首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
基于邻域搜索的穴盘苗移钵路径优化蛙跳算法   总被引:1,自引:0,他引:1  
在农业钵苗培育环节中常出现漏栽或钵苗不健康的情况,补种作业利用钵苗移栽机器人末端执行器从原点出发,从移栽穴盘中选取健康钵苗逐一补种到目的穴盘中,最后回到出发点的过程。本文基于混合蛙跳算法提出了一套解决补种作业过程中自动移钵问题的模型算法,较好解决了末端执行器在补种作业中的路径优化问题。针对自动移钵问题的特殊性,蛙跳算法模型融入了邻域搜索策略、交换因子、交换序和交叉操作等思想,算法简单且稳定性好。本算法有效解决了自动移钵路径的优化问题,移钵路径长度得到了大幅度的优化,提高了移栽效率。  相似文献   

2.
基于贪心算法的温室钵苗稀植移栽路径优化   总被引:5,自引:0,他引:5  
温室育苗中,钵苗需从高密度穴盘向低密度穴盘移栽以获得生长空间。温室钵苗自动移栽机获取穴盘中钵苗健康信息并对健康钵苗进行稀植移栽,代替传统人工作业,且效率高、质量好。钵苗稀植移栽路径包括移栽机末端执行器从原点出发,将高密度盘内的健康钵苗逐一抓取移栽至低密度盘,直到完成回到出发点。钵苗取栽位置的先后秩序决定了稀植路径的长短,遍历搜索算法规划路径计算量巨大,无法满足移栽实时性要求。本文基于贪心算法对常规的4种固定顺序路径规划方案分别优化,共组成8种路径规划方案,分别对稀疏和密集穴盘稀植路径进行规划,比较分析优化算法的有效性。结果表明按列扫描的2种贪心优化方案比固定顺序方案要优,规划路径长度与穴盘缺苗数量成正比趋势。最优化方案GAS3对密集穴盘稀植规划路径,相比固定顺序方案的优化幅度达10.6%,算法平均耗时0.84 s。穴盘缺苗数对路径缩短优化效果有显著影响,缺苗数增加后优化幅度有所降低。贪心优化方案使稀植移栽路径得到优化,也满足作业实时性要求,提高了钵苗移栽效率。  相似文献   

3.
针对由于穴盘孔数增大,蚁群算法收敛速度慢,且难于达到全局最优的问题,综合蚁群算法和贪心算法的优点,提出基于贪心—蚁群钵苗自动移栽路径分段寻优算法(GACS算法)。GACS算法首先将穴盘进行分段,然后利用蚁群算法进行段内最优路径,最后利用贪心算法确定段间最优连接路径,从而实现钵苗自动移栽路径达到全局最优。以运行时间和路径长度为评价指标,将GACS算法与蚁群算法进行对比。结果表明:分段数是算法重要参数,50、72和128规格穴盘,所对应的最佳分段数分别为2、4和6。由于采用分段策略,GACS算法较蚁群算法在性能上有了显著提高,算法时间缩短到蚁群算法的20%以下,最优路径长度比蚁群算法更短,算法收敛速度更快。GACS算法能够有效地解决钵苗自动移栽过程中的路径优化问题,提高移栽效率。  相似文献   

4.
基于贪心遗传算法的穴盘苗补栽路径优化   总被引:5,自引:0,他引:5       下载免费PDF全文
温室育苗需要通过补苗移栽作业用健康钵苗替换穴盘内未发芽或劣质的钵苗,保证钵苗的质量。自动补苗移栽机可利用机器视觉获取穴盘苗健康信息,控制末端执行器抓取钵苗进行补苗作业,移栽效率高。穴盘内需补苗孔穴的位置具有随机性,对补栽路径进行规划,可进一步提高补栽效率。本文综合贪心算法和遗传算法的特性提出一种贪心遗传算法,在分段步长取8,优化代数取100时,可实现稀疏和密集穴盘的补栽路径优化,具有鲁棒性。贪心遗传算法所规划补苗路径长度与全遗传算法接近,均值差在443 mm以内;相比优化前的固定顺序法,贪心遗传算法路径长度可缩短33.8%~41.3%,缩短长度随空穴数量增加而加长;贪心遗传算法与全遗传算法规划补栽路径耗时分别为1.81 s和5.59 s。对比可知,贪心遗传算法更有利于自动移栽机输送单元和移栽单元间的动作衔接,可进一步提高自动移栽机效率。  相似文献   

5.
为了提高穴盘苗补苗自动移栽机的工作效率,需要对补苗自动移栽路径进行规划优化。本文构造了穴苗位置坐标与穴苗序号之间的映射关系公式,并基于欧式距离模型建立了移栽路径长度的目标函数。对于补苗自动移栽路径规划问题,采用遗传算法对目标函数进行求解。通过采取基于空穴孔数量染色体编码机制和最优染色体保存策略,提出了一个求解移栽路径规划优化的算法模型,并通过仿真试验对算法的有效性和效率进行了验证。结果表明,该算法与蚁群算法、标准遗传算法相比较,缩短了运算时间且可以获得最优的路径。  相似文献   

