首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
以栽培苦瓜自交系佛沥112 和野生苦瓜自交系THMC170 为亲本,构建4 个世代(P1、P2、F1、F2)遗传群体,采 用主基因+ 多基因混合遗传模型对苦瓜植株卷须发生的初始节位进行遗传分析;以栽培苦瓜自交系佛沥734 和半野生苦瓜自 交系AVBG1602 为亲本,构建4 个世代(P1、P2、F1、F2)遗传群体,对苦瓜植株卷须的分叉性进行遗传分析。结果表明, 苦瓜植株卷须发生的初始节位遗传符合2 对等显性主基因+ 加性- 显性多基因遗传模型(E-6 模型),其中主基因遗传率为 15.81%,多基因遗传率为7.83%。苦瓜植株卷须的分叉对不分叉受1 对显性基因控制,其中卷须分叉表现为显性,卷须不分 叉表现为隐性。研究结果为深入解析苦瓜植株卷须发生及发育的遗传机制奠定了基础。  相似文献   

2.
以长茄高代自交系125 和126 构建的茄子6 个不同世代的遗传群体〔P1、P2、F1、F2、 B1(125×F1)、B2(126×F1)〕 为试材,利用主基因+ 多基因混合数量性状遗传模型对茄子的株高性状进行多世代遗传联合分析。结果表明:供试亲本株高 性状差异显著,分离世代株高性状数值均呈单峰的偏正态分布,属于数量性状遗传。多世代遗传联合分析结果显示茄子株高 性状的最适遗传模型为C-0 模型,不存在主基因遗传效应,表现为多基因控制的加性- 显性- 上位性遗传模式。采用二阶 遗传参数进一步分析株高的多基因遗传效应,结果显示,茄子分离世代F2、B2 的多基因遗传率分别为49.24%、22.77%,茄 子株高以多基因遗传为主。  相似文献   

3.
青花菜花球‘荚叶’性状主基因+多基因遗传分析   总被引:4,自引:2,他引:2  
 以青花菜86101 ×90196组合获得的DH群体和配制的6个联合世代( P1、P2、F1、B1、B2和F2 ) 群体为试材, 采用主基因+多基因混合遗传模型对花球‘荚叶’性状进行了遗传分析。DH群体分析结果表明, 花球荚叶性状的遗传受到2对连锁并具有加性-加性×加性-上位性作用主基因+多基因( E-220模型) 的控制; 经6个世代联合分析结果表明, 花球荚叶性状的遗传受到2对加性-显性-上位性主基因+加性-显性-上位性多基因( E模型) 的控制, DH群体的主基因遗传率为70.80% , B1、B2和F2世代主基因遗传率分别为73.59%、57.70%和87.07%。上述结果表明: 青花菜花球荚叶性状的遗传受到2对主基因+多基因的控制, 主基因遗传率相对较高。  相似文献   

4.
甜瓜果实酸性性状的遗传分析   总被引:1,自引:0,他引:1  
以果实口感无酸味的甜瓜材料60 和酸甜味的材料61 为亲本,构建P1、P2、F1、BC1、BC2 及F2 六世代群体,利用主基因+多基因混合遗传模型的六世代联合分析法,分析甜瓜果实柠檬酸含量、可滴定酸值(TA)和pH 值的遗传效应。结果表明:柠檬酸含量的遗传模型为1 对加性-显性主基因+加性-显
性-上位性多基因模型,F2 群体的主基因遗传率为31.06%,多基因遗传率为30.48%;TA 值的遗传模型为2 对加性-显性-上位性主基因+加性-显性-上位性多基因模型,F2 群体的主基因遗传率为78.06%,多基因遗传率为0;pH 值的遗传模型为1 对加性-显性主基因+加性-显性-上位性多基因模型,F2 群体的主基因
遗传率为84.07%,多基因遗传率为12.90%。  相似文献   

5.
黄瓜嫩果皮颜色的遗传研究   总被引:2,自引:0,他引:2  
 以2 个嫩果皮颜色不同的黄瓜自交系为试验材料,通过目测分类、色彩色差仪测定果皮色L 值和C 值,并利用P1、P2、F1、B1、B2 和F2 等6 个世代联合分析方法,研究了黄瓜嫩果皮颜色的遗传规 律。结果表明:黄瓜嫩果皮颜色性状符合两对加性-显性-上位性主基因 + 加性-显性-上位性多基 因模型(E-0 模型);L 值和C 值F2 代主基因遗传力分别为93.61%和80.86%,遗传力较高;多基因遗传 力和环境效应都较低,在育种时对黄瓜嫩果皮颜色的选择应在早期分离世代进行。  相似文献   

