首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We measured dormant season (November through February) maintenance respiration rates (R(m)) in stems and branches of 9-year-old loblolly pine (Pinus taeda L.) growing in plots under conditions of controlled nutrient and water supply in an effort to determine the relationships between R(m) and tissue size (surface area, sapwood volume, sapwood dry weight), tissue nitrogen content and temperature. Dormant season R(m) per unit size (i.e., surface area, &mgr;mol m(-2) s(-1); sapwood volume, &mgr;mol m(-3) s(-1); or sapwood dry weight, nmol g(-1) s(-1)) varied with tissue size, but was constant with respect to tissue nitrogen content (&mgr;mol mol(-1) N s(-1)). Cambium temperature accounted for 61 and 77% of the variation in stem and branch respiration, respectively. The basal respiration rate (respiration at 0 degrees C) increased with tissue nitrogen content, however, the Q(10) did not. Improved nutrition more than doubled stem basal respiration rate and increased branch basal respiration by 38%. Exponential equations were developed to model stem and branch respiration as a function of cambium temperature and tissue nitrogen content. We conclude that failure to account for tissue nitrogen effects on respiration rates will result in serious errors when estimating annual maintenance costs.  相似文献   

2.
Microsite influences development and resource allocation of Dactylis glomerata L. (orchardgrass), a traditional pasture species with potential as an understory crop in silvopasture of humid temperate regions. An experiment using container-grown orchardgrass was conducted under field conditions to determine how open (O), shaded woodland (W) and open-to-shaded woodland transition zone (E O, E W) microsites influenced leaf DM production. Plants established in spring (SP) and late summer (LS) were clipped each time mean canopy height reached 20 cm. Dry matter production and allocation among structures differed, as a function of light attenuation. Specific leaf area (SLA) and photosynthetic nitrogen-use efficiency (PNUE) were associated with leaf DM production, whereas leaf N, net assimilation rate and shoot total nonstructural carbohydrates (TNC), were not. Specific leaf area was related to leaf DM of LS plants, whereas PNUE influenced leaf DM of SP plants. Stembase TNC was inversely related to relative regrowth rate (RGRR) with RGRR greatest and TNC the least at W. The relationship for RGRR and TNC for SP plants growing at O and LS plants growing at W was similar. Regardless of how indices of growth are related, SP and LS plantings responded as separate populations (representing young and established plants respectively) that have different leaf DM production efficiencies. Orchardgrass was able to sustain leaf production when subjected to simultaneous stresses of shade and repeated defoliation. The LS plants growing at W respond in a manner similar to SP plants and may require management practices attuned to establishing or immature plants. The US Government’s right to retain a royalty-free, non-exclusive copyright is achnowledged.  相似文献   

3.
Microsite conditions influence plant development and resource allocation of Dactylis glomerata L. (orchardgrass), a traditional pasture species with potential as an understory crop in woodlots. A field experiment was conducted to determine how open (O), shaded woodland (W) and open-to-shaded woodland transition zone (EO, EW) microsites influenced the quantity and distribution of nonstructural carbohydrate (TNC) and crude protein (CP) among plant parts of defoliated orchardgrass. Plants established in spring (SP) or late summer (LS) were clipped each time mean sward height reached 20 cm. Microsite conditions influenced nutritive value of herbage. Nutritive value was acceptable when not more than 45–50% light attenuation (as a function of shading by nearby trees) occurred relative to open pasture. Twice as much TNC accumulated in stembases of LS compared to SP plants. Concentrations of TNC were least in plants growing at W, regardless of planting time. Stembase TNC depletion occurred in SP plants, regardless of microsite, and LS plants growing at W. CP concentrations were greater in herbage from W compared to O sites, suggesting the N needs of the plant were met with minimal fertilizer N inputs. The ratio of C:N and thus herbage energy expressed as total digestible nutrients (TDN), relative to CP declined as shade increased. Increased protein content is offset by lower fiber, lower nonstructural carbohydrate and the possibility of reduced preference by grazers. Nutritive value is improved by modest amounts of shade relative to plants growing in full sunlight, and allowing cool temperate origin grasses to vernalize is beneficial in terms of productivity, nutritive value, and persistence. Ths US Government’s right ot retain a non-exclusive, royaltyfree license in and to any copyright is acknowledged.  相似文献   

