首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Influence of orchard soil management on lumbricids, especially Lumbricus terrestris L. In a long-term soil management experiment (apple orchard treated with cultivation methods such as grass mulch, grass harvest, straw mulch, clean cultivation) 6 plots were selected in order to study the abundance and biomass of earthworm populations. The following results were obtained: In all treatments with the exception of straw mulch L. terrestris represented the majority (60.5% on average) of the lumbricid population. Their share in the biomass amounted to 93.3%. The earthworm biomass was the highest in grass mulch; a close correlation was observed between the litter production (grass and leaves) and the biomass of L. terrestris. Added farm yard-manure on plots with grass mulch had no additional positive effect on earthworms. Although a higher earthworm biomass was found under grass mulch in comparison with straw mulch, the species diversity was higher in the latter. Clean cultivation had a highly detrimental effect on all earthworms, especially on the horizontally burrowing species. The annual nitrogen turnover by L. terrestris in mulched orchards was estimated to approx. 50 kg N/ha.  相似文献   

2.
Summary A series of 48 greenhouse soil microcosms were established and treated with combinations of sewage sludge, Acer saccharum leaves, and the earthworms Eisenia fetida and Lumbricus terrestris. The microcosms were incubated at constant moisture for 110 days. Samples were then taken and analysed for sludge depth, organic-matter content, and waterstable soil aggregates. Weights of surface leaves and weights and numbers of surviving earthworms were determined for each microcosm. L. terrestris significantly reduced sludge depth and the surface organic-matter content of microcosm soil and significantly increased percentages of 4-mm diameter water-stable aggregates. Leaf litter also significantly reduced sludge depth and increased 4-mm water-stable aggregates. E. fetida inhibited surface feeding by L. terrestris, reduced its 110-day survival rate, and inhibited the production of 4-mm water-stable aggregates in L. terrestris treatments. Numbers of E. fetida increased in L. terrestris treatments. Sludge depth, organic-matter content and water-stable aggregates were not significantly different from controls in E. fetida treatments.  相似文献   

3.
Summary Sewage sludge was applied to twelve 4-m2 plots in two forest (mixed hardwood, Norway spruce plantation) site and one old field site. The earthworm Eisenia fetida was introduced to half the control and half the treated plots. Earthworm populations were sampled by formalin extraction and hand-sorting five times in the year following treatment. One year after treatment, soil samples were wet-sieved and water-stable aggregate size-class arrays were determined.The dominant earthworm in the study site, Lumbricus terrestris, increased in density and mean individual biomass in response to sludge treatment in mixed hardwood and old field plots. In the Norway spruce plots, L. terrestris increased in individual biomass but decreased in density following sludge application. The density of the introduced E. fetida rapidly declined in all control plots. One year after introduction, E. fetida was found only in the sludge-treated Norway spruce plot. The introduction of E. fetida with sludge decreased the density and biomass of L. terrestris in the hardwood plots.Sludge treatment increased the percentages of 4-mm diameter water-stable aggregates in old field and hardwood plots. The addition of E. fetida with sludge in the hardwood plots generated no increase in 4-mm water-stable aggregates. In the old field, sludge + E. fetida increased the 4-mm water-stable aggregates. Little change in water-stable aggregates in response to either treatment combination was seen in the Norway spruce site.  相似文献   

4.
Mika Rty 《Pedobiologia》2004,48(4):321-328
A laboratory experiment was carried out to test the hypothesis that the earthworms Lumbricus terrestris and Aporrectodea caliginosa are able to maintain their populations and reproduce in the acid forest soil of a deciduous forest where no lumbricids were found in the field. The experiment was conducted in 45-l containers in which layers of mineral subsoil, humus and organic topsoil collected from the site were established. Both species survived and at least L. terrestris reproduced during the 60 weeks’ incubation. Burrows and middens of L. terrestris were recorded and quantities of litter were consumed. The presence of lumbricids increased the organic matter content of humus, reduced the acidity of the topsoil and humus layers, and suppressed the population of the enchytraeid Cognettia sphagnetorum. A dense population of Enchytraeus albidus was found in L. terrestris middens. It is concluded that edaphic factors do not explain the absence of earthworms, but isolation from cultural landscapes and lack of opportunity to colonize the site from the surroundings is the decisive factor.  相似文献   

