首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
以干菠萝皮渣为原料,运用纤维素酶解法提取菠萝皮渣中的可溶性膳食纤维,通过单因素试验和正交试验,确定最优的提取工艺为纤维素酶添加量0.9%,料液比1∶35(g∶m L),酶解液pH值6.0,酶解时间75 min。在此工艺条件下,菠萝皮渣中可溶性膳食纤维的提取率可达10.03%,样品的持水力、持油力和溶胀性分别为8.698 g/g,5.07 g/g,12.02 m L/g,同时对胆固醇也具有一定的吸附能力。  相似文献   

2.
为了将马铃薯提取淀粉的废弃物——马铃薯渣变废为宝,利用联合酶解法提取薯渣中的膳食纤维。分别通过单因素试验和正交试验来确定α-淀粉酶和糖化酶联合酶解法提取膳食纤维的最佳工艺条件。首先,在保证糖化酶酶解工艺条件不变的情况下,以膳食纤维百分含量为评价指标,利用单因素试验和正交试验确定提取马铃薯渣膳食纤维α-淀粉酶的工艺条件;然后,利用确定的条件进行α-淀粉酶酶解,再利用单因素试验和正交试验确定糖化酶酶解的最优工艺条件。确定的酶联法提取膳食纤维的最优工艺条件为先添加300 U/g的α-淀粉酶(酶解时间60 min,酶解温度55℃,p H值6.5);灭活酶后,再利用糖化酶进行酶解,添加250 U/g的糖化酶酶解(酶解时间30 min,酶解温度65℃,p H值4.0)。在最佳组合条件下,试验取平均值得到膳食纤维百分含量为76.92%,同时提取后的膳食纤维其持水性和持油性显著高于马铃薯渣。  相似文献   

3.
以残次裂枣为原料,以可溶性膳食纤维得率为评价指标,确定酶解法提取膳食纤维最佳工艺条件,并对得到的膳食纤维进行品质分析。结果表明,以脱糖枣粉计,纤维素酶添加量0.4%、木聚糖酶添加量0.5%、糖化酶添加量0.6%、酶解时间70 min时可溶性膳食纤维得率最高,达10.69%。通过理化特性和功能特性测定显示,总膳食纤维与可溶性膳食纤维的持水力、持油力、膨胀力、阳离子交换能力、葡萄糖吸附能力和NO_2~-清除能力均显著优于枣粉,总膳食纤维的胆固醇吸附能力也显著优于枣粉,但可溶性膳食纤维的胆固醇吸附能力略低于枣粉。残次裂枣可作为制备高品质膳食纤维的优良原料,酶解法生产的残次裂枣膳食纤维其理化特性和功能特性均得到提高。  相似文献   

4.
用木聚糖酶对经过超微粉碎处理后的DRBDF水解使其改性,增加其中可溶性膳食纤维的含量。以可溶性膳食纤维的得率为指标,通过单因素试验和正交试验对改性条件进行优化,以确定最佳的改性工艺。结果表明,在木聚糖酶添加量30 FXU/g,酶解p H值4.5,酶解温度50℃,酶解时间3 h,粒径范围100~150μm时,可溶性膳食纤维的得率最高,达到7.13%。经过改性后的米糠膳食纤维,其持水力、持油力分别为改性前的1.18倍和2.04倍,溶胀力降低为原来的79%。  相似文献   

5.
以燕麦加工产品的剩余滤渣为原料,研究酶-碱结合法制备燕麦麸膳食纤维的提取工艺。在单因素试验的基础上,通过正交试验,确定提取燕麦麸膳食纤维的最佳工艺条件为:料水比1∶10,α-淀粉酶添加量1.5%,溶液pH 6.5,65℃条件下酶解30 min,酶解液加3%浓度为1 mol/L的NaOH溶液,60℃条件下碱解40 min。制得的燕麦麸膳食纤维的提取率可达56.43%,持水力为3.414 9 g/g,溶胀性为3.13 mL/g。  相似文献   