6.
房桂萍  成玉富  徐强 《蔬菜》2023,5(5):11-16
为探究2个茄子组合品种的果形指数遗传规律,选用3种果形指数差异显著的高代自交系茄子(长筒、高圆和短筒果形)为材料,构建了2个杂交组合(组合Ⅰ:长筒×高圆,组合Ⅱ:高圆×短筒),采用六世代联合分析法研究果形指数的遗传规律。结果表明:果形指数遗传属于数量性状,2个组合果形指数遗传模型均适于E-3模型,即2对加性主基因+加性-显性多基因模型,组合Ⅰ表现出一负一正的主基因加性效应,组合Ⅱ表现出2个负向的主基因加性效应,2个组合多基因的加性效应均大于显性效应,说明以加性效应遗传为主。组合Ⅰ中B1、B2世代主基因遗传率大于多基因遗传率,以主基因遗传为主,F2世代多基因遗传率大于主基因遗传率,以多基因遗传为主,B2世代环境效率较高,为48.49%;组合Ⅱ中B1、B2分离世代的主基因遗传率大于多基因遗传率,以主基因遗传为主,F2的多基因遗传率大于主基因遗传率,以多基因遗传为主,B1和B2世代遗传受环境因素影...  相似文献   

7.
以茎/叶性状不同的3个茎瘤芥自交系为亲本配制了2个杂交组合,对其P1、P2、F1、F2 群体茎/叶性状的遗传体系应用主基因+多基因混合遗传模型分离分析方法进行了研究。结果表明:2个杂交组合的茎/叶性状遗传体系均由1对加性-显性主基因+加性-显性-上位性多基因(D-0)构成;F2 世代的主基因遗传率为60.17%~68.74%,多基因遗传率为6.83%~10.23%;主基因以加性效应为主,且均有不同程度的负向显性效应。  相似文献   

8.
西瓜强雌性状的遗传效应分析   总被引:5,自引:0,他引:5  
 以强雌性西瓜品系BG1和普通花性型品系ZY10为材料配制杂交组合, 调查单株30节位内的 雌花比率, 利用主基因+多基因混合遗传模型多世代联合分析法, 对该组合的P1、P1、F1、F2、BC1P1和BC1P2等6个世代群体的雌花率性状进行分析。结果表明: 西瓜强雌性状遗传受两对主基因的加性-显性-上位性模型控制(即B-1模型) , 主基因表现为隐性。第1和第2对主基因的加性效应值分别为33.46和5.17; 而显性效应值分别为- 20.56 和- 11.20。主基因遗传率在BC1P1和F2世代中高达93.75%和94.32% , 在BC1P2世代中较低, 为60.91%。在该组合中不存在多基因的效应。  相似文献   

9.
成熟黄瓜果皮红色性状的遗传分析及其基因定位   总被引:2,自引:0,他引:2  
 以黄瓜(Cucumis sativus L.)成熟瓜红色果皮自交系‘NCG127’(P1)和成熟瓜黄色果皮自交系‘9930’(P2)为试验材料构建F2遗传群体,对成熟瓜红色果皮R基因进行遗传分析和基因定位研究。结果表明,黄瓜成熟瓜红色果皮性状由显性单基因控制,红色对黄色为显性。以256株F2分离群体为试材,应用群体分离分析(BSA)法筛选得到与R基因连锁的20个多态性SSR标记,构建了R基因的分子标记连锁图谱,将R基因定位到黄瓜4号染色体上,物理距离为213.4 kb的区段内,两侧翼标记为UW019319和UW019203,与R遗传距离分别为0.8 cM和0.7 cM。生物信息学分析表明,该区段存在30个预测候选基因。  相似文献   

