首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The parasitic plant, Striga gesnerioides (Willd.) Vatke, is one of the most important constraints of cowpea production and food security in West Africa. Currently, few Striga resistant cowpea varieties have been developed that are well‐adapted to the dry savannah regions of Ghana. While genes conferring resistance to Striga races SG1, SG3 and SG5 have been mapped, the genetic locus of resistance to the race of Striga found in Ghana (SG‐GH) has not been characterized. Here, we report identification of genetic markers linked to SG‐GH resistance and define the relationship of this locus to SG3 resistance in recombinant inbred line populations generated from crosses between Striga resistant IT97K‐499‐35 and the Striga susceptible varieties Apagbaala and SARC‐LO2. The populations were genotyped with five genetic markers associated with SG3 and SG5 Striga resistance genes and a genetic map was developed. Genes conferring resistance to SG‐GH and SG3 mapped 4.2 cM from each other on chromosome Vu11. The identification of genetic markers linked to SG‐GH resistance will facilitate the marker‐assisted development of high‐quality Striga resistant cowpea varieties in Ghana.  相似文献   

2.
Common bean (Phaseolus vulgaris L.) is the most important legume crop in Kenya. It is cultivated across a wide range of agro-ecologies which include high potential and marginal areas. Eastern Kenya alone, largely semi-arid, accounts for 35% of the country’s total bean production. Bean farmers mainly small-scale have limited access to quality seed, chemical pesticides and fertilizer. Therefore, bean yield under on-farm conditions still remains below 500 kg ha−1 while the potential is about 1,200 kg ha−1 under semi-arid conditions. To asses the farmers’ views on bean varieties and a key insect pest and associated constraints contributing to yield loss, research was undertaken. The research included survey to quantify the yield loss and Participatory Rural Appraisal to determine the level of adoption and criteria for variety choice in semi-arid eastern Kenya (SAEK). The results show that farmers consider drought and insect pest problems as main causes for low yields. The adoption rate for improved varieties is high but self sufficiency in beans stands at 23% in the dry transitional (DT) agro-ecology and at 18% in the dry mid-altitude (DM) agro-ecology, respectively. This could be attributed to low adaptability since most of the improved varieties grown were selected for high potential areas but now found in marginal areas. Drought, earliness, yield stability, and insect pest resistance are the main reasons for choice of varieties by farmers. Bean fly (Ophiomyia sp.) was identified as one of the key crop pests of beans limiting yield. Besides, African bollworm (Helicoverpa armigera) and bean aphid (Aphis fabae) were ranked higher. Due to limitations of the conventional breeding approach, a participatory plant breeding approach is suggested so as to provide an opportunity to develop insect pest resistant varieties adapted to the SAEK region.  相似文献   

3.
Tepary bean (Phaseolus acutifolius A. Gray) is a relatively higher drought-tolerant crop than common bean (P. vulgaris), serving as genetic resource for food and genetic enhancement of related legumes. Tepary bean production is hampered by cultivation of low yielding and abiotic stress-susceptible cultivars. Targeted selection of agronomic, physiological and biochemical traits that maximizes yield gains using Phaseolus gene pool is useful to develop stress-tolerant and high-performing genotypes. The objective of this review is to provide breeding progress made regarding tepary bean improvement for drought adaptation. Agronomic, physiological and biochemical traits utilized for selection of drought-tolerant genotypes are highlighted. Genetic and genomic resources developed for tepary bean or closely related species such as common bean useful for genetic analysis and breeding are discussed. Opportunities and challenges to facilitate breeding of tepary bean genotypes with improved abiotic stress adaptation are highlighted. This will enable development of drought-tolerant tepary bean genotypes targeting selection of agronomic, physiological and biochemical traits. Use of genetically related and complementary Phaseolus species and marker-assisted selection method is key to developing drought-tolerant genotypes.  相似文献   