5.
Applications of sewage sludge and lime have been used to restore some of the nearly 1.0 million ha of unreclaimed acid mine spoils in the United States. Earthworms might also aid in the reconstruction of mine spoils, but the earthworm response to mine spoils and sludge has not been widely studied. The objective of the present study was to examine growth of the earthworm Lumbricus terrestris in pots containing acidmine spoils, sewage sludge, and lime, and the growth of two common reclamation grasses, timothy (Phleum pratense L.) and tall fescue (Festuca arundinacea Schreb.), to the addition of earthworms. After 10 weeks, earthworms growing in the mine spoil treated with sewage sludge showed an increase in mean specific mass of 26.9% and in projected specific area of 24.5%. In contrast, earthworms growing on mine spoils without sludge decreased in mass by an average of 39.6% and in area by 21.0%. Soil pH influenced earthworm area, but not mass: earthworms growing on mine spoils (with or without sludge) showed an increase in mean surface area of 2.9% at pH 5.3 and a decrease of 11.2% at pH 6.5. The presence of earthworms significantly increased the belowground production of plant roots, but had no effect on either soil bulk density or above-ground production of plant biomass. The addition of earthworms to acid mine spoils treated with sewage sludge and lime might aid in the redevelopment of soil quality and biological diversity.  相似文献   

6.
When conservation tillage is practised in agriculture, plant residues remain on the soil surface for soil protection purposes. These residues should be widely decomposed within the following vegetation period as microbial plant pathogens surviving on plant litter may endanger the currently cultivated crop. Important soil-borne fungal pathogens that preferably infect small grain cereals belong to the genus Fusarium. These pathogens produce the mycotoxin deoxynivalenol (DON), a cytotoxic agent, in infected cereal organs. This toxin frequently occurs in cereal residues like straw. So far it is unclear if DON degradation is affected by members of the soil food web within decomposing processes in the soil system. For this purpose, a microcosm study was conducted under controlled laboratory conditions to investigate the degradation activity of the earthworm species Lumbricus terrestris when exposed to Fusarium-infected wheat straw being contaminated with DON.Highly Fusarium-infected and DON-contaminated straw seemed to be more attractive to L. terrestris because it was incorporated faster into the soil compared with straw infected and contaminated at low levels. This is supported by a greater body weight gain (exposure time 5 weeks) and smaller body weight loss (exposure time 11 weeks) of L. terrestris, respectively, when highly contaminated straw was offered for different time periods.Furthermore, L. terrestris takes part in the efficient degradation of both Fusarium biomass and DON occurring in straw in close interaction with soil microorganisms. Consequently, earthworm activity contributes to the elimination of potentially infectious plant material from the soil surface.  相似文献   

7.
The earthworm Pheretima hilgendorfi, one of the most common anecic species in Japan, abounds in soils with applied rice-straw residues. The influences of the worm’s activity and/or those of rice-straw application on the soil microbial community structure were studied using a microcosm approach. Low Humic Andosol was incubated with or without earthworms in a jar for a month after the following treatments: 1) no treatment, 2) chopped rice straw top-dressed on the soil and 3) rice straw incorporated into the soil. The soil NO3-N level increased with the earthworms’ presence even in the soil without rice straw. The soil NH4+-N level was by far the highest in the soil treated with worms and no rice straw. Amounts of total and bacterial PLFAs increased due to the earthworms’ presence when rice straw was incorporated. The proportion of unsaturated fatty acids increased in the earthworm treatment while the saturated fatty acids decreased, suggesting an increase in the Gram-negative bacterial proportion. The results of principal component analysis indicated that the rice straw and the earthworms affected the soil microbial community structure independently. Any direct influence of the PLFAs contained in the worms’ bodies and in the rice straw on the soil’s PLFA profile was thought to be small.  相似文献   

