首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Hybrid rice has contributed substantially to the improvement of grain production worldwide, yet its poor cooking and tasting characteristics have long been recognized. In this study, 132 recombinant inbred lines derived from LYPJ were used to identify quantitative trait loci (QTLs) for 12 cooking traits with the high‐density SNP linkage map recently developed by our team. We identified 17 QTLs on chromosomes 1, 2, 4, 5, 6, 7, 8, 9 and 11, which accounted for 7.50% to 23.50% of the phenotypic variations. A novel major QTL qBGL7 for boiled grain length was further fine‐mapped to an interval of 440 Kb between the two markers RM21906 and gl3 using a BC3F2 population. Two near‐isogenic lines with extreme boiled grain length, GX5‐176 and GX5‐101, could be directly used in improving cooking quality. We also identified a QTL for soaked grain width expansion rate, qSGWE6, in the Wx gene region on chromosome 6. The Wx differential regulation coincided with sequential variation between the two parents. Our work offered a theoretical basis for molecular breeding of high‐quality hybrid rice.  相似文献   

2.
The amount of long chains (LC) of amylopectin in high-amylose rice is thought to be one of the important determinants of its quality when cooked. A wide range of differences in LC content have been reported in rice varieties, which can be clearly divided into four classes based on LC and apparent amylose content: namely, amylose and LC-free, low or medium-amylose and low-LC, high-amylose and medium-LC, high-amylose and high-LC. However, genetic factors controlling LC content have not been fully understood. Here, we performed quantitative trait loci (QTL) analysis of LC content using 157 recombinant inbred lines (RILs) derived from a cross of a low-LC cultivar, Hyogokitanishiki, and a high-LC line, Hokuriku 142. By analyzing randomly selected 15 RILs, it was shown that high LC content (≥11%) was associated with high setback viscosity (≥200 RVU), and that low LC (≤ 3%) was associated with low setback viscosity (≤ 130 RVU), as measured by a Rapid Visco Analyzer. With setback viscosity as an indicator for LC content, QTL analysis was conducted using 60 DNA markers including a CAPS marker that distinguished Wx a and Wx b alleles coding for granule-bound starch synthase I (GBSSI or Wx protein), the enzyme working for amylose biosynthesis. Only one QTL with a peak log of likelihood score at the wx locus was detected, and no line showing setback viscosity corresponding to the medium-LC class appeared. The fact that wx mutants of Hokuriku 142 lacked LC in their rice starch supports the view that the functional Wx allele is indispensable for LC synthesis in addition to amylose synthesis in rice endosperm. We suggest three possible reasons why no line with medium-LC content was observed. First, the locus (loci) responsible for generation of medium-LC may be located very close to the wx locus and not able to be dissected by the population and DNA markers we used. Second, there may be special QTLs for medium-LC cultivars that do not exist in low- or high-LC cultivars. Third, medium-LC cultivars may have an as-yet unidentified Wx allele with lower capability in LC synthesis compared to the Wx allele in high-LC cultivars.  相似文献   

3.
Cooking quality in rice grains is a complex trait which requires improvement. Earlier reports show varying genetic influence on these traits, except for a common agreement on waxy (Wx) and alkali degeneration (Alk) loci on chromosome 6. The present study involved 86 doubled haploid lines derived from an indica × japonica cross involving IR64 and Azucena. Grain parameters viz., raw grain length (RGL), raw grain breadth (RGB), cooked grain length (CGL), cooked grain breadth (CGB), gelatinization temperature (GT), grain shape (RGS), length elongation ratio (LER) and breadth expansion ratio (BER) were subjected to mixed model mapping of quantitative trait loci (QTL). Segregation data of 175 markers covering a distance of 2395.5 cM spanning the entire genome were used. Fifteen main effect QTLs were detected spread over the genome, except on chromosomes 4, 8 and 11. Thirty epistatic interactions significantly influencing the traits were detected. Twelve of the main effect QTLs were involved in epistatic interactions. One main effect QTL associated with LER was detected near Alk locus. QTLs located for grain length on chromosomes 9 and 10 are reported for the first time. Detection of many epistatic loci and involvement of main effect QTLs in interactions demand for judicious selection of QTLs in marker-assisted selection programmes.  相似文献   