4.
Common bean (Phaseolus vulgaris L.) improvement programs have been successful using conventional breeding methods to accomplish a wide array of important objectives. Specific achievements include the extension of range of adaptation of the crop, the development of cultivars with enhanced levels of disease and pest resistance and breeding lines that possess greater tolerance to drought. The most effective breeding method depends on the expression and inheritance of the trait to be selected and the target environment. Many bean improvement programs use molecular markers to facilitate cultivar development. In fact, several recent germplasm releases have used molecular markers to introgress and or pyramid major genes and QTL for disease resistance. Related species (P. coccineus and P. acultifolius) via interspecific hybridizations remain an important albeit long-term source for resistance to economically important diseases. Slow progress has been made in the improvement of traits such as adaptation to low soil fertility and tolerance to high levels of soluble Al in the soil using conventional breeding methods. The inability to directly measure root traits and the importance of genotype × environment interaction complicate the selection of these traits. In addition, symbiotic relationships with Rhizobium and mycorrhiza need to be taken into consideration when selecting for enhanced biological N fixation and greater or more efficient acquisition of soil P. Genomic examination of complex traits such as these should help bean breeders devise more effective selection strategies. As integration of genomics in plant breeding advances, the challenge will be to develop molecular tools that also benefit breeding programs in developing countries. Transgenic breeding methods for bean improvement are not well defined, nor efficient, as beans are recalcitrant to regeneration from cell cultures. Moreover, if issues related to consumer acceptance of GMOs cannot be resolved, traits such as herbicide tolerance in transgenic bean cultivars which would help farmers reduce production costs and decrease soil erosion will remain unrealized.  相似文献   

5.
Anthracnose is a serious disease affecting dry bean production especially in the cool highland areas worldwide. The objective of this research was to study the inheritance of anthracnose resistance in market-class dry beans. A complete diallel set of crosses was generated from nine diverse parents comprising six resistant and three susceptible to anthracnose. The F1 and F2 crosses and parents were artificially inoculated with Colletotriclum lindenumthianum Race-767 in a growth room. There was significant variation for anthracnose resistance among genotypes. General combining ability (GCA) and specific combining ability effects were significant for resistance, indicating importance of both additive and non-additive effects, respectively. Preponderance of GCA effects (66%) suggested that additive effects were more important than non-additive effects (24%), which were also reflected by high heritability estimates (70%), and suggested that simple selection or backcrossing would be useful for improving the resistance in market class varieties. The study was not conclusive on whether epistatic gene action played a major role, but if available it might have biased the dominance gene effects. Reciprocal effects (10%) were not significant (P > 0.05), suggesting that cytoplasmic genes did not play a major role in modifying anthracnose resistance. Parental lines G2333, AB136, NAT002, and NAT003 showed highly negative GCA effects qualifying them as suitable parents for transferring resistance genes to their progenies. A few major genes, 1–3, displaying partial dominance conditioned anthracnose resistance, suggesting a possibility of using marker-assisted selection to improve anthracnose resistance in market-class dry beans.  相似文献   

6.
Productivity and quality of crops of Brassica rapa L. in north‐western of Spain are highly affected by black rot, caused by the bacterium Xanthomonas campestris pv. campestris (Pammel) Dowson (Xcc). Several races of Xcc have been described in this area, being the race 6 the most frequent in B. rapa crops and races 1 and 4 the most frequent in B. oleracea crops. The control of the disease can be aided by the employment of resistant varieties. The aim of this work was to find sources of resistance to Xcc in a collection of open‐pollinated varieties of B. rapa from north‐western Spain. Resistance was evaluated in 191 landraces. Partial resistance to races 6, 1 and 4 and complete resistance to race 4 were identified in several landraces. Several accessions exhibited partial resistance to the three races. Sources of resistance were identified in landraces of different crops of the species (turnips, turnip greens and turnip tops). These landraces could be grown after selection for resistance or they can be donors of resistance genes in breeding programmes.  相似文献   

7.
Soybean rust, caused by the fungal pathogen Phakopsora pachyrhizi, continues to be a global threat to soybean production, decreasing productivity and increasing the pesticide burden of cropping systems. However, breeders now have access to resistance genes that map to at least seven independent loci which can help protect crops against soybean rust infection. Efficient greenhouse screening protocols have been developed, and low‐cost SNP genotyping technology is available for marker‐assisted selection and backcrossing of resistance to Phakopsora pachyrhizi (Rpp) loci. Soybean breeders can now employ these technologies for the development of high‐yielding soybean cultivars with two, three, or even four pyramided Rpp genes. Such cultivars should provide resistance against the most virulent P. pachyrhizi populations and would be of great help to both large‐scale growers in the Americas and subsistence farmers in developing countries. We hope that a better understanding of the history and unique characteristics of P. pachyrhizi, the discovery of Rpp resistance alleles and the latest molecular breeding techniques will empower breeders across the globe to develop cultivars with durable resistance.  相似文献   

