首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T K Das  D K Das 《Weed Research》2018,58(3):188-199
Variable dormancies result in periodicity in the germination of weeds and make weed control a repetitive practice. Under some conditions, repeated applications of selective herbicides can lead to the dominance of perennial weeds like Cyperus rotundus . Our hypothesis was that applying a chemical dormancy breaker (DB ) plus herbicide mixture would better control a mixture of weed species. Three experiments were designed to develop a cost‐effective DB treatment and to evaluate its dose with herbicides tank‐mixtures for effective weed management. KNO 3 and gibberellic acid GA 3 as dormancy breakers offered comparable effects, but KNO 3 was more economical than GA 3. KNO 3 at a 6% concentration was more effective in promoting weed germination than a 3% concentration in soyabean. A combination of KNO 3 (6%) and pre‐emergence pendimethalin 0.75 kg a.i. ha?1 + imazethapyr 0.10 kg a.i. ha?1 controlled annual weeds by 99% and reduced C. rotundus growth by 83%. This treatment gave significantly higher soyabean yield and net returns. Similarly, a tank‐mixture comprising of clodinafop 0.06 kg a.i. ha?1 + metsulfuron 0.006 kga.i. ha?1 was more effective against weeds than pre‐emergence tank‐mix application of pendimethalin 0.75 kg a.i. ha?1 + carfentrazone‐ethyl 0.02 kg a.i. ha?1 and isoproturon 0.75 kg a.i. ha?1. The use of pre‐emergence tank‐mixture of pendimethalin 0.75 kg a.i. ha?1 + imazethapyr 0.10 kg a.i. ha?1 should exhaust seed/tuber bank if repeated and reduce the application cost of herbicides by 50% and the dose, residue and cost of pendimethalin by 25%.  相似文献   

2.
The influence of no-tillage and conventional tillage on the outcome of early weed interference in maize (Zea mays L., cv. TZB), cowpea [Vigna unguiculata (L.) Walp, cv. VITA-5] and their intercrop at populations of 40000, 50 000 and 30 000 + 40 000 plants ha?1 was investigated on a loamy sand Oxic Ustropept in a subhumid tropical environment between April and July 1980. Both tillage treatments received 60 kg N, 30 kg P2O5 and 30 kg K2O ha?1. Although the weed spectrum was wider under no-tillage, weed weight was only 52% of the weight recorded under conventional tillage 6 weeks after sowing and the average food energy yield reductions caused were 28 and 65%, respectively. Cropping pattern had no effect on plot weediness. With minimum or no weed interference, maize performance was better in conventional than no-tillage but worse with prolonged weed interference. Cowpea responded more to weed interference than to tillage practice. Regardless of tillage practice and weed interference duration (up to 6 weeks) after sowing, maize monoculture produced the highest food energy yield, followed by maize/cowpea intercrop and cowpea monoculture in that order.  相似文献   

3.
The intensive use of the acetolactate synthase (ALS)‐inhibiting herbicides, imazethapyr, penoxsulam and bispyribac‐sodium, in imidazolinone‐resistant (Clearfield) rice increases the risk of the evolution of ALS‐resistant barnyardgrass. In 2009, imazethapyr failed to control barnyardgrass that was collected from a field in Arkansas, USA, following the failure of the herbicide in 2008. A greenhouse experiment was conducted to confirm and document the level of resistance of the biotype against three ALS‐inhibiting herbicides that currently are labeled in rice. The level of control of the resistant biotype at the labeled rate of bispyribac‐sodium of 35 g ai ha?1 was 10%, penoxsulam at 22 g ai ha?1 was 0% and imazethapyr at 70 g ai ha?1 was 25%. The level of mortality of the susceptible biotype was 100% with all the herbicides at the labeled rate. The dose needed to kill 50% of the resistant plants was 49 g ha?1 of bispyribac‐sodium, 254 g ha?1 of penoxsulam and 170 g ha?1 of imazethapyr. For the susceptible biotype, bispyribac‐sodium at 6 g ha?1, penoxsulam at 10 g ha?1 and imazethapyr at 12 g ha?1 killed 50% of the treated plants. Based on these findings, it was confirmed that a barnyardgrass population has evolved cross‐resistance to three ALS‐inhibiting herbicides in rice culture in Arkansas. Furthermore, an experiment was conducted to determine if the ALS‐resistant biotype could be controlled using other mechanisms of action. The results indicated that propanil, a photosystem II inhibitor, and quinclorac, a synthetic auxin, failed to control the resistant biotype at the labeled rates, whereas all the other evaluated herbicides provided effective control of both biotypes.  相似文献   