4.
A recombinant inbred line (RIL) population consisting of 153 lines derived from a cross between indica ‘Zhongyouzao8’ and japonica ‘Toyonishiki’ rice was used to detect stable quantitative trait loci (QTL) for rapid visco analyser (RVA) characteristics under four environmental conditions. We identified 93 QTL for RVA profiles, and four pleiotropic regions harbouring stably expressed QTL were detected on chromosomes 2, 6, 7 and 11. These newly identified and stable QTL will facilitate further research into the genetic mechanism regulating RVA profiles. Amylose content (AC) was correlated with RVA traits. AC and RVA traits were unaffected by indica–japonica subspecies differentiation, suggesting that RVA profiles were mainly influenced by the Wx gene. The RIL population was divided into two subpopulations according to Wx genotypes. A total of 106 QTL associated with RVA profiles were detected in the subpopulations. These QTL differed from those detected in the whole population in terms of their genomic location, number, logarithm of odds values and amount of phenotypic variance explained. Using this strategy, we detected QTL with minor effects and eliminated false due to the Wx gene.  相似文献   

5.
The indica variety Dular has a high level of resistance to rice stripe virus (RSV). We performed quantitative trait locus (QTL) analysis for RSV resistance using 226 F2 clonal lines at the seedling stage derived from a cross between the susceptible japonica variety Balilla and the resistant indica variety Dular with two evaluation criteria, infection rate (IR) and disease rating index (DRI). The experiments were performed in both 2004 and 2005. Based on IR, three putative QTLs were detected and had consistent locations in the 2 years, one QTL was detected in the RM7324–RM3586 interval on chromosome 3. The other two QTLs were linked and located in the RM287–RM209 and RM209–RM21 intervals on the long arm of chromosome 11, and accounted for 87.8–57.8% of the total phenotypic variation in both years. Based on DRI, three putative QTLs were also detected and had consistent locations in both years. One of them was located in the RM1124–SSR20 interval on the short arm of chromosome 11, while the other two linked QTLs had the same chromosomal locations on chromosome 11 as those detected by IR, and accounted for 55.7–42.9% of total phenotypic variation in both years. In comparison to the mapping results from previous studies, one of the two linked QTLs had a chromosomal location that was similar to Stv-b i , an important RSV resistance gene, while the other appeared to be a newly reported one.  相似文献   

6.
Fat content is a concern for the enhancement of rice for eating, cooking, and storage qualities. To clarify its genetic mechanism, a double haploid (DH) population derived from anther hybrid F1 of Zhenshan 97B (indica) and Wuyujing 2 (japonica) and two backcross F1 (BCF1) populations, which came from the DH lines backcrossing to two parents, were used to scan quantitative trait loci (QTLs) and dissect gene effects for the crude fat content (CFC) in brown rice. Fourteen QTLs were resolved, distributing on chromosomes 1, 3, and 5–9. Three loci were detected repeatedly in two populations, DH or BCF1. Among these loci, a major QTL, qCFC5, flanking markers RM87 and RM334, was located on chromosome 5, which was detected simultaneously among three populations. The main QTLs had a major role in controlling CFC in brown rice and were modified by several mini-effect QTLs and epistatic affection. Wenjun Liu and Jing Zeng are contributed equally to this paper.  相似文献   