8.
A field experiment was conducted to elucidate ecosystem services provided by earthworms on the repression of phytopathogenic and toxinogenic fungi. The study focussed on decomposing Fusarium culmorum-infected and deoxynivalenol (DON)-contaminated wheat straw remaining on the soil surface as part in conservation tillage. Mesocosms were established in the topsoil of a winter wheat field located in Northern Germany, where conservation tillage has been practised for 20 years. Besides a non-earthworm treatment, two earthworm species were inoculated in the mesocosms either separately or combined: Lumbricus terrestris (anecic, detritivorous) and Aporrectodea caliginosa (endogeic, geophagous). The earthworms were exposed either to artificially Fusarium-infected wheat straw highly contaminated with DON or to non-infected straw serving as a control. The experiment was conducted during an eight week period after harvest from mid August to mid October. For both species, the artificially Fusarium-infected and DON-contaminated wheat straw was a more attractive food source than the non-infected control. In contrast to A. caliginosa, L. terrestris incorporated infected straw faster into the soil compared to control straw. Furthermore, the reduction of Fusarium biomass and DON concentration in wheat straw was significantly higher in the presence of L. terrestris than in treatments with A. caliginosa and without earthworms. Here, no significant differences could be measured between the Fusarium biomass and DON concentration in wheat straw. A. caliginosa seems not to be relevant for the reduction of Fusarium biomass and DON concentration. We concluded that amongst earthworms, anecic detritivorous species are the drivers to compensate possible negative consequences (like crop infection) of conservation tillage. They take an important role in the control of phytopathogenic and toxinogenic fungi surviving on plant residues and in the degradation of their mycotoxins.  相似文献   

9.
Summary A laboratory microcosm study was used to investigate the survival and population dynamics of genetically modified microorganisms (GMM) in the gut of Lumbricus terrestris. Three methods of axenic earthworm production were investigated. An antibiotic mixture of streptomycin and cycloheximide was introduced either passively, mixed with sterile soil or cellulose, or actively, by teflon catheter. Worms treated by all methods lost weight but this was least for the catheter method which was also the only method to produce axenic earthworms. Axenic earthworms were used to determine the effect of competition with indigenous gut bacteria on ingested GMM. The GMM used was Pseudomonas fluorescens, strain 10586/FAC510, with chromosomally inserted Lux genes for bioluminescence, and chromosomal resistance to rifampicin. The bacteria were grown up to the mid-exponential phase before inoculation into earthworms. Bacteria in faecal material were enumerated by dilution plate counting using selective agar. The GMM were re-isolated from the casts of both antibiotic-treated and untreated earthworms. Lower concentrations of GMM and higher concentrations of indigenous bacteria in the casts of untreated compared to antibiotic-treated earthworms suggested that competition is a fundamental control on population dynamics of the introduced bacterial inocula ingested by earthworms.The catheter method, developed in this study, is proposed as a technique to contribute to the risk assessment of environmental release of GMM.  相似文献   

10.
The fate of the insecticidal Cry1Ab protein from crop residues (leaves and roots) of the transgenic maize variety MON810 was studied in the presence and absence of two earthworm species (Lumbricus terrestris, Aporrectodea caliginosa; separate incubations) in soil microcosms. The recombinant Cry1Ab protein was quantified using a highly sensitive ELISA. Control microcosms received corresponding non-transgenic plant material. All earthworms survived in the microcosms over a period of 5 weeks, irrespective of whether they received MON810 or non-transgenic plant material. Weight loss was observed for both earthworm species, independent of the plant material or transgenic modification. A strong decline of immunoreactive Cry1Ab in plant residues (mean initial concentration approx. 5000 ng g−1) of MON810 was observed in all treatments, but in microcosms with earthworms this decline was significantly higher with less than 10% of the initial Cry1Ab concentration remaining after 5 weeks. Cry1Ab concentrations in casts were only 0.1% of those found in remaining plant material of the respective microcosms. No immunoreactive Cry1Ab proteins were found in earthworm tissues (threshold of detection: 0.58 ng g−1 fresh weight). No further decline was found for Cry1Ab concentrations in casts of A. caliginosa during a subsequent period of 3 months of incubation in bulk soil (<0.1 ng g−1) after removal of the earthworms from the microcosms, while in casts of L. terrestris the concentration decreased from 0.4 to below 0.1 ng g−1. In conclusion, this study demonstrates that earthworms enhance the decline of immunoreactive Cry1Ab proteins from maize residues.  相似文献   