4.
Field experiments were conducted in Pendleton, South Carolina, USA, in 2004 and 2005 to determine the influence of spring tillage and no spring tillage with and without soyabean on Ipomoea lacunosa and Senna obtusifolia emergence. Ipomoea lacunosa emergence was observed from 20 April to 12 November 2004 and 19 April to 7 November 2005, with peak emergence occurring from May to early August. Ipomoea lacunosa emergence patterns were impacted minimally by soyabean and total emergence were similar with and without a soyabean canopy. Tillage generally promoted I. lacunosa emergence, reducing the time needed to achieve 25%, 50%, and 75% emergence. Senna obtusifolia emergence was observed from 26 April to 12 November 2004 and 18 April to 13 November 2005. Tillage shortened the time to 25% of total emergence by 8 to 25 days. Following soyabean canopy formation, S. obtusifolia emergence was generally negatively impacted by soyabean, but some emergence still occurred under the canopy. Peak periods of S. obtusifolia emergence occurred from early May to early October. Overall, I. lacunosa and S. obtusifolia emergence periods were similar, with both species exhibiting continual emergence from spring to early autumn. Continual emergence of I. lacunosa and S. obtusifolia beneath a soyabean canopy contributes to the difficulty in managing these weeds. The study demonstrates that an appropriate combination of sowing soyabean in late May, minimising tillage and sowing at a rate to maximise crop canopy closure will contribute significantly to management of these two important weed species.  相似文献   

5.

Research has shown the occurrence of the hormesis effect in some upland rice cultures resulting from low-dose application of glyphosate. Glyphosate herbicide is widely used in Brazilian agriculture for controlling the large quantity of weeds. The aim of this work was to verify the effects of low-dose application of glyphosate herbicide on agronomic characteristics in upland rice. The experimental design used was randomized blocks comprising five low-dose applications of glyphosate herbicide (10, 20, 40, 70, and 100?g acid equivalent [a.e.] ha?1) and the control, in two stages of development of the rice culture (tillering [V4] and floral differentiation [R1]) with four repetitions. The agronomic traits of upland rice were evaluated. Data were subjected to variance analysis, polynomial regression analysis for the quantitative factor, and Tukey’s test for the qualitative factor at p?<?0.05. The grain yield and the number of spikelets per panicle increased with the application of 10?g a.e. ha?1 of glyphosate at the floral differentiation stage. Until the low dose of 75?g a.e. ha?1, there was an increase in the number of panicles. Low doses between 70 and 100?g a.e. ha?1 applied in R1 provided less spikelets per panicle, lower 100-grain weight, and lower grain yield. The leaf flavonoid content increased due to the increase in the low doses of glyphosate herbicide.

  相似文献   

6.
An acetolactate synthase (ALS)‐resistant Amaranthus retroflexus biotype was collected in a soyabean crop after repeated exposure to imazethapyr and thifensulfuron‐methyl in north‐eastern Italy. Studies were conducted to characterise the resistance status and determine alternative post‐emergence herbicides for controlling this biotype. Whole‐plant bioassay revealed that the GR50 values were 1898‐ and 293‐fold higher than those observed for the biotype susceptible to imazethapyr and imazamox respectively. The biotype also displayed high cross‐resistance to sulfonylureas. Molecular analysis demonstrated that a single nucleotide substitution had occurred in domain B (TGG to TTG at position 574), conferring a change from the amino acid tryptophan to leucine in the resistant biotype. However, herbicides with other modes of action (PSII, 4‐HPPD and PPO inhibitors) provided excellent control. The GR50 ratios for metribuzin, terbuthylazine and mesotrione were close to 1 and treatments with fomesafen gave 100% control of both susceptible and resistant biotypes at the recommended field dose. This study documents the first case of an imidazolinone and ALS‐resistant biotype in European crops and identifies the post‐emergence herbicide options available for managing this troublesome weed in soyabean crops. Alternative management strategies are also discussed.  相似文献   