7.
The ongoing rise in temperatures caused by global climate change is a critical climatic risk factor for rice production, and enhancing rice heat tolerance is an area of particular research interest. A recombinant inbred line (RIL) mapping population was developed from heat sensitive, rice cultivar IAPAR-9 crossed with heat tolerant, Liaoyan241. RIL and parental lines were exposed to high temperature at the heating and flowering stage in experiments in 2014 and 2015. As indicators of heat tolerance, the seed setting rate under natural (NS) and heat stress (HTS) conditions were measured, and the reduction rate of seed set (RRS) was calculated. Quantitative trait loci (QTL) analysis revealed eleven heat tolerance QTLs located on chromosomes 1, 3, 4, 5, and 6. Single QTL contribution rates were 4.75–13.81% and effect values were ? 5.98 to 5.00. Four major QTLs (qNS1, qNS4, qNS6, and qRRS1) were stable detected in different environments in both years. Thirteen QTLs with epistatic interactions and nine QTLs with environmental interactions were also detected. Major QTLs were all involved in epistatic and environmental interactions. Three QTLs from the SSR marker interval RM471 to RM177 region of chromosome 4 (qNS4, qHTS4, and qRRS4) were all involved in epistatic and environmental interactions and contributed to phenotypic variation, indicating that this region constituted a major QTL hotspot. The major QTL for heat tolerance identified in this study will aid in breeding tolerant cultivars and facilitating investigation of the molecular underpinnings of heat tolerance in rice.  相似文献   

8.
Increasing crop productivity is one of the prime goals of crop breeding research. Rice grain yield is a complex quantitative trait governed by polygenes. Although several QTLs governing grain yield traits have been reported and limited attempts have been made to map QTLs for grain yield parameters in Basmati rice. A population from the cross Sonasal and Pusa Basmati 1121 comprising 352 RILs was generated through the single seed descent method. A total of 12 QTLs governing yield and yield-related traits were mapped on six chromosomes, namely, 1, 2, 3, 7, 8 and 9, of which five QTLs were novel. We identified a novel and robust epistatic QTL (qPH1.1 and qPL1.1) governing plant height and panicle length, flanked by the markers RM5336-RM1 on chromosome 1. The gene encoding brassinosteroid insensitive 1-associated receptor kinase 1 precursor is the putative candidate gene underlying this epistatic QTL. Another novel QTL, qNT3.1, governing tiller number was bracketed to a region of .77 Mb between the markers RM15247 and RM15281 on chromosome 3. Of the 57 annotated gene models, Os03g0437600 encoding alpha/beta-fold hydrolase, a homologous to AtKai2 is a putative candidate gene underlying the novel QTL qNT3.1. The other QTLs such as qDFF1.1 governing days to 50% flowering co-localizes with the gene Ghd7, QTL for plant height qPH1.2 co-localizes with the gene sd1, the QTLs for panicle length co-localizes with FUWA and DEP2, the QTL for tiller number co-localizes with OsRLCK57 and QTLs for thousand-grain weight co-localize with the major gene GS3. The QTLs identified in the current study can be effectively used in marker-assisted selection for developing Basmati rice varieties with a higher yield.  相似文献   

9.
We constructed a high‐resolution physical map for the qSPP7 QTL for spikelets per panicle (SPP) on rice chromosome 7 across a 28.6‐kb region containing four predicted genes. Using a series of BC7F4 near‐isogenic lines (NILs) derived from a cross between the Korean japonica cultivar ‘Hwaseongbyeo’ and Oryza minuta (IRGC Acc. No. 101144), three QTLs for the number of SPP, grains per panicle and primary branches were identified in the cluster (P ≤ 0.01). All three QTLs were additive, and alleles from the O. minuta parent were beneficial in the ‘Hwaseongbyeo’ background. qSPP7 was mapped to a 28.6‐kb region between the two simple sequence repeat (SSR) markers RM4952 and RM21605. The additive effect of the O. minuta allele at qSPP7 was 23 SPP, and 43.6% of the phenotypic variance was explained by the segregation of the SSR marker RM4952. Colocalization of the three QTLs suggested that this locus was associated with panicle structure and had pleiotropic effects. The NIL populations and molecular markers are useful for cloning qspp7.  相似文献   