10.
以橘红色花菜薹突变体11A-47 与黄色花菜薹联记特选34 号甜菜心杂交获得的F1,F2
BC1、BC1′ 群体为试材。将6 个世代的种子经4 ℃低温春化处理15 d 后调查子叶颜色,研究菜薹橘红色花
的遗传规律;同时,采用与大白菜橘红心球色基因紧密连锁的分子标记对控制菜薹橘红色花的基因进行分
析,鉴定菜薹橘红色花与大白菜橘红心球色基因or 之间的关系。结果 表明,橘红色花菜薹11A-47 与黄色
花菜薹杂交F2 群体中,橘红色子叶与绿色子叶的分离比例符合1∶3,χ2=1.938 9 < χ2
0.05=3.841;BC1′ 群体
中,橘红色子叶与绿色子叶的分离比例符合1∶1,χ2=1.369 7 < χ20.05=3.841。说明菜薹的橘红色花为质量
性状,由1 对隐性等位基因控制。分子标记结果表明,控制菜薹橘红色花的基因与控制大白菜橘红心球色
的基因可能不同。  相似文献   

11.
以苦瓜自交系K7-359(P_1)和K7-422(P_2)分别作为母本和父本,通过杂交获得F_1,F_1自交获得F_2群体,采用主基因+多基因混合遗传模型分析苦瓜种子长度、宽度和单粒质量的遗传规律。结果表明,苦瓜种子长度和单粒质量的遗传均符合加性-显性-上位性多基因遗传模型(C-0模型),多基因遗传率分别为84.91%和76.55%,说明对苦瓜种子长度和单粒质量的选择宜在高世代进行;苦瓜种子宽度的遗传符合1对加性-显性主基因+加性-显性-上位性多基因模型(D-0模型),主基因和多基因遗传率分别为79.30%和3.86%,主基因遗传效应主要以加性效应为主,说明对种子宽度的改良可以采用组合育种的策略,且适宜在早期世代进行选择。  相似文献   

12.
选择耐盐性不同的6份砧用南瓜(Cucurbita moschata)自交系为材料,采用完全双列杂交法对杂交后代耐盐性的配合力进行分析,研究砧用南瓜耐盐性遗传规律。结合各配合力的分析,在36个配制组合中,选出较为优良的配制组合18C0077×18C0005、18C0077×18C0046、18C0077×18C0049、18C0024×18C0046、18C0024×18C0049、18C0024×18C0026。同时,以耐盐性强的砧用南瓜自交系18C0077(P_1)和耐盐性弱的砧用南瓜自交系18C0005(P_2)配制得到的6个世代(P_1、P_2、F_1、B_1、B_2和F_2)为材料,利用数量性状遗传模型进行砧用南瓜耐盐性的遗传分析。结果表明,砧用南瓜耐盐性的遗传符合"2对加性显性-上位性主基因+加性-显性多基因"模型。砧用南瓜各世代耐盐性主基因遗传率在34.62%~62.08%之间,以主基因遗传为主,且主基因遗传力在B1中最高,适合在早期世代进行选择。  相似文献   

13.
番茄绿果与橙果间果实颜色及主要色素含量的遗传研究   总被引:1,自引:0,他引:1  
对番茄组合绿樱(绿果)×金珠1号(橙果)的6个世代遗传群体(P1、P2、F1、BC1、BC2和F2)进行果色性状、番茄红素含量、叶绿素含量和胡萝卜素含量等的遗传规律分析。结果表明:正反交F1的果色性状无明显差异,而色素含量存在显著差异;说明番茄果色性状受核基因控制,而色素含量遗传除受核基因控制外还可能存在胞质效应。采用多世代联合分析法的分析结果表明,番茄绿果与橙果间的果色性状符合2对加性主基因+加性-显性多基因(MX2-A-AD)遗传模型,其BC1、BC2和F2主基因遗传率分别为73.42%、78.25%和61.41%,多基因遗传率分别为22.87%、15.35%和34.94%,即果色性状遗传的主基因遗传力较强;叶绿素含量符合1对负向显性主基因+加性-显性多基因(MX1-AEND-AD)遗传模型,其BC1、BC2和F2主基因遗传率分别为0、1.73%和0.65%,多基因遗传率分别为45.47%、0和37.82%,即主基因遗传力在BC2群体中最高,多基因遗传力在BC1群体中最高;番茄红素含量与胡萝卜素含量均符合2对加性-显性-上位性主基因+加性-显性多基因(MX2-ADI-AD)遗传模型,其BC1、BC2和F2主基因遗传率分别为75.74%、1.79%、84.26%和61.53%、87.21%、81.05%,多基因遗传率分别为20.32%、74.12%、12.68%和0.68%、0、0,表明番茄红素含量和胡萝卜素含量的主基因遗传力较强。  相似文献   