8.
Bean fly (Ophiomyia spp.) is a key pest of common bean (Phaseolus vulgaris L.) throughout eastern and southern Africa. It is known to cause total crop loss especially under drought stress and low soil fertility. This review underscores the importance of bean fly to bean production. It discusses the research achievements on genetic improvement of common bean for resistance against bean fly attack and highlights further opportunities available for rapid advance. The paper dwells on conventional breeding approaches and possibilities for utilization of marker-assisted selection. Mechanisms of common bean resistance to bean fly have been considered with a view to understand the genetic control. To maximize the effectiveness of host-plant resistance against bean fly, multiple insect resistances should be incorporated into a single bean genotype in order to ensure stability. However, this should be within the background of integrated pest management strategy.  相似文献   

9.
Northern, Southern and Equatorial Africa have been identified as among the regions most at risk from very high ozone concentrations. Whereas we know that many crop cultivars from Europe, north America and Asia are sensitive to ozone, almost nothing is known about the sensitivity of staple food crops in Africa to the pollutant. In this study cultivars of the African staple food crops, Triticum aestivum (wheat), Eleusine coracana (finger millet), Pennisetum glaucum (pearl millet) and Phaseolus vulgaris (bean) were exposed to an episodic ozone regime in solardomes in order to assess whether African crops are sensitive to ozone pollution. Extensive visible leaf injury due to ozone was shown for many cultivars, indicating high sensitivity to ozone. Reductions in total yield and 1,000-grain weight were found for T. aestivum and P. vulgaris, whereas there was no effect on yield for E. coracana and P. glaucum. There were differences in sensitivity to ozone for different cultivars of an individual crop, indicating that there could be possibilities for either cultivar selection or selective crop breeding to reduce sensitivity of these crops to ozone.  相似文献   

10.
N. Mutlu    P. Miklas    J. Reiser  D. Coyne 《Plant Breeding》2005,124(3):282-287
Common bacterial blight (CBB) caused by Xanthomonas campestris pv. phaseoli reduces common bean (Phaseolus vulgaris L.) yield and quality worldwide. Genetic resistance provides effective disease control; however. a high level of resistance is difficult to attain and does not exist in pinto bean, the most important dry bean market class in North America. Our objective was to determine if a backcross breeding approach with the aid of molecular markers linked to quantitative trait loci (QTL) for resistance to CBB in a donor parent could be used to attain higher levels of resistance to CBB in pinto bean. QTL conditioning CBB resistance from the donor parent XAN 159 were introgressed into the recurrent parent‘Chase’using classical backcross breeding and intermittent marker‐assisted selection.‘Chase’pinto bean is moderately resistant and the breeding line XAN 159 is highly resistant to Xanthomonas campestris. Marker assays confirmed the presence of independent QTL from GN no. 1 Sel 27 and XAN 159 in advanced backcross‐derived pinto bean lines with improved CBB resistance. Agronomic characteristics of‘Chase’were fully recovered in the backcross‐derived lines. An important QTL for CBB resistance from XAN 159 on linkage group B6 was not introgressed because tight linkage between this QTL and the dominant V allele that causes an unacceptable black‐mottled seed coat colour pattern in pinto bean could not be broken.  相似文献   

11.
Faba bean has the potential to become a key food and feed protein crop in many areas of the world. The presence of tannins in its seed coat has limited the deployment of this crop as feed and food. The expression of either of the two recessive genes, zt1 and zt2, causes a great reduction of tannins from the seed coat and results in a white flower phenotype. Molecular markers linked to these loci are fundamental tools for speeding up the breeding of low-tannin varieties. The main aim of this study was to develop and validate a robust molecular marker linked to the zt2 locus. We used 176 recombinant inbred lines of the Disco/2 × ILB 938/2 cross at F6 and genotyped those using 257 SNP (single nucleotide polymorphism) markers. An SNP marker associated with zt2 locus was found on faba bean chromosome 3 and was used to develop a high-throughput low-cost KASP (kompetitive allele-specific PCR) marker. The KASP marker can successfully discriminate low-tannin faba beans carrying zt2 from those carrying zt1 and wild-type alleles.  相似文献   

12.
On‐farm evaluation of 15 common bean varieties was undertaken with nine farmer groups under two fertilizer applications levels in four subcounties of Hoima and Rakai districts for two seasons to select farmers’ desired and undesired varieties. Farmers’ votes for acceptance and rejection of varieties at podding stage were converted to a preference index, and analysis of variance was conducted to examine differences in farmers’ preference indices among subcounties and combined across subcounties, seasons, management and gender. Management had no‐significant influence on the way farmers selected varieties in the subcounties. Choice of varieties varied significantly ( .001) between seasons and gender in the different subcounties. Variety Masindi Yellow Long and Farmers’ seed (Kaduli), and the introduced KATB1 were accepted by farmers due to their medium seed size, desired seed colour and potential of varietal adaptability to their farm conditions. Varieties NABE2, ROBA1 and RWR719 were deselected due to possession of traits less desired in the market. These results demonstrate the need for breeding programmes to involve diverse stakeholders in capturing the diverse traits preferences in varietal development process.  相似文献   