10.
水稻抗纹枯病QTL表达的遗传背景及环境效应   总被引:6,自引:4,他引:2  
利用水稻纹枯病菌强致病菌系RH-9人工接种Lemont导入到特青背景的213个近等基因导入系(TQ-ILs)群体和特青导入到Lemont背景的195个近等基因导入系(LT-ILs)群体,定位和分析了水稻抗纹枯病数量性状座位(quantitative trait loci, QTL)及其表达的环境与遗传背景效应。亲本Lemont对RH-9表现为高度感病,特青表现为中等抗病。人工接种后TQ-ILs群体的相对病斑高度(病斑高度与株高比)呈连续正态分布,LT-IL群体则明显偏向感病亲本Lemont。在不同年份和遗传背景下检测到影响纹枯病相对病斑高度的主效QTL 10个和互作QTL 13个,其中2006年在TQ-IL群体定位到的6个主效QTL在2007年均得到验证,表明这些QTL具有较好年度间的重复性。QSh4是唯一在双向导入系背景下表达的QTL,该位点特青等位基因降低相对病斑高度,提高抗性水平。在TQ-ILs群体中定位到位于第10染色体RM216~RM311区间的QSb10a与在LT-IL群体中定位到的位于相邻区间RM222~RM216的QSb10b的基因作用方向不同,推断这两个QTL存在紧密连锁关系。绝大多数在TQ-IL群体中表达的主效及互作QTL在LT-ILs群体中不表达,表明水稻抗纹枯病QTL具有明显的遗传背景效应。通过比较作图,本研究定位到的其中8个QTL在以往不同群体中同样被检测到,这些主效QTL对通过分子标记辅助选择(marker-assisted selection, MAS)培育水稻抗纹枯病育种可能具有应用价值。研究指出,标记辅助选择在不同遗传背景中能稳定表达的QTL或通过聚合不同抗病QTL是进一步提高水稻纹枯病抗性水平的一个有效途径。  相似文献   

11.
QTL mapping of sheath blight resistance in a deep-water rice cultivar   总被引:2,自引:0,他引:2  
Sheath blight, caused by the pathogen Rhizoctonia solani Kühn, is one of the most serious diseases of rice and leads to severe yield loss worldwide. A recombinant inbred line (RIL) population consisting of 121 lines was constructed from a cross between HH1B and RSB03, the latter of which is a deep-water rice variety. Five traits were used to evaluate sheath blight resistance, namely disease rating (DR), lesion length (LL), lesion height (LH), relative lesion length [RLL, the ratio of LL to plant height (PH)], and relative LH (RLH, the ratio of LH to PH). Using the RIL population and 123 molecular markers, we identified 28 quantitative trait loci (QTLs) for the five traits in two environments. These QTLs are located on nine chromosomes and most of them are environment specific. A major QTL for DR (qSBR1) on chromosome 1 was identified with contributions of 12.7% at Shanghai and 42.6% at Hainan, and it collocated with a QTL for PH. The allele at this locus from RSB03 enhances sheath blight resistance and increases PH. Another QTL for DR on chromosome 7 was adjacent to QTLs for heading date (HD) and four other disease traits. RSB03 also carries the resistant allele at this locus and shortens HD. The susceptible parent, HH1B, provides the resistance allele at the locus qSBR8, where QTLs for four other disease traits were identified. QTL mapping results showed that most QTLs for LL, LH, RLL, and RLH are collocated with QTLs for DR. Three QTLs for DR are independent from HD, PH, and four other disease traits, while four QTLs are closely related to HD and PH. Four QTLs for LL, LH, RLL, and RLH are independent from DR, HD, and PH, while there is only one region harboring QTLs for these four traits and HD. Correlation analysis and QTL mapping results indicated that LL, LH, RLL, and RLH might be important indices, like DR, for evaluating the level of resistance to rice sheath blight.  相似文献   