14.
以WI998(厚皮网纹、纯雌株甜瓜品系)为母本,以3-2-2(薄皮、雌雄异花同株甜瓜品系)
为父本进行杂交,通过单粒传得到了含有124 个F6:7 家系的重组自交系群体,构建遗传连锁图谱。在608
对SSR 引物中筛选出亲本间有多态性的引物150 对,多态率为24.67%;该图谱包含17 个连锁群,覆盖基
因组长度为1 246.67 cM,标记间的平均距离为9.59 cM。应用复合区间作图法对甜瓜单果质量(Fw)、果
实硬度(Ff)、果实长度(Fl)、果形指数(Fsi)及果肉厚度(Ft)等性状进行QTL 分析,共检测到15 个
QTL,分别分布在第1、4、5、6、8、10、13、14、15、17 连锁群上,其中8 个QTL 贡献率超过10%,
位于第13 连锁群的QTL Ff13.2 贡献率最大, 为26.45%。标记ECM87 与Fsi8.2 位于同一位点, 标记
CM33 与Fsi15.1 紧密连锁,遗传距离为0.6 cM。  相似文献   

15.
以圆顶茄子和尖顶茄子为亲本构建6世代群体(P_1、P_2、F_1、BC_1P_1、BC_1P_2、F_2),在春露地和秋大棚两个茬口分别种植6世代群体,利用目测法和Tomato Analyzer软件分析法采集茄子果顶形状数据,应用植物数量性状主基因+多基因混合遗传模型多世代联合分析方法,对茄子果顶形状进行遗传分析。结果表明:目测法和软件法都可以用来描述茄子果顶形状,Tomato Analyzer软件分析法获取的果顶数据计算出的AIC值完整性好、适应性检测中的统计量差异显著个数少,对茄子果顶形状的数据测量更为准确,更加适用于茄子果顶形状的采集。茄子果顶形状表现为数量性状,受2对加性-显性-上位性主基因控制,同时也受环境条件的影响。在分离群体中F_2群体主基因遗传率高、稳定性好,主基因遗传率达到72%以上,育种过程中适合在F_2群体进行果顶形状的选择。  相似文献   

16.
辣椒果皮颜色的遗传分析   总被引:1,自引:0,他引:1  
以商品成熟期果皮紫色(245)、绿色(246)、乳白色(247)的3份辣椒品系为亲本,配制杂交组合245×246和245×247,构建6世代遗传群体,通过目测分级、色差仪分析测定P1、P2、F1、B1、B2、F2各单株的辣椒商品成熟期果皮颜色L值、C值和颜色级值,并应用6个世代联合分析法研究辣椒商品成熟期果皮颜色的遗传规律。结果表明,辣椒商品成熟期果皮颜色遗传为细胞核遗传,紫-绿组合的辣椒商品成熟期果皮颜色性状符合1对加性主基因+加性-显性混合多基因模型,即D-2模型,其L值、C值和颜色级值F2主基因遗传率分别为22.39%、91.39%和82.26%;紫-白组合的辣椒商品成熟期果皮颜色性状符合2对加性-显性-上位性主基因+加性-显性-上位多基因模型,即E-0模型,其L值、C值和颜色级值F2主基因遗传率分别为87.02%、94.34%和97.54%。表明主基因遗传力较强,多基因遗传力和环境效应影响弱,在育种时对辣椒商品成熟期果皮颜色的选择应在早期分离世代进行。  相似文献   

17.
以樱桃番茄黑褐色圆形自交系Z1、红黑色长梨形自交系Z2、红色圆形、浅粉红色扁圆形、
橙黄色长椭圆形和黄色圆形等自交系为试材,进行不完全双列杂交配制组合。通过对杂交组合后代的农艺
性状、品质特性和抗病性等的调查研究,探究黑色樱桃番茄种质品质改良和长梨形果形的利用,为今后特
殊果形果色番茄种质的创新利用提供参考。结果表明:樱桃番茄果色黑色性状为隐性性状;亲本为圆形果
或扁圆形果×长梨形果、长椭圆形果×长梨形果时,F1 果形分别是椭圆形与长指形。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号