11.
 Potential effects of earthworms (Lumbricus terrestris L.) inoculated into soil on fluxes of CO2, CH4 and N2O were investigated for an untreated and a limed soil under beech in open topsoil columns under field conditions for 120 days. Gas fluxes from L. terrestris, beech litter and mineral soil from soil columns were measured separately in jars at 17  °C. The inoculation with L. terrestris and the application of lime had no effect on cumulative CO2 emissions from soil. During the first 3–4 weeks earthworms significantly (P<0.05) increased CO2 emissions by 16% to 28%. In contrast, significantly lower (P<0.05) CO2 emission rates were measured after 11 weeks. The data suggest that earthworm activity was high during the first weeks due to the creation of burrows and incorporation of beech litter into the mineral soil. Low cumulative CH4 oxidation rates were found in all soil columns as a result of CH4 production and oxidation processes. L. terrestris with fresh feces and the beech litter produced CH4 during the laboratory incubation, whereas the mineral soil oxidised atmospheric CH4. Inoculation with L. terrestris led to a significant reduction (P<0.02) in the CH4 oxidation rate of soil, i.e. 53% reduction. Liming had no effect on cumulative CH4 oxidation rates of soil columns and on CH4 fluxes during the laboratory incubation. L. terrestris significantly increased (P<0.001) cumulative N2O emissions of unlimed soil columns by 57%. The separate incubation of L. terrestris with fresh feces resulted in rather high N2O emissions, but the rate strongly decreased from 54 to 2 μg N kg–1 (dry weight) h–1 during the 100 h of incubation. Liming had a marked effect on N2O formation and significantly (P<0.001) reduced cumulative N2O emissions by 34%. Although the interaction of liming and L. terrestris was not significant, N2O emissions of limed soil columns with L. terrestris were 8% lower than those of the control. Received: 2 September 1999  相似文献   

12.
Two laboratory experiments were used to investigate the effect of the earthworm Lumbricus terrestris on transport of genetically marked Pseudomonas fluorescens inocula through soil microcosms. The microcosms comprised cylindrical cores of repacked soil with or without earthworms. Late log-phase cells of P. fluorescens, chromosomally marked with lux genes encoding bioluminescence, were applied to the surface of soil cores as inoculated filter paper discs. In one experiment, 5 and 10 days after inoculation, cores were destructively harvested to determine concentrations of marked pseudomonads with depth relative to the initial inoculum applied. Transport of the bacteria occurred only in the presence of earthworms. In a second experiment cores were subjected to simulated rainfall events 18 h after inoculation with lux-marked bacteria at 3-day intervals over a 24-day period. Resulting leachates were analysed for the appearance of the marked bacteria, and after 28 days cores were destructively harvested. Although some marked cells (less than 0.1% of the inoculum applied) were leached through soil in percolating water, particularly in the presence of earthworms, the most important effect of earthworms on cell transport was through burial of inoculated litter rather than an increase in bypass flow due to earthworm channels.  相似文献   

13.
The earthworm population in a winter cereal field in Ireland was studied over a 3-year-period and its effects on soil and N turnover were assessed. The mean annual population density was 346–471 individuals m-2 and the mean biomass was 56.9–61.2 g m-2. Twelve species were recorded, the most abundant being Allolobophora chlorotica followed by Aporrectodea caliginosa, and 242 mg at 5°C to 713 mg at 10°C in the case of juvenile Lumbricus terrestris. Gut contents (dry mass of soil) comprised 6.7–15.5% of the A. caliginosa live mass, and 9.7–14.7% of the Lumbricus terrestris mass. Annual soil egestion by the field population was estimated as 18–22 kg m-2. Tissue production ranged from 81.7 to 218.5 g m-2, while N turnover resulting from mortality was calculated as 1.5–3.9 g m-2 depending on the year and the method of calculation. Earthworms were estimated to contribute an additional 3.4–4.1 g mineral N to the soil through excretion, mucus production, and soil ingestion. Independent estimates of N output via mucus and excretion derived from 15N laboratory studies with Lumbricus terrestris were 2.9–3.6 g m-2 year-1.  相似文献   

14.
Sludge derived from cow manure anaerobically digested to produce biogas (methane; CH4) was applied to maize (Zea mays L.) cultivated in a nutrient-low, alkaline, saline soil with electrolytic conductivity 9.4 dS m?1 and pH 9.3. Carbon dioxide (CO2) emission increased 3.1 times when sludge was applied to soil, 1.6 times when cultivated with maize and 3.5 times in sludge-amended maize cultivated soil compared to the unamended uncultivated soil (1.51 mg C kg?1 soil day?1). Nitrous oxide (N2O) emission from unamended soil was -0.0004 μg nitrogen (N) kg?1 soil day?1 and similar from soil cultivated with maize (0.27 μg N kg?1 soil day?1). Application of sludge increased the N2O emission to 4.59 μg N kg?1 soil day?1, but cultivating this soil reduced it to 2.42 μg N kg?1 soil day?1. It was found that application of anaerobic digested cow manure stimulated maize development in an alkaline saline soil and increased emissions of CO2 and N2O.  相似文献   