7.
Bulut  Sancar  Çağlar  Özcan  Öztürk  Ali 《Gesunde Pflanzen》2022,74(2):291-301

In this study, effects of different sowing dates and seeding rates on N uptake efficiency (NUE), N translocation efficiency (NTE), agronomic efficiency (AE), physiological efficiency (PE), water use efficiency for grain yield (WUEg) and water use efficiency for biomass (WUEb) of facultative wheat were investigated. As the average of cropping year, sowing dates and seeding rates, N uptake efficiency (NUE), N translocation efficiency (NTE), agronomic efficiency (AE), physiological efficiency (PE), water use efficiency for grain yield (WUEg) and water use efficiency for biomass (WUEb) values were respectively obtained as 1.17?kg Nuptake/kg Napplied, 68.5%, 36.9?kg grain/kg Napplied, 31.2?kg grain/kg Nuptake, 5.19?kg ha?1 mm?1 and 18.04?kg ha?1 mm?1.

Nitrogen and water use efficiencies decreased with delayed sowing dates and increased with increasing seeding rates. It is possible to maintain a high wheat yield, nitrogen and water use efficiency by increasing plant density through winter sowing. It was concluded based on present findings that sowing date and seeding rates had significant effects on nitrogen and water use efficiencies and winter sowing should be practiced as not to cause yield losses and high seeding rates (575 seeds m?2) yielded greater nitrogen-water use efficiencies.

  相似文献   

8.
Soil weed seed bank is an important factor determining above-ground floristic composition and weed density in agricultural systems. The quantitative and qualitative measures of weed seed bank can help growers to predict the extent to which they are facing weed problems. Along with tillage, crop residues can affect the fate of weeds in the upcoming crops. To investigate such effects, we compared the effects of tillage systems [conventional tillage (CT), reduced tillage (RT), and no tillage (NT)], wheat residue retention, and nitrogen (N) rates (0, 69, 138, and 207 kg N ha−1) on depth-related characteristics of the weed seed bank under a sweet corn-wheat sequence during 2014–2015 growing seasons in Shiraz, Iran. Soil bank was not affected by tillage systems but tended to be slightly higher under RT. The highest (898 seeds m−2) and lowest (322 seeds m−2) weed population at 0–10 cm depth were found when 138 kg N ha−1 in 2015 and 207 kg N ha−1 in 2014 were applied. Species richness and diversity were higher under NT and RT practices at the top layer, but CT system was more diversified at deeper depths. They were higher when crop residues were retained as well. Barnyard grass (Echinochloa crus-galli [L.] Beauv), common lambsquarter (Chenopodium album L.), common purslane (Portulaca oleracea L.), field bindweed (Convolvulus arvensis L.), flixweed (Descoreinia sofia [L.] Webb. & Berth.), henbit (Lamium amplexicaule L.), pigweeds (Amaranthus spp.), and stinking goosefoot (Chenopodium vulvaria L.) were the most common weeds found in all tillage systems and soil depths. Grasses were relatively lower than broadleaves regardless of treatments. Weed seed bank was mostly affected by weather conditions than treatments in this short-term experiment.  相似文献   

9.

Weeds are a major biotic constraint; compete with crop for the same resources and ultimately reduce productivity. This study evaluated the impact of irrigation intervals and weed management treatments on chlorophyll content and morphological growth of tomato to find an appropriate integrated weed management strategy. Two-year field experiments (2018/2019) were conducted at district Mardan (34°15′38″ N and 72°6′36″ E). Tomato F1 hybrid (Taj?3592) was transplanted during March. The experiments were laid out in a randomized complete-block design in split-plot arrangement with three replications. The main block comprised three irrigation intervals (3, 6, and 9 days) and the sub-block included weed management treatments: transparent polythene, black polythene, weeding except Orobanche, sole weeding of Orobanche, weeding of all weeds, copper oxychloride 1.5?kg a.i ha?1 (single dose), copper oxychloride 1.5?kg a.i ha?1 (split doses), copper oxychloride?+?humic acid 25?kg ha?1 (single dose), copper oxychloride?+?humic acid 25?kg ha?1 (split doses), copper sulphate 2?kg ha?1 (single dose), copper sulphate 2?kg ha?1 (split doses), ammonium sulphate 200?kg ha?1 (single dose), ammonium sulphate 200?kg ha?1 (split doses), pendimethalin 33 EC 1.44?kg a.i ha?1, glyphosate 48 SL 1.5?kg a.i ha?1, and weedy check. Lowest relative weed density (RWD) of O. cernua (2.23%) and highest RWD of O. cernua (38.01%) were recorded in the 3? and 9?day irrigation intervals, respectively. However, 3?day irrigation interval resulted in highest fresh weed biomass (5794?kg ha?1). Moreover, the 6?day irrigation interval significantly increased chlorophyll content by 11 and 5%, leaf area by 23 and 6%, and number of branches plant?1 by 30 and 22% compared to 9? and 3?day irrigation intervals, respectively. Among the weed management treatments, black polythene resulted in the highest weed control efficiency (96%), increasing chlorophyll content by 16%, leaf area by 33%, and number of branches plant?1 by 64% vs. weedy check. Consequently, 6?day irrigation intervals?×?black polythene could be the best weed management strategy, followed by transparent polythene, weeding of all weeds, pendimethalin, glyphosate, and ammonium sulphate.