12.
Rice is a typical silicon-accumulating plant and the beneficial effect of silicon on rice has long been recognized. In a previous study using 244 recombinant inbred lines (RILs) of an indica rice cross, Zhenshan 97B/Milyang 46 grown in 2003, four QTLs were detected for hull silicon content. QTL qHUS-6 had the largest effect among these, and the same interval also had significant effects on yield traits in the same population. The primary objective of this study was to validate the QTL effect in this region on HUS and yield traits. The same RIL population and another RIL population of lower heterogeneity were grown in 2004. QTL qHUS-6 was found to have significant additive effects on hull silicon content with a consistent direction in the two populations. From a residual heterozygous line selected from RILs of the same cross, 15 F2:3 lines that differed only in a 2.15-Mb segment extending from RM587 to RM6119 on the short arm of chromosome 6 were derived. In these lines, qHUS-6 displayed a major effect, so did QTLs for yield traits previously detected in the same region. Two more QTLs for HUS detected in 2003, qHUS-1-1 and qHUS-1-2, also had consistent effects in the Zhenshan 97B/Milyang 46 RIL population in 2004. Thus this study verified three candidate regions for fine mapping HUS QTLs and determining the genetic relationship between silicon content and yield traits in rice.  相似文献   

13.
Improvement of rice grain yield (YD) is an important goal in rice breeding. YD is determined by its related traits such as spikelet fertility (SF), 1,000-grain weight (TGW), and the number of spikelets per panicle (SPP). We previously mapped quantitative trait loci (QTLs) for SPP and TGW using the recombinant inbred lines (RILs) derived from the crosses between Minghui 63 and Teqing. In this study, four QTLs for SF and four QTLs for YD were detected in the RILs. Comparison of the locations of QTLs for these three yield-related traits identified one QTL cluster in the interval between RM3400 and RM3646 on chromosome 3. The QTL cluster contained three QTLs, SPP3a, SF3 and TGW3a, but no YD QTL was located there. To validate the QTL cluster, a BC4F2 population was obtained, in which SPP3a, SF3 and TGW3a were simultaneously mapped to the same region. SPP3a, SF3 and TGW3a explained 36.3, 29.5 and 59.0 % of phenotype variance with additive effect of 16.4 spikelets, 6 % SF and 1.8 g grain weight, respectively. In the BC4F2 population, though the region has opposite effects on TGW and SPP/SF, a YD QTL YD3 identified in this cluster region can increase 4.6 g grains per plant, which suggests this QTL cluster is a yield-enhancing QTL cluster and can be targeted to improve rice yield by marker aided selection.  相似文献   

14.
Summary Quantitative trait loci (QTL) analysis for Al tolerance was performed in rice using a mapping population of 98 BC1F10 lines (backcross inbred lines: BILs), derived from a cross of Al-tolerant cultivar of rice (Oryza sativa L. cv. Nipponbare) and Al-sensitive cultivar (cv. Kasalath). Three characters related to Al tolerance, including root elongation under non-stress conditions (CRE), root elongation under Al stress (SRE) and the relative root elongation (RRE) under Al stress versus non-stress conditions, were evaluated for the BILs and the parents at seedling stage. A total of seven QTLs for the three traits were identified. Among them, three putative QTLs for CRE (qCRE-6, qCRE-8 and qCRE-9) were mapped on chromosomes 6, 8 and 9, respectively. One QTL for SRE (qSRE-4) was identified on chromosome 4. Three QTLs (qRRE-5, qRRE-9 and qRRE-10) for RRE were detected on chromosomes 5, 9, 10 and accounted for 9.7–11.8% of total phenotypic variation. Interestingly, the QTL qRRE-5 appears to be syntenic with the genomic region carrying a major Al tolerance gene on chromosome 6 of maize. Another QTL, qRRE-9, appears to be similar among different rice populations, while qRRE-10 is unique in the BIL population. The common QTLs for CRE and RRE indicate that candidate genes conferring Al tolerance in the rice chromosome 9 may be associated with root growth rates. The existence of QTLs for Al tolerance was confirmed in substitution lines for corresponding chromosomal segments. These results also provide the possibilities of enhancing Al tolerance in rice through using marker-assisted selection (MAS) and pyramiding QTLs.  相似文献   