15.
Effects of earthworms on nitrogen mineralization   总被引:13,自引:0,他引:13  
The influence of earthworms (Lumbricus terrestris and Aporrectodea tuberculata) on the rate of net N mineralization was studied, both in soil columns with intact soil structure (partly influenced by past earthworm activity) and in columns with sieved soil. Soil columns were collected from a well drained silt loam soil, and before the experiment all earthworms present were removed. Next, either new earthworms (at the rate of five earthworms per 1200 cm3, which was only slightly higher than field numbers and biomass) were added or they were left out. At five points in time, the columns were analyzed for NH 4 + , NO 3 , and microbial biomass in separate samples from the upper and lower layers of the columns. N mineralization was estimated from these measurements. The total C and N content and the microbial biomass in the upper 5 cm of the intact soil columns was higher than in the lower layer. In the homogenized columns, the C and N content and the microbial biomass were equally divided over both layers. In all columns, the concentration of NH 4 + was small at the start of the experiment and decreased over time. No earthworm effects on extractable NH 4 + were observed. However, when earthworms were present, the concentration of NO 3 increased in both intact and homogenized cores. The microbial biomass content did not change significantly with time in any of the treatments. In both intact and homogenized soil, N mineralization increased when earthworms were present. Without earthworms, both type of cores mineralized comparable amounts of N, which indicates that mainly direct and indirect biological effects are responsible for the increase in mineralization in the presence of earthworms. The results of this study indicate that earthworm activity can result in considerable amounts of N being mineralized, up to 90 kg N ha–1 year–1, at the density used in this experiment.  相似文献   

16.
A greenhouse study was performed to examine the ability of the earthworms Microscolex dubius and Aporrectodea trapezoides to transport Rhizobium meliloti L5-30R through soil. When R. meliloti L5-30R was inoculated into either ezi-mulch (a pelleted formulation of cereal-pea straw), oat hay, pea hay, or sheep dung and placed on the soil surface together with either A. trapezoides or M. dubius, >104 colony-forming units (CFU) of R. meliloti L5-30R g-1 soil were detected at 90 mm soil depth after 18 days. In the absence of earthworms, R. meliloti L5-30R was not detected at 90 mm soil depth after this time. In a second experiment using ezi-mulch as the inoculant material and in the presence of A. trapezoides (in a number equivalent to 471 or 785 m-2), ca. 103 CFU of R. meliloti L5-30R per 10 mm of alfalfa root were detected at 0–30, 30–60, and 60–90 mm soil depth after 18 days, while <3 CFU were detected per 10 mm of root in the absence of A. trapezoides. In a third experiment in which R. meliloti L5-30R was distributed evenly through soil at the start of the experiment, A. trapezoides (in a number equivalent to 157, 471, or 785 m-2) significantly decreased the survival of L5-30R in soil after 40 days of incubation at 15°C, but not after 20 days. The decrease in survival of R. meliloti L5-30R was correlated with the density of A. trapezoides. These results demonstrate that A. trapezoides can increase root colonization of alfalfa by R. meliloti L5-30R, but may also reduce the ability of R. meliloti L5-30R to survive in soil.  相似文献   

17.
Sanborn Field, an agricultural demonstration field at the University of Missouri-Columbia, has over 100 years of cropping histories and management practices implemented at this site. We examined the effect of these cropping systems and management practices on earthworm populations and microbial activity. A field experiment was conducted to characterize and quantify earthworms and to determine the microbial activity in the same selected plots. We sampled 14 plots at the site, six of which were the original plots established in 1888 with the same cropping histories and management, and eight of which had been modified over the years to accommodate changing farmer needs and scientific questions. Earthworms and soil samples were collected in the spring and fall of 1999. Aporrectodea trapezoides, Aporrectodea caliginosa, and Lumbricus terrestris were the dominant species found in this field. Lumbricus terrestris was commonly associated with the no-tillage plot at Sanborn Field. Due partly to soil moisture conditions, most of the species were found and identified during the spring. Microbial activity, as expected, was greatest during the spring. Manure, no-tillage and crop rotations that include legumes had the greatest earthworm abundance and microbial activity. In general, where no fertility treatments were added to soil or where food sources were lacking, earthworm abundance decreased significantly. The abundance of earthworms found in this field reflected the cropping history and management practices used recently and within the last 100 years. In most cases, microbial activity showed similar trends as earthworm density. However, some dynamic microbial transformations, like nitrification, do not always follow the same trend as potential soil quality biotic indicators. Earthworms, along with microbial activity, may serve as useful soil quality indicators in sustained and short-term field trials.  相似文献   

