物噻虫胺的残留量,评估其对人类急慢性膳食暴露风险和对非靶标生物蚯蚓的环境风险.[结果]噻虫嗪在甘蔗植株中的半衰期为8.4~18.2 d,在土壤中的半衰期为17.3~22.4 d;甘蔗蔗梢和蔗茎中噻虫嗪及其代谢物噻虫胺的最终残留量均低于定量限(LOQ)(0.05 mg/kg),但施用高剂量562.5 g a.i/ha后,收获期土壤中噻虫嗪残留量高于LOQ,达0.146~0.153 mg/kg;噻虫嗪和噻虫胺对我国一般人群的估计每日摄入量(EDI)仅为每日允许摄入量(ADI)的0.0039%~0.0049%,估计短期摄入量(ESTI)仅为急性参考剂量(ARfD)的0.17%~0.29%;噻虫嗪对蚯蚓的风险商(RQ)<0.01,噻虫胺对蚯蚓的RQ=0.016.[结论]在甘蔗苗期按照375.0~562.5 g a.i/ha沟施10%噻虫嗪颗粒剂1~2次,甘蔗中噻虫嗪和噻虫胺的最终残留量低于我国和国际食品法典委员会(CAC)的最大残留限量(MRL)标准,且该残留对人类健康的急慢性暴露风险在可接受范围之内;但建议该产品在甘蔗上登记使用时注意其代谢物噻虫胺对土壤非靶标生物蚯蚓的环境风险.  相似文献   

18.
为了明确40%氯虫·噻虫嗪水分散粒剂在辣椒和土壤中的消解动态及残留规律,用乙腈匀浆提取辣椒和土壤样品,经N-丙基乙二胺(PSA)、C_(18)分散固相萃取剂净化,超高压液相色谱-串联质谱测定。结果表明,在辣椒植株和土壤中添加氯虫苯甲酰胺和噻虫嗪0.020~2.000 mg/kg,其平均回收率为88.5%~101.1%,相对标准偏差(RSD)为2.1%~8.3%,氯虫苯甲酰胺和噻虫嗪在辣椒中的定量限(LOQ)均为0.005 mg/kg。田间残留试验结果表明,氯虫苯甲酰胺和噻虫嗪在辣椒及土壤中的残留消解动态均符合一级动力学反应模型。氯虫苯甲酰胺在辣椒和土壤中的半衰期分别为5.0 d和4.8 d,噻虫嗪在辣椒和土壤中的半衰期分别为6.6 d和4.5 d。按照推荐剂量和1.5倍推荐剂量对辣椒施用40%氯虫·噻虫嗪水分散粒剂,最后一次施药后3.0 d,氯虫苯甲酰胺和噻虫嗪在辣椒中的残留量分别为0.912 mg/kg和0.627 mg/kg,低于欧盟规定氯虫苯甲酰胺和噻虫嗪在辣椒中的最大残留量。  相似文献   

19.
双氟磺草胺在小麦和土壤中的残留动态及安全性评价   总被引:1,自引:0,他引:1  
为探明双氟磺草胺在小麦上的残留特性和使用安全性,通过田间试验和室内检测,研究了双氟磺草胺在小麦及土壤中的残留动态及最终残留量。结果表明:双氟磺草胺在小麦植株中的半衰期分别为2.0~5.8 d,药后14 d消解82%以上。双氟磺草胺在土壤中的半衰期为5.5~9.6 d,药后21 d消解80%以上。10%双氟磺草胺可湿性粉剂4.5、6.75 g a.i./hm2,施药1次,收获期采收的小麦籽粒中双氟磺草胺残留量均低于0.01 mg/kg(MRL)。10%双氟磺草胺可湿性粉剂按推荐剂量和方法使用,收获期采收的小麦是安全的。  相似文献   

20.
异丙威和啶虫脒是防治稻飞虱和叶蝉等害虫的常用药剂,为明确其在稻田土壤及水稻中的残留动态,建立一种同时测定稻田土壤和水稻中异丙威和啶虫脒残留量的气相色谱法,并采用该方法研究贵州开阳、黄平、桐梓等3地异丙威和啶虫脒的残留动态和其在土壤中消解的影响因子。结果表明,在0.50~20.00 mg/L范围内,异丙威和啶虫脒的峰面积与其质量浓度间呈良好的线性关系,相关系数分别为0.999 8、0.999 4。在添加水平为0.1~1.0 mg/kg范围内,稻田土壤中异丙威和啶虫脒中的平均添加回收率分别为88.35%~92.96%、86.82%~96.05%,相对标准偏差分别为1.26%~1.74%、0.52%~1.62%;水稻中异丙威和啶虫脒的平均添加回收率分别为93.66%~99.45%、91.94%~98.40%,相对标准偏差分别为1.02%~3.62%、0.52%~4.23%。在供试条件下,土壤微生物对异丙威和啶虫脒在土壤中的消解起着重要作用,2种药剂在灭菌土壤中的半衰期为未灭菌土壤的3.01、3.51倍;土壤温度和异丙威与啶虫脒混样浓度对其消解也有影响,土壤中异丙威和啶虫脒的消解速率随着土壤温度增加而加快,随着施药剂量的增加而减慢。田间试验结果表明,异丙威和啶虫脒在贵州开阳、黄平和桐梓等3地稻田土壤和水稻中的消解动态曲线均符合一级动力学方程;2种药剂在水稻植株中消解迅速,半衰期分别为2.08~2.29、2.58~4.24 d;在稻田土壤中的消解速率比植株中的慢,半衰期分别为4.13~5.83、3.64~4.13 d,属于易降解农药(t_(1/2)30 d)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号