  相似文献   

10.
The aim of this study was to determine the effect of soil solarization on soilborne diseases, weeds and plant yields by using polyethylene film (30-μm-thick) containing different additives [ultraviolet (UV), ultraviolet + infrared (UV + IR), ultraviolet + infrared + anti-fog + anti-dust (UV + IR + AF + AD)], and used polyethylene film (260-μm-thick). Trials were conducted in commercial strawberry (Fragaria ananassa cv. ‘Camarosa’) fields in the town of Sultanhisar in Aydin province, Turkey, between 2007 and 2009. The highest soil temperatures at the depth of 10 cm under a polyethylene sheet containing UV + IR + AF + AD were 54°C in 2007 and 50.7°C in 2008. During the 2007 growing season, collapse and death of strawberry plants were not detected. At the end of the 2008 season (May–June), collapsed and dying strawberry plants were observed. Pure cultures of Macrophomina phaseolina and Rhizoctonia solani were isolated from affected roots and crowns of plants. Viability studies of M. phaseolina were conducted under various field conditions and temperatures and M. phaseolina sclerotia survived more than 18 days at 45°C. There was a sharp decline in M. phaseolina at 50°C, where it survived for 19 h but was completely killed at 20 h. It first lost viability after 17 h at 50°C and after 60 min at 55°C. In the field, solarization did not reduce the viability of M. phaseolina at a soil depth of 10 or 20 cm; however, a significant reduction (66%) in survival was determined at a soil depth of 5 cm. All treatments controlled Portulaca oleracea, Amaranthus spp., Digitaria sanguinalis, Echinochloa crus-galli, Veronica hederifolia, Raphanus raphanistrum, Setaria verticillata and Mercurialis annua at a rate of 100%, but no treatment was effective on Cyperus rotundus. The marketable fruit yield was 38,004 kg.ha−1 for UV + IR, 35,834 kg.ha−1 for UV-added polyethylene film and 35,368 kg.ha−1 for used polyethylene sheet-covered plots, whereas it was 27,365 kg.ha−1 for untreated control plots.  相似文献   

11.
Iresine diffusa has become more abundant under no‐till soyabean in Argentina. The influence of temperature, light, cold‐wet storage, osmotic potential, dry storage and depth of seed burial on germination and emergence of I. diffusa was examined in a growth chamber experiment. Iresine diffusa seeds germinated at the highest proportion (>0.80) in all fluctuating day/night temperatures tested. Conversely, under a constant temperature regime, maximum germination rates occurred at 15 (0.78) and 20°C (0.82), and minimum germination rates occurred at 10 (0.19) and 30°C (0.36). Seed germination was not influenced by light exposure. However, germination decreased after 12 (0.76) and 16 (0.65) weeks in cold‐wet storage. To reduce germination significantly, ?0.4 MPa of osmotic potential (induced by PEG‐6000) or 120 mmol L?1 of salt (NaCl) concentration was required. Seeds of I. diffusa showed high viability (0.85) after 720 days of dry storage. Low emergence was recorded for seeds buried at 2 cm, and seedling emergence was completely inhibited when seeds were buried at 5 and 10 cm. Iresine diffusa seeds had high viability and were capable of emerging in a broad range of environmental conditions. The thermal germination conditions, shallow soil depths and high moisture conditions in germination phase for I. diffusa are congruent with the conditions in Argentina no‐tillage soyabean. Thus, no‐tillage could provide better conditions for germination than conventional tillage systems. However, due to the fact that I. diffusa can reproduce by rhizomes, further research should be conducted to understand the relative importance of the vegetative reproductive strategy in relation to the presence and persistence of this weed in fields.  相似文献   