6.
全自动草莓钵苗移栽机构优化设计与试验   总被引:2,自引:0,他引:2  
为了实现草莓钵苗机械化移栽,根据草莓种植农艺要求,提出了一种Hermite插值非圆齿轮行星轮系全自动草莓钵苗移栽机构,用一套回转机构依次完成取苗、输送、挖穴与栽植4个移栽工序,满足了草莓钵苗移栽所需的轨迹与姿态要求,保证了所取秧苗和所挖穴口的精准配合。根据移栽机构的工作原理,建立了运动学理论模型,并结合设定的优化目标,基于Visual Basic 6. 0设计了计算机辅助分析优化设计软件,通过优化得到了一组满足移栽要求的机构参数。根据优化的参数对机构进行了二维设计、三维建模,通过ADAMS软件完成了虚拟样机仿真,应用3D打印技术制作了物理样机。在所搭建的草莓钵苗移栽试验台架上,利用高速摄像技术对物理样机进行了轨迹与姿态验证试验,通过对比分析得到理论轨迹、虚拟仿真轨迹和台架试验轨迹基本一致,验证了机构设计的正确性。并进行了机构的性能试验,结果表明取苗成功率为92%,栽植成功率为85%,平均栽植株距为172. 9 mm,所挖穴口深度、长度和宽度效果良好,满足草莓钵苗移栽要求。  相似文献   

7.
针对移栽作业人工喂苗速度低的问题,设计了一种由圆柱凸轮为横移机构、槽轮-链传动为纵移机构所组成的自动移栽钵苗输送装置。利用解析作图法,并结合移栽农艺要求分别对纵移和横移机构进行理论分析,得出了输送装置的核心关键参数:横移凸轮基圆半径r0=6 5 mm,滚子半径r=1 2 mm,滚子宽度B=9 mm,槽轮槽数n=5。以苗龄期40天的西红柿穴盘苗(穴盘规格为16×8)为试验对象进行了钵苗输送试验,结果表明:横移机构单次供苗的最大误差为0.76mm,横移7次(供苗时苗盘每行需横移1次)累积误差小于0.2mm,供苗准确率超过97.9%;纵移机构单次供苗的最大误差为0.88mm,纵移7次(每盘8行,需纵向移动7次)累积误差不超过0.3mm,供苗准确率在97.5%以上。该机构在供苗过程中可连续作业,满足钵苗供苗的自动输送需求。  相似文献   

8.
钵苗移栽是温室穴盘育苗生产中的重要环节。为实现穴盘钵苗智能化移栽作业,设计了一种高速钵苗移栽机器人。该机器人主要由穴盘定位输送系统和平动二自由度钵苗移栽系统构成,基于准确定位抓取、快速移动栽植的作业要求和系统工作原理,以PLC为核心,结合传感器和伺服控制技术对移栽机器人运动控制系统进行了设计。控制系统首先基于穴盘钵苗位置坐标信息,规划出取苗爪移栽路径;然后根据并联机构运动学逆解模型,对并联机构两主动关节伺服驱动电机的转动规律进行控制,并通过系统间的运动协调,实现钵苗从高密度盘到低密度盘或营养钵的连续高速移栽作业。以育苗期28天、钵体含水率为60%左右的黄瓜苗为对象,在移栽动平台最大加速度为45m/s2、移栽频率为45次/min的条件下,进行128孔穴盘到50孔穴盘的连续钵苗移栽运行试验。试验表明,该钵苗移栽机器人控制系统设计合理,系统间运动协调可靠,移栽成功率平均达91.4%,单爪移栽速率可达2 700株/h,满足了自动化移栽作业要求。  相似文献   

9.
探出式蔬菜钵苗打孔移栽机构优化设计与试验   总被引:1,自引:0,他引:1  
针对回转式蔬菜钵苗扎穴移栽机构破坏钵体完整性、穴口不对称造成栽植直立度差、打孔和栽植过程同时进行影响栽植质量等问题,提出了一种探出式蔬菜钵苗打孔移栽机构。该机构可交替实现打孔和栽植过程,移栽臂栽植时,打孔器在前一株钵苗栽植位置完成打孔,保证了栽植时序且穴口对称,土壤回流均匀,有利于保证栽植直立性。在取苗位置执行探出式夹取苗钵动作,以保护苗钵基质的完整性。基于探出式蔬菜钵苗打孔移栽机构的运动学机理分析开发了优化设计软件,并完成了优化设计。开展了移栽机构的虚拟仿真试验和系列台架试验,分析了在取苗、打孔和栽植等关键位置的位姿。轨迹与位姿验证试验表明,该机构形成的特定轨迹和位姿可依次完成取苗、输送、打孔和栽植等动作。取苗试验表明,该机构可实现探出式取苗,有效保证了蔬菜钵苗基质的完整性。  相似文献   

10.
蔬菜移栽装备研究现状和钵苗移栽装备展望   总被引:3,自引:0,他引:3  
介绍钵苗移栽的意义和研究现状,指出移栽机构优化的难点,提出蔬菜移栽面临的难题。对钵苗移栽装备进行展望:蔬菜钵苗移栽是蔬菜移栽未来的方向;回转式钵苗移栽是蔬菜未来移栽的发展方向;穴灌注水是未来发展方向;膜上移栽是未来的发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号