18.
Earthworms and arbuscular mycorrhizal fungi (AMF) might interactively impact plant productivity; however, previous studies reported inconsistent results. We set up a three-factorial greenhouse experiment to study the effects of earthworms (Aporrectodea caliginosa Savigny and Lumbricus terrestris L.) and AMF (Glomus intraradices N.C. Schenck & G.S. Sm.) on the performance (productivity and shoot nutrient content) of plant species (Lolium perenne L., Trifolium pratense L. and Plantago lanceolata L.) belonging to the three functional groups grasses, legumes and herbs, respectively. Further, we investigated earthworm performance and plant root mycorrhization as affected by the treatments. Our results accentuate the importance of root derived resources for earthworm performance since earthworm weight (A. caliginosa and L. terrestris) and survival (L. terrestris) were significantly lower in microcosms containing P. lanceolata than in those containing T. pratense. However, earthworm performance was not affected by AMF, and plant root mycorrhization was not modified by earthworms. Although AMF effectively competed with T. pratense for soil N (as indicated by δ15N analysis), AMF enhanced the productivity of T. pratense considerably by improving P availability. Remarkably, we found no evidence for interactive effects of earthworms and AMF on the performance of the plant species studied. This suggests that interactions between earthworms and AMF likely are of minor importance.  相似文献   

19.
Subsurface drainage induces systematic spatial variability in soil properties which may be reflected in the abundance and distribution of soil organisms. We compared the population density of the deep burrowing earthworm Lumbricus terrestris L. above and between tile subdrains in 41 sample pairs on an eight hectare grass field. Above the drains the median number of  individuals was twice as high and their total fresh mass five times as high as between the drains (4.5 vs. 2.1 individuals m-2  and 9.6 vs. 1.9 g m-2, respectively). The mean difference (above drain – between drains) was 2.5 individuals m-2  (95% CI = 1.0 to 4.0) and 6.6 grams m-2 (95% CI = 3.6 to 9.6). The relatively larger difference in fresh mass was due to a high proportion of adult individuals above drains. One likely explanation for the pattern of abundance is that the lowered water table level near the drains provides an environment beneficial for the population growth of L. terrestris. Due to the role of L. terrestris burrows as flow paths of percolating water the observations may have implications on subdrain function.  相似文献   

20.
入侵植物三叶鬼针草(Bidens pilosa L.)严重危害我国农林畜牧业的生产。为探究生态高效控制三叶鬼针草的方法,开展了水稻秸秆与塑料薄膜相结合覆盖控制入侵杂草的研究。试验在以三叶鬼针草和马唐[Digitaria sanguinalis(L.)Scop.]为主的自然杂草荒地进行,设置不同稻秆覆盖量(0kg·m~(-2)、1kg·m~(-2)、1.5kg·m~(-2)),于冬季进行稻秆覆盖,春季在稻秆覆盖的基础上覆盖薄膜。通过测定秸秆覆盖中期(2月12日)和薄膜覆盖中期(4月12日)的午间土壤温度、土壤相对含水量和近地表空气温湿度等环境指标和杂草生物量、种子萌发量、杂草群落结构和土壤种子库等群落指标,探究该方法控制入侵杂草的效果和机制。结果表明:冬季水稻秸秆覆盖显著降低了草地午间土壤温度、近地表空气温度、三叶鬼针草生物量和种子萌发量、优势杂草盖度和从属种的种类和数量;覆盖1.5 kg·m~(-2)稻秆的处理对各类指标的影响程度均大于1 kg·m~(-2)的处理。春季叠加薄膜覆盖导致浅层土壤高温干燥、近地表空气高温高湿;叠加薄膜覆盖处理使三叶鬼针草的土壤种子密度在0~5cm的土层内显著低于未做覆盖处理的对照,降低了79.49%;叠加薄膜覆盖处理的入侵杂草全部死亡且无种子萌发。说明冬季采用水稻秸秆覆盖,春季再叠加覆盖薄膜能有效防控三叶鬼针草的生长蔓延,在薄膜覆盖之前,覆盖1.5 kg·m~(-2)稻秆的处理对三叶鬼针草的防控效果要好于1 kg·m~(-2)的处理,在薄膜覆盖处理后,两个稻秆覆盖量处理对三叶鬼针草的防控效果均达到100%。本研究结果可为不同季节采用不同的控制方法及其组合模式防控入侵杂草的扩散提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号