13.
Rusts are major biotic constraints of legumes worldwide. Breeding for rust resistance is regarded as the most cost efficient method for rust control. However, in contrast to common bean for which complete monogenic resistance exists and is efficiently used, most of the rust resistance reactions described so far in cool season food legumes are incomplete and of complex inheritance. Incomplete resistance has been described in faba bean, pea, chickpea and lentil and several of their associated QTLs have been mapped. However, the relatively large distance between the QTLs and their associated molecular markers hampers their efficient use for marker assisted selection. Their large genome size drastically hampers the development of genomic resource and limits the saturation of their genetic maps. The use of model plants such as the model legume Medicago truncatula may circumvent this drawback. The important genetic and genomic resources and tools available for this model legume can considerably speed up the discovery and validation of new genes and QTLs in resistance to legume pathogens. Here, the potential of M. truncatula as a model to study rust resistance in legumes, and to transfer rust resistance genes to cool season grain legumes is reviewed.  相似文献   

14.
Dealing with insect pests is one of the biggest challenges facing the cultivation of oilseed rape (Brassica napus, OSR). Insect pests are usually controlled using insecticides, but the increasing occurrence of insecticide‐resistant populations and the socio‐economic context argue against the sole use of these substances. Plant resistance is a classical and proven alternative crop protection strategy that is the basic tool of integrated pest management. However, no insect‐resistant OSR cultivar is currently available on the market. Here, I review some of the constraints that make phenotyping for insect resistance particularly challenging with OSR and give perspectives to develop this resistance. Some studies have proved that breeding OSR for insect resistance could be achieved, and three strategies have been considered: introducing resistance transgenes into the OSR genome, exploiting natural variation in resistance already present in B. napus and introgressing resistance from other brassicaceous species. The white mustard, Sinapis alba, seems a particularly promising source of resistance against most of the OSR insect pests.  相似文献   

15.
Bean species and genotypes show wide phenotypic variability in relation to aluminium (Al) resistance and progressive soil drying. The objective of this study was to identify and characterize sources of resistance to Al toxicity and progressive soil drying among six genotypes of common bean (Phaseolus vulgaris), four of runner bean (P. coccineus), and one of tepary bean (P. acutifolius), using hydroponic and soil cylinder screening methods. One experiment on hydroponic screening of Al resistance was carried out using a basal nutrient solution with and without 20 μM Al. Two experiments were carried out using two oxisols in 80 cm long soil cylinders with high Al (HAl) and low Al (LAl) saturation treatments. The three experiments showed an average of 36.9–53.5% inhibition of root growth with HAl compared with LAl treatments. Differences in root development and distribution were observed among genotypes and species. Two accessions of P. coccineus (G35346-2Q, G35464-5Q) and one Andean common bean genotype (ICA Quimbaya) were outstanding in root and shoot growth in the HAl treatments. P. coccineus accession (G35346-3Q) was outstanding under combined stress of Al-toxic acid soil and progressive soil drying. Accessions of P. coccineus may represent unique sources of Al resistance for the improvement of common bean through interspecific crosses.  相似文献   

16.
Dry bean (Phaseolus vulgaris L.) is an important grain legume for small-scale farmers in eastern Africa who nonetheless, grow beans with limited phosphorus (P) fertilizer supply or none at all. Phosphorus rank second, after nitrogen (N), as the most limiting soil nutrient in bean production in East African soils. This study was conducted to determine combining ability for five polygenic traits in the red mottled, large seeded bean market class, under low and high soil P conditions and two locations. Three parents tolerant to low soil P were hybridized with five well adapted, but non-low P tolerant lines in a diallel mating scheme. The resulting 28 F1 hybrids were evaluated in a randomized complete block design with three replications, under low and high soil P conditions at two sites. There were highly significant (P ≤ 0.001) differences among the genotypes for all the traits under all the study conditions. The GCA mean squares were highly significant (P ≤ 0.001) for these traits, indicating importance of additive effects for both study conditions and sites. The GCA × Environment and SCA × Environment were significant for all the parameters and test conditions. CAL143 had positive GCA effects that were significant; except for 100-seed weight under P stress; for all the traits and under all the study conditions. The negative GCA effects for the none P tolerant parents indicate that they impacted positively in imparting earliness.  相似文献   