12.
Nickel (Ni) is a cofactor for urease, an enzyme that breaks down urea into ammonia and carbon dioxide. This study aimed to evaluate the physiological impact of Ni on urea, antioxidant metabolism and powdery mildew severity in soybean plants. Seven levels of Ni (0, 10, 20, 40, 60, 80 and 100 g ha?1) alone or combined with the fungicides fluxapyroxad and pyraclostrobin were applied to soybean plants. The total Ni concentration ranged from 3.8 to 38.0 mg kg?1 in leaves and 3.0 to 18.0 mg kg?1 in seeds. A strong correlation was observed between Ni concentration in the leaves and seeds, indicating translocation of Ni from leaves to seeds. Application of Ni above 60 g ha?1 increased lipid peroxidation in the leaf tissues, indicative of oxidative stress. Application of 40 g ha?1 Ni combined with 300 mL ha?1 of fungicide reduced powdery mildew severity by up to 99%. Superoxide dismutase, catalase, peroxidase and urease enzyme activity were greatest under these conditions. Urea concentration decreased in response to Ni application. Urease activity in soybean leaves showed a negative correlation with powdery mildew severity. The leaf Ni concentration showed a positive correlation with the urease and a negative correlation with powdery mildew severity. The results of this study suggest that urease is a key enzyme regulated by Ni and has a role in host defence against powdery mildew by stimulating antioxidant metabolism in soybean plants.  相似文献   

13.
Many herbicides promote plant growth at doses well below the recommended application rate (hormesis). The objectives of this study were to evaluate glyphosate‐induced hormesis in soyabean (Glycine max) and determine whether pre‐treating soyabean seedlings with low doses of glyphosate would affect their response to subsequent glyphosate treatments. Seven doses (1.8–720 g a.e. ha?1) of glyphosate were applied to 3‐week‐old seedlings, and the effects on the electron transport rate (ETR), metabolite (shikimate, benzoate, salicylate, AMPA, phenylalanine, tyrosine and tryptophan) levels and dry weight were determined. The lowest dose stimulated ETR and increased biomass the most. Benzoate levels increased 203% with 3.6 g a.e. ha?1 glyphosate. Salicylate content and tyrosine content were unaffected, whereas phenylalanine and tryptophan levels were increased by 60 and 80%, respectively, at 7.2 g a.e. ha?1. Dose–response curves for these three amino acids were typical for hormesis. In another experiment that was replicated twice, soyabean plants were pre‐treated with low doses of glyphosate (1.8, 3.6 or 7.2 g a.e. ha?1) and treated with a second application of glyphosate (1.8, 3.6, 7.2, 36, 180 or 720 g a.e. ha?1) 14 days later. For total seedling dry weight, a 3.6 and 7.2 g a.e. ha?1 glyphosate dose preconditioned the soyabean seedlings to have greater growth stimulation by a later glyphosate treatment than plants with no preconditioning glyphosate exposure. Optimal hormetic doses were generally higher with pre‐treated plants than plants that had not been exposed to glyphosate. Thus, pre‐exposure to low doses of glyphosate can change the hormetic response to later low‐dose exposures.  相似文献   

14.
Glyphosate‐resistant Ambrosia trifida is a competitive and difficult‐to‐control annual broad‐leaved weed in several agronomic crops in the Midwestern United States and Ontario, Canada. The objectives of this study were to compare treatments for control of glyphosate‐resistant A. trifida with tillage followed by pre‐emergence (PRE) and/or post‐emergence (POST) herbicides in glyphosate‐resistant maize and to determine the impact of A. trifida escapes on maize yield. Field experiments were conducted in 2013 and 2014 in grower fields infested with glyphosate‐resistant A. trifida. Tillage prior to maize sowing resulted in 80–85% control compared with no tillage. Tillage followed by PRE application of saflufenacil plus dimethenamid‐P with or without atrazine resulted in 99% control compared with ≤86 and 96% control with PRE herbicides alone at 7 and 21 days after application respectively. Tillage or POST‐only herbicides resulted in 4–14 A. trifida plants m?2, whereas a PRE and POST programme had <3 plants m?2. Maize yield was greatest (13.1–14.2 tonnes ha?1) with tillage followed by PRE and POST herbicide programme. The relationship between maize yield and late‐season density of A. trifida escapes showed a 50% maize yield reduction irrespective of control measures when A. trifida density was 8.4 plants m?2. It was concluded that the combination of tillage with PRE and/or POST herbicides reduced A. trifida density and biomass accumulation early in the season and provided an integrated approach for effective management.  相似文献   