6.
以凉茶残渣淡竹叶和金钱草为原料,在单因素试验的基础上,通过正交试验优化淡竹叶和金钱草中水不溶性膳食纤维(IDF)的提取工艺条件,并对提取的IDF进行相关指标测定。结果表明,淡竹叶中水不溶性膳食纤维的最佳提取工艺条件为:料液比1∶10(g/m L),碱液浓度5 mg/m L,水解时间2.0 h,浸提温度70℃。在该工艺条件下,淡竹叶IDF的提取率为63.75%±0.94%,持水力为(4.00±0.22)g/g,膨胀力为(7.87±0.33)m L/g,高于标准麸皮的相关功能性指标。金钱草中水不溶性膳食纤维的最佳提取工艺条件为:料液比1∶20(g/m L),碱液浓度5 mg/m L,水解时间1.5 h,浸提温度50℃。在该工艺条件下,金钱草膳食纤维的提取率为60.16%±0.39%,持水力(3.67±0.17)g/g,膨胀力为(8.67±0.37)m L/g。虽然金钱草水不溶性膳食纤维的持水力略低于标准麸皮,但溶胀性高于标准麸皮。总体而言,碱法提取水不溶性膳食纤维的工艺稳定性高,可节约能源,适于工业应用,为进一步开发高附加值产品奠定了一定的基础。  相似文献   

7.
铜藻经复合酶解、化学处理、脱色、过滤等工艺流程,提取水溶性和水不溶性膳食纤维,研究蛋白酶种类、蛋白酶用量、复合酶比、料液比等因素对产率的影响,确立最佳工艺条件,并分析了提取的水不溶性膳食纤维的理化特性。结果表明,铜藻膳食纤维最佳提取条件为:蛋白酶加酶量2%,中性蛋白酶与纤维素酶比例30∶1,料液比1∶20(g/mL),提取温度50 ℃,酶解时间2 h;最佳脱色条件为:料液比1∶20(g/mL),过氧化氢浓度6%,脱色温度80 ℃,脱色时间1 h。水不溶性膳食纤维产率为32.14%,呈浅绿色;水溶性膳食纤维产率为2.26%,呈淡黄色。按照上述条件制备的水不溶性膳食纤维的膨胀力为(14.99±0.23) mL/g,持水力为1 255.50%±0.15%,吸附不饱和脂肪量为170.84%±0.18%,吸附饱和脂肪量为238.87%±0.37%。研究表明,铜藻的水不溶性膳食纤维具有较好的水合能力、吸附油脂等功能特性,可以作为原料开发多元化产品。  相似文献   

8.
以香蕉皮为原料,采用超声波辅助酸水解法提取可溶性膳食纤维,并通过单因素试验和响应曲面设计分析,建立二次回归模型,考查了超声时间、酸解温度、酸解时间、磷酸体积分数、料液比对可溶性膳食纤维得率的影响。结果表明,最优工艺条件以磷酸为提取液,超声时间10 min,酸解温度80℃,酸解时间90 min,磷酸体积分数8%,料液比1∶15(g∶m L);在此条件下所获样品得率20.75%,持水力4.93,持油力2.83,膨胀力9.76 m L/g。  相似文献   

9.
以烘干和冻干白萝卜粉为原料,采用酶法、酸法和碱法提取不溶性膳食纤维(IDF),测定IDF的持水力、持油力、膨胀力,并用性质最佳的IDF制作韧性饼干,研究其对饼干消化的影响。结果表明,从冻干粉提取的IDF理化性质总体优于烘干粉。其中,以酶法从冻干粉提取的IDF最优,其持水力为17.19 g/g,持油力为2.11 g/g,膨胀力为18.2 m L/g。添加10%的白萝卜膳食纤维不影响饼干的风味和口感,但可降低淀粉的消化速率。  相似文献   