17.
D. Sicard    L. Nanni    O. Porfiri    D. Bulfon    R. Papa 《Plant Breeding》2005,124(5):464-472
The genetic diversity of 66 Phaseolus genotypes was investigated, which included 14 local varieties of Phaseolus vulgaris and nine local varieties of P. coccineus, collected in Marche, central Italy. Their genetic diversity was assessed using three types of molecular marker: inter simple sequence repeats (ISSRs), nuclear gene‐tagged simple sequence repeats (SSRs) and chloroplast simple sequence repeats (CpSSRs). Phaseolus vulgaris shows a higher genetic diversity than P. coccineus for the SSRs and CpSSRs, but not for the putative neutral ISSR markers. These data suggest that selection by farmers and adaptation to heterogeneous environments has maintained the diversity in landraces of the common bean. Comparing genetic diversity in Marche with that of the American controls reveals that 71% of the local P. vulgaris varieties in Marche are of Andean origin. The two gene pools of the common bean can be found on the same farm, and there is some evidence of past hybridization events between these two gene pools.  相似文献   

18.
The fungal disease cercospora leaf spot CLS (Cercospora zonata) has affected major faba bean (Vicia faba) production regions in southern Australian in the last several years. This study offers the first report of sources of resistance to CLS in faba bean and describes techniques to evaluate resistance to C. zonata in faba bean genotypes within a controlled environment. The method was rapid (43 days), repeatable (R 2 > 0.74) and demonstrated positive correlations (R 2 > 0.45–0.80) to data collected from field disease nurseries under naturally established CLS epiphytotics. All faba bean cultivars currently adopted by the Australian industry were found to be susceptible to CLS and defoliation was found to be an important component of disease expression. Genetic analysis of segregation patterns in F 2 derived F 3 families of 1322/2*Farah (resistant*susceptible) showed the mode of inheritance of resistance to C. zonata was monogenic dominant. F 3 families were shown to segregate in the ratio of 1:2:1 for homozygous resistant: heterozygous: homozygous susceptible (χ22 = 2.78; P > 0.05) and individual plants within heterozygous F 3 families segregated in the ratio of 3:1 for resistant: susceptible responses (χ12 = 2.93; P > 0.05). Monogenic dominant inheritance also explained the change in frequency of resistant and susceptible plants within a population of cv. Cairo following one generation of self-pollination (χ2 = 0.88, 0.3 < P < 0.5). The sources of resistance identified in this study are being used to transfer CLS resistance to adapted faba bean genotypes for future cultivar releases to the southern Australian industry.  相似文献   

19.
Historically, conventional breeding has been the primary strategy used to develop a number of Striga‐resistant varieties currently grown in the Sahel of Western Africa. In this study, we have successfully developed and applied a marker‐assisted selection strategy that employs a single backcross programme to introgress Striga resistance into farmer preferred varieties of cowpea for the Nigeria savannas. In this strategy, we have introduced the Striga resistance gene from the donor parent IT97K‐499‐35 into an elite farmer preferred cowpea cultivar ‘Borno Brown’. The selected 47 BC1F2 populations confirmed the recombinants with desirable progeny having Striga resistance gene(s). The 28 lines selected in the BC1F2:4 generation with large seed size, brown seed coat colour and carrying marker alleles were evaluated in the field for resistance to Striga resistance. This led to the selection of a number of desirable improved lines that were immune to Striga having local genetic background with higher yield than those of their parents and standard varieties.  相似文献   

20.
Common bean (Phaseolus vulgaris L.) is the most important food legume crop in Africa and Latin America where rainfall pattern is unpredictable. The objectives were to identify better yielding common bean lines with good canning quality under drought, and to identify traits that could be used as selection criteria for evaluating drought‐tolerant genotypes. In all, 35 advanced lines were developed through single seed descent and evaluated with a standard check under drought and irrigated conditions at two locations over 2 years in Ethiopia. Grain yield (GY), pod number per m2, seed number per m2 and seed weight decreased by 56%, 47%, 49% and 14%, respectively, under drought stress. Eight genotypes had better yield with good canning quality under drought compared to the check. Moderate to high proportion of genetic effects were observed under drought conditions for GY and yield components compared to genotype × environment effects. Significant positive correlations between GY and pod harvest index (PHI) in drought suggest that PHI could be used as an indirect selection criterion for common bean improvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号