15.
The aim of the present study was to investigate the effects of the phytotoxin fusaric acid (FA) on the biocontrol traits of two biocontrol strains Paenibacillus polymyxa WR‐2 and SQR‐21. The results showed that the growth of both WR‐2 and SQR‐21 decreased with increasing FA concentration, and at 70 and 80 μg mL?1 FA, respectively, the strains were unable to grow. The biocontrol traits of both strains were negatively affected by FA concentration higher than 2·5 μg mL?1. However, at 2·5 μg mL?1 FA, biofilm formation and root colonization were not affected and there was even a positive effect on the production of spores and hydrolytic enzymes (protease and β‐l,3‐glucanase). The production of fusaricidin‐type antifungal compounds was increased with an increase in FA concentration up to 50 and 60 μg mL?1 for WR‐2 and SQR‐21, respectively. The production of antifungal volatile organic compounds by WR‐2 and SQR‐21 was increased only at 2·5 μg mL?1 FA. The effect of FA on the overall metabolic activity of WR‐2 and SQR‐21 was also determined. This study will help to understand the response of P. polymyxa strains to FA and will help to improve their biocontrol efficiency.  相似文献   

16.
Studies on competition between Ridolfia segetum Maris, and sunflower (Helianthemum annuus L.) were conducted at eight locations in southern Spain in 1990 and 1991. in order to define competition models and to estimate from these economic thresholds as affected by crop inputs and potential yields. Competition losses in sunflower crops ranged from 19% to 56% of weed–free yields. There were slightly better correlations between percentage sunflower reduction and weed density than with weed dry weight, (?0.66 and ?0.59, respectively). The weed competitive index, or sunflower crop dry weight reduction per unit dry weight of R. segetum, was 1.09. The percentage yield losses due to weed density (NPRt) were fitted to multiple linear, quadratic, exponential and hyperbolic models. The hyperbolic equation, %RSY=100 (1+1/b*NPRt)?1, where b=0.14 and is the R. segetum competitive ability index, had the lowest error sum of squares (SSE), and gave the best biological explanation for the competition response. Early emergence (before mid–March) made weeds about 1.5 times more competitive than late emergence. The economic threshold to offset the cost of a shallow post–emergence tillage, assuming 70% control efficiency, ranged from about 2.5 plants m ?2 for low–yielding crops(1200kgha?1) to less than one plant m?2 for higher–yielding crops (2800 kg ha?1).  相似文献   

17.
Experiments evaluated the effect of glyphosate rate and Anoda cristata density, on crop and weed biomass and weed seed production in wide (70 cm) and narrow rows (35 cm) glyphosate‐resistant soyabean (Glycine max). Soyabean density was higher at 35 cm row spacing as an increase in planting rate in narrow‐row soyabean is recommended for producers in Argentina. Soyabean biomass at growth stage V4 (four nodes on the main stem with fully developed leaves beginning with the unifoliate leaves) was higher when grown on narrow than in wide‐rows but was not affected by the presence of A. cristata. At growth stage R5 (seed initiation – seed 3 mm long in a pod at one of the four uppermost nodes on the main stem, with a fully developed leaf and full canopy development), crop biomass was greater in narrow rows compared with wide rows with 12 plants m?2 of A. cristata. In narrow‐row soyabean, a single application of a reduced rate of glyphosate maintained soyabean biomass at R5 and provided excellent weed control regardless of weed density. In wide‐row soyabean control was reduced at the high weed density. Regardless of row spacing, A. cristata biomass and seed production were severely reduced by half of the recommended dose rate of glyphosate but the relationship between biomass and seed production was not altered. Glyphosate rates as low as 67.5 g a.e. ha?1 in narrow rows or 540 g a.e. ha?1 in wide rows provided excellent control of A. cristata. To minimize glyphosate use, planting narrow‐row soyabean are effective where A. cristata density is low.  相似文献   