15.
Fine mapping of a quantitative trait locus, qFLL6.2, controlling flag leaf length (FLL) and yield traits in rice was conducted using four sets of near isogenic lines (NILs) that were developed from a common residual heterozygote at F7 generation of the indica rice cross Zhenshan 97/Milyang 46. Each of the NIL sets consisted of 40 lines that are S1 progenies of ten maternal homozygotes, ten paternal homozygotes, and 20 heterozygotes differing in a portion of the 1.19-Mb interval RM3414–RM6917 on the short arm of rice chromosome 6. Analysis of phenotypic differences among the three genotypic groups in each NIL set delimited qFLL6.2 to a 62.1-kb region flanked by simple sequence repeat marker RM3414 and sequence-tagged site marker Si2944. This QTL explained 52.73% of the phenotypic variance, and the Zhenshan 97 allele increased FLL by 2.40 cm. Based on data collected from homozygous lines of three of the NIL sets, qFLL6.2 was shown to have major effects on all the three yield traits analyzed, including the number of spikelets per panicle, the number of filled grains per panicle, and grain weight per panicle. A comparison of the different groups revealed that the effect of qFLL6.2 was highly consistent across different genetic backgrounds and environments, providing a good candidate for map-based cloning and investigating the source–sink relationship in rice.  相似文献   

16.
Summary To get an insight in the gene regulation at the waxy locus of rice, the Wx gene product (Wx protein) controlling the synthesis of amylose was examined by electrophoretic techniques. Among nonwaxy rice strains, two different alleles, Wx a and Wx b, were found at the waxy locus. Wx a drastically enhanced the quantitative level of Wx protein as well as the amylose content in endosperm starch as compared with Wx b. The alleles acted additively in triploid endosperms. This implies that regulatory elements responsible for the Wx gene expression are on the same chromosome. The distribution patterns of Wx a and Wx b in five species of Oryza revealed that the regulatory changes are closely related to racial differentiation within a common rice species (O. sativa), suggesting that Wx b might have been selected for through the difference in grain quality during domestication.  相似文献   