10.
以白萝 卜为原料,通过酸法提取不溶性膳食纤维,并对其抗氧化性和理化性质进行研究.结果表明:以0.1%柠檬酸为提取溶剂,液料比30∶1(mL/g),50℃水浴30 min,不溶性膳食纤维的DPPH·清除率最高,为65.33%.此提取条件下,不溶性膳食纤维得率为39.72%,且理化性质优良:持水力6.48 g/g,膨胀力4.4 mL/g,持油力2.12 g/g.  相似文献   

11.
采用胶体磨对香蕉皮中的膳食纤维进行处理,研究料液比、 pH值、温度、胶体磨齿间隙对膳食纤维水合性质的影响。通过单因素试验和正交试验,确定胶体磨最佳处理条件是料液比1∶2, pH值10,温度40℃,齿间隙10μm;测得的膳食纤维水合性质为水溶性12%,持水力9.78 g/g,膨胀力17.73 mL/g。  相似文献   

12.
以葡萄酒厂中的废料——葡萄皮渣为主要原料,采用多酶法活化其中的膳食纤维,达到增加葡萄皮渣中可溶性膳食纤维含量的目的。经过单因素试验和正交试验,发现酶活化葡萄皮渣可溶性膳食纤维的最佳反应条件为蛋白酶添加量0.3%,糖化酶和纤维素酶(混合酶)的最佳配比1∶4,混合酶添加量1.2%,混合酶酶解温度60℃,混合酶酶解时间120 min。  相似文献   

13.
以荔枝渣为原料,采用酶-化学提取技术从荔枝渣中提取、纯化膳食纤维。在单因素试验基础上,通过正交试验优化酶-化学法的工艺条件,再把提取、纯化所得的荔枝渣膳食纤维进行物化性质的测定。结果表明,提取、纯化荔枝渣膳食纤维的最佳工艺条件是当α-淀粉酶质量分数为0.4%,酶处理温度为65℃,酶处理时间为75 min,碱液质量分数为0.25%,碱液处理温度为60℃,碱液处理时间为30 min时,提取率最高为36.35%;物化性质测定结果显示膨胀率为1.64 mL/g,持水率为4.86,且膨胀率和持水性都较荔枝壳膳食纤维好。  相似文献   

14.
植物乳杆菌发酵法制取香菇柄膳食纤维的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
以香菇柄为原料,植物乳杆菌为发酵菌种,以接种量、发酵时间、发酵温度、料液比和初始p H对水溶性膳食纤维(SDF)产率的影响为考察指标,通过单因素和正交试验优化植物乳杆菌发酵法制取香菇柄膳食纤维的工艺,分析发酵前后香菇柄中膳食纤维的主要成分和理化性质差异。结果表明,发酵法制取香菇柄膳食纤维的最佳工艺条件为:植物乳杆菌接种量1.5%,发酵时间48 h,发酵温度37℃,初始p H 6.5,料液比1∶12(g/m L)。在此条件下得到香菇柄SDF产率为(3.64±0.08)%,所制取的香菇柄膳食纤维的膨胀力、持水力、持油力和阳离子交换力分别为(15.55±0.07)m L·g~(-1)、(14.16±0.12)g·g~(-1)、(6.22±0.19)g·g~(-1)和(0.16±0.01)mmol·g~(-1),与原料相比,膳食纤维的纯度和理化性质均得到一定提高。利用乳酸菌发酵法提取香菇柄中的膳食纤维,能有效提高膳食纤维的品质指标,具有较好的市场开发前景。  相似文献   

15.
以高温蒸煮改性蕨菜膳食纤维为原料,探讨60,80,100,120,140目筛下对高温蒸煮改性蕨菜膳食纤维持水力、持油力、膨胀力和结合水力的影响,得出120目筛下改性蕨菜膳食纤维性质最佳。将蕨菜膳食纤维添加到酥性饼干中,探讨膳食纤维不同添加量对酥性饼干面团质构、饼干质构和感官品质的影响。结果表明,改性蕨菜膳食纤维的最适添加量为9%,可维持饼干适宜的硬度和酥脆性,有较好的咀嚼口感和黏着性,感官品质最佳。  相似文献   