18.
In this study the effect of different cropping systems and crop successions was evaluated on natural Fusarium sp. contamination and fumonisin levels in corn. The cropping systems consisted of a conventional and no-tillage area cultivated with corn in the summer following either oats or fallow in the winter (2006 and 2007 growing seasons). In addition, the effect of applying nitrogen fertilizer (0, 22.5, 45.0, 90.0 and 90.0 kg ha−1 nitrogen supplemented with potassium oxide) on fumonisin contamination was evaluated in the 2006 growing season. Fusarium sp. was detected in 90% samples in 2006 and in 100% samples in 2007. In both growing seasons, no-till corn following oats showed the highest mean fumonisin levels and differed significantly (P < 0.05) from all the others (2006) and from conventional till corn following either oats or fallow in the winter (2007). Fumonisin levels ranged from 0.13 to 19.52 μg g−1 (mean 6.97 μg g−1) and from 3.70 to 7.75 μg g−1 (mean 6.29 μg g−1) in no-till corn following oats from the 2006 and 2007 growing seasons, respectively. Plots treated with 0 kg ha−1 and 22.5 kg ha−1 nitrogen showed the highest mean fumonisin levels and differed significantly from those with 45.0 and 90 kg ha−1 nitrogen. Fumonisin levels correlated negatively (P < 0.05) with the nitrogen fertilization rates. Although no-till is advantageous from a soil conservation standpoint, it may enhance the potential for fumonisin contamination in corn.  相似文献   

19.
Resistance to the fungicide boscalid in laboratory mutants of Botryotinia fuckeliana (Botrytis cinerea) was investigated. The baseline sensitivity to boscalid was evaluated in terms of colony growth (EC50 = 0.3–3 μg ml−1; MIC = 10–30 μg ml−1) and conidial germination (EC50 = 0.03–0.1 μg ml−1; MIC = 1–3 μg ml−1) tests. Mutants were selected in vitro from wild-type strains of the fungus on a fungicide-amended medium containing acetate as a carbon source. Mutants showed two different levels of resistance to boscalid, distinguishable through the conidial germination tests: low (EC50 ∼ 0.3 μg ml−1, ranging from 0.03 to 1 μg ml−1; MIC > 100 μg ml−1) and high (EC50 > 100 μg ml−1) resistance. Analysis of meiotic progeny from crosses between resistant mutants and sensitive reference strains showed that resistant phenotypes were due to mutations in single major gene(s) inherited in a Mendelian fashion, and linked with both the Daf1 and Mbc1 genes, responsible for resistance to dicarboximide and benzimidazole fungicides, respectively. Gene sequence analysis of the four sub-units of the boscalid-target protein, the succinate dehydrogenase enzyme, revealed that single or double point mutations in the highly conserved regions of the iron-sulphur protein (Ip) gene were associated with resistance. Mutations resulted in proline to leucine or phenylalanine replacements at position 225 (P225L or P225F) in high resistant mutants, and in a histidine to tyrosine replacement at position 272 (H272Y) in low resistant mutants. Sequences of the flavoprotein and the two transmembrane sub-units of succinate dehydrogenase were never affected.  相似文献   

20.
Stem rot caused by Lasiodiplodia theobromae is an important postharvest disease of papaya in Brazil, responsible for reducing the quality and quantity of fruits. Fungicide use is one of the main disease management measures. However, there are no estimates available of pathogen sensitivity to commonly employed fungicides. Therefore, the EC50 from 120 isolates of L. theobromae from northeastern Brazil, representative of six populations of the pathogen, was estimated in vitro for fungicides of the methyl benzimidazole carbamates—MBC (benomyl and thiabendazole) and demethylation-inhibiting—DMI (imazalil, prochloraz, tebuconazole) groups. Mycelial growth on fungicide-free media and virulence on papaya fruits of the MBC-sensitive and non-sensitive isolates were compared. For MBCs, 8.4% of isolates were non-sensitive to fungicides. For the remaining 91.6%, the mean EC50 ranged from 0.002 to 0.13 μg ml−1 and 0.36 to 1.27 μg ml−1 for benomyl and thiabendazole, respectively. For DMIs, the mean EC50 range for imazalil was 0.001 to 2.27 μg ml−1, 0.04 to 1.75 μg ml−1 for prochloraz, and 0.14 to 4.05 μg ml−1 for tebuconazole. The EC50 values of non-sensitive isolates were significantly (P≤0.05) higher those for the sensitive isolates for each of the DMI fungicides. Differences (P≤0.05) were found in the levels of sensitivity to DMI fungicides among the isolate populations associated with orchards. The populations from two orchards were less sensitive to DMIs. No solid evidence was found for fitness costs relating to MBC non-sensitive isolates because mycelial growth in fungicide-free media and virulence on papaya fruits were similar to those of sensitive isolates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号