17.
J.S. Bao  Y.R. Wu  B. Hu  P. Wu  H.R. Cui  Q.Y. Shu 《Euphytica》2002,125(3):317-324
A doubled haploid (DH)population consisting of 135 lines, derived from an indica (IR64) and a japonica (Azucena) rice with a similar apparent amylose content (AAC), was used to investigate the genetic factors affecting cooking and eating quality of rice. AAC,gelatinization temperature (GT), gel consistency (GC) and six starch pasting viscosity parameters were measured for quantitative trait loci (QTL) analysis using 193 molecular markers mapped on the DH population. A total of 17 QTLs were detected for the 9 traits, with at least one QTL and as many as 3 QTLs for each individual trait. No QTL for the measured parameters was found at the wx locus,possibly because of the similar AAC between the parents. Several QTLs with important effects on the variations in the measured parameters were detected in the present study which have not been found in earlier reports based on populations derived from parents with different AAC and wxgene alleles. Two interesting loci could be deduced from the present study according to the marker order compared with other genetic linkage maps. A QTL flanked by Amy2A and RG433 on the end of the long arm of chromosome 6, identified for GT, set back and consistency viscosity, might cover the gene encoding starch branching enzyme I. Similarly, a QTL flanked by RG139 and RZ58on chromosome 2, detected for hot paste viscosity and breakdown viscosity, might cover the gene encoding starch branching enzyme III. Generally, traits significantly correlated with each other shared identical QTL, but it was not true in some cases. The fine molecular mechanisms underlying these traits await further elucidation for the improvement of eating and cooking quality of rice. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
以优质水稻品种越富为遗传背景,具有旱稻品种IRAT109导入片段的271份导入系为材料,在水、旱田2个土壤水分环境下调查糙米率、精米率、整精米率和垩白粒率4个品质性状,研究旱田栽培对稻米品质性状的影响,进行QTL定位及基因型与环境的互作分析。结果表明,整精米率和垩白粒率易受土壤水分环境的影响,糙米率和精米率相对稳定。适当水分胁迫能提高稻米的整精米率,减少垩白粒率。利用混合线性模型,水、旱田条件下共检测到4个品质性状的10个加性QTL和2对上位性互作QTL,分别位于第3、4、7、8和9染色体。3个加性QTL (qMR9、qHMR7和qHMR9)和一对上位性互作QTL (qHMR3~qHMR9)的贡献率大于10%。7个QTL与前人研究结果相一致。第4染色体RM1112~RM1272和第9染色体RM1189~RM410是QTL集中分布的区域。根据不同性状对干旱胁迫的反应特点,分别选择水、旱田条件下贡献率大、稳定的QTL或者具有旱田特异性的QTL,进行标记辅助聚合育种是培育抗旱、优质稻的一个有效途径。  相似文献   

19.
C. A. McCartney  D. J. Somers    O. Lukow    N. Ames    J. Noll    S. Cloutier    D. G. Humphreys    B. D. McCallum 《Plant Breeding》2006,125(6):565-575
Wheat grain quality is a complex group of traits of tremendous importance to wheat producers, end‐users and breeders. Quantitative trait locus (QTL) analysis studied the genetics of milling, mixograph, farinograph, baking, starch and noodle colour traits in the spring wheat population RL4452/‘AC Domain’. Forty‐seven traits were measured on the population and 99 QTLs were detected over 18 chromosomes for 41 quality traits. Forty‐four of these QTLs mapped to three major QTL clusters on chromosomes 1B, 4D, and 7D. Fourteen QTLs mapped near Glu‐B1, 20 QTLs mapped near a major plant height QTL on chromosome 4D, and 10 QTLs mapped near a major time to maturity QTL on chromosome 7D. Large QTLs were detected for grain and flour protein content, farinograph absorption, mixograph parameters, and dietary fibre on chromosome 2BS. QTLs for yellow alkaline noodle colour parameter L* mapped to chromosomes 5B and 5D, while the largest QTL for the b* parameter mapped to 7AL.  相似文献   

20.
The brown planthopper (BPH) is a potent pest of rice in Asia and Southeast Asia. Host resistance has been found to be the most suitable alternative to manage the insect. But varietal resistance has been found to be short-lived. There has been a constant search for alternate resistance genes. We developed an F8 recombinant inbred population for the BPH resistance gene in Salkathi, an indica landrace from Odisha, India. Phenotyping of RILs against the BPH population at Cuttack, Odisha showed continuous skewed variation with four peaks at 2.1–3.0, 4.1–5.0, 6.1–7.0 and 8.1–9.0 SES score, suggesting the involvement of quantitative loci for resistance to BPH in Salkathi. Mapping showed the presence of two QTLs on the short arm of chromosome 4. One QTL, with phenotype variance of 37.02% is located between the markers RM551 and RM335. The other QTL, with phenotype variance of 7.1% is located between markers RM335 and RM5633. The two QTLs have been designated as qBph4.3 and qBph4.4. QBph4.3 seems to be a novel QTL associated with BPH resistance. We have successfully transferred qBph4.3 and qBph4.4 into two elite rice cultivars, Pusa 44 and Samba Mahsuri. Fine mapping of the identified QTLs may lead to a successful transfer of QTLs into other elite germplasm backgrounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号