16.
以菠萝皮渣为原料,采用酸碱处理法从菠萝皮渣中提取菠萝皮渣纤维,主要对木聚糖酶酶解菠萝皮渣纤维制备低聚木糖的工艺进行研究。采用单因素试验法分析影响酶解效果的主要因素,利用正交试验优化酶解法的最佳工艺条件。结果表明,制备的菠萝皮渣纤维主要成分为粗纤维,约占90.09%,其中纤维素56.71%,半纤维素32.20%,酸不溶性木质素0.48%;木聚糖酶酶解菠萝皮渣粗纤维最优条件为反应温度50℃,pH值6,底物质量浓度60 mg/mL,酶用量1 650 U,反应时间3 h,提取率为12.27%,低聚木糖平均聚合度DP为2.38。  相似文献   

17.
以甘蔗渣提取的天然纤维素为原料,酶法制备微晶纤维素,考察了pH、加酶量、水解温度对微晶纤维素得率的影响。通过单因素和响应面试验确定优化工艺条件,并对制备的甘蔗渣微晶纤维素的理化性质进行分析。结果表明,酶法制备甘蔗渣微晶纤维的最佳工艺条件为:pH 4.5,加酶量0.4%,水解温度45℃,在该工艺条件下制得的微晶纤维素的得率为94.9%,其持水力和膨胀力分别为(7.48±0.28)g·g-1、(5.61±0.17)m L·g-1。与市场上标准的微晶纤维素相比,该产品粒度更小;但与化学方法制备的甘蔗渣微晶纤维素相比,两者粒度基本相近。  相似文献   

18.
主要研究了菠萝皮渣水不溶性膳食纤维对油脂、胆固醇、胆酸钠及NO2-的吸附作用。结果表明,菠萝皮渣水不溶性膳食纤维的膨胀力为3.25 mL/g,持水力为4.73 g/g;对花生油的吸附量为1.49 g/g,对猪油的吸附量为1.94 g/g;在中性环境下吸附胆固醇的能力比在酸性环境中的吸附能力大,pH值7时最大吸附量达33.35 mg/g,吸附平衡时间约90 min;对胆酸钠的吸附平衡时间约3 h,最大吸附量达到98.86 mg/g;对NO2-的吸附能力随着环境pH值的增大而降低,当pH值2时可在90 min内将溶液NO2-浓度从100μmol/L降至5μmol/L以下,最大吸附量可达9.94μmol/g。上述性质表明菠萝皮渣水不溶性膳食纤维是一种优质的膳食纤维资源。  相似文献   

19.
采用挤压膨化法和纤维素酶法对预处理后的小麦麸皮进行改性,以提高可溶性膳食纤维的含量,从而提高产品的功能性。先将预处理后的膳食纤维DF1挤压改性得到DF2,再对DF2进行纤维素酶酶解改性。结果表明,膳食纤维DF1挤压改性的最优条件为:物料含水量45%,进料速度为25 r/min,螺杆转速200 r/min,挤压温度为70-90-110-130-150℃,得到DF2的SDF含量为33.95%。膳食纤维DF2酶解改性的最优条件为:料液比为1:10,酶用量为30 U/g,酶解时间为4 h,得到最终膳食纤维成品SDF含量为72.61%。  相似文献   

20.
采用化学法从光皮木瓜渣中提取水不溶性膳食纤维,对液料比、Na OH浓度、提取温度、提取时间4个因素进行单因素试验,利用正交试验确定最佳提取工艺条件。结果表明:光皮木瓜渣中水不溶性膳食纤维提取的最佳工艺条件为:液料比20∶1(m L/g),Na OH浓度0.75 mol/L,提取时间70 min,提取温度60℃,在此工艺条件下的提取率为25.229%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号