4.
Stem respiration was measured throughout 1993 on 56 mature trees of three species (Quercus alba L., Quercus prinus L., and Acer rubrum L.) in Walker Branch Watershed, Oak Ridge, Tennessee. A subset of the trees was remeasured during 1994. Diameter increments, stem temperatures and soil water were also monitored. Respiration rates in the spring and summer of 1993 tracked growth rate increments, except during a drought when growth dropped to zero and respiration increased to its highest rate. During the dormant season, rates of total stem respiration (R(t)) tended to be greater in large trees with thick sapwood but no such trend was observed during the growing season. Before and after the growing season, respiration rates correlated well with stem temperatures. Estimated values of Q(10) were 2.4 for the two oak species and 1.7 for red maple. The Q(10) values were used along with baseline respiration measurements and stem temperatures to predict seasonal changes in maintenance respiration (R(m)). In red maple, annual total R(m) accounted for 56 and 60% of R(t) in 1993 and 1994, respectively. In chestnut oak, R(m) accounted for 65 and 58% of R(t) in 1993 and 1994, respectively. In white oak, R(m) accounted for 47 and 53% of R(t) in 1993 and 1994, respectively. Extrapolating these data to the stand level showed that woody tissue respiration accounted for 149 and 204 g C m(-2) soil surface year(-1) in 1993 and 1994, respectively.  相似文献   

5.
We assessed the irradiance-related plasticity of hydraulic architecture in saplings of Betula pendula Roth., a pioneer species; Acer pseudoplatanus L., Fraxinus excelsior L. and Quercus robur L., which are post-pioneer light-requiring species; and Quercus petraea Matt. Liebl. and Fagus sylvatica L. Plants were grown in pots in 36%, 16% and 4% of full sunlight. Hydraulic conductance was measured with a high-pressure flow-meter in entire, in situ root systems and in excised shoots. Leaf-specific whole-plant conductance (LSC) increased with irradiance, due, in part, to an effect of irradiance on plant size. In addition, there was a size-independent effect of irradiance on LSC due, in part, to an increase in root hydraulic conductance paralleled by an increase in root biomass scaled to leaf area. Changes in shoot conductivity also contributed to the size-independent plasticity of LSC. Vulnerability to cavitation measured in current-year twigs was much larger in shade-grown plants. Betula pendula had the highest whole-plant, root and shoot conductances and also the greatest vulnerability to cavitation. The other species were similar in LSC, but showed some variation in root conductance scaled to biomass, with Q. robur, Q. petraea and F. sylvatica having the lowest root conductance and susceptibility to cavitation. All species showed a similar irradiance-related plasticity in LSC.  相似文献   

6.
Three-year-old Scots pine (Pinus sylvestris L.) seedlings were exposed to either ambient or elevated (1.5-1.6 x ambient) ozone concentration ([O3]) for three growing seasons in an open-field fumigation facility where they were irrigated during the growing season with a nutrient solution providing nitrogen (N) at 70 (LN treatment), 100 (control) or 150% (HN treatment) of the optimum supply rate. Treatment effects were most evident during the third year of exposure, when the ambient [O3] + HN treatment enhanced whole-plant biomass, root/shoot dry weight ratio, needle pigment concentrations and the number of chloroplast plastoglobuli in the mesophyll cells in current-year (C) needles, whereas it reduced starch accumulation in C needles and abscission of 2-year-old (C+2) needles. In the control fertilization, 3 years of exposure to elevated [O3] decreased stem-base diameter and increased K concentration and electron density of chloroplast stroma in C needles. Plants in the HN treatment exposed for 3 years to elevated [O3] had significantly lower heights, current-year main shoot length and root/shoot dry mass ratio than control plants, and increased abscission of C+2 needles. In contrast, O3-induced changes in the ultrastructure of mesophyll cells were most evident in seedlings grown for 3 years in the LN treatment. We conclude that, in Scots pine, a relatively O3-tolerant species, chronic O3 exposure leads to cumulative growth reduction, increased needle abscission and changes in carbon allocation that are strongly influenced by plant N availability.  相似文献   

7.
Dillaway DN  Kruger EL 《Tree physiology》2011,31(10):1114-1127
In common gardens along an ~900 km latitudinal transect through Wisconsin and Illinois, U.S.A., tree species typical of boreal and temperate forests were compared with respect to the nature and magnitude of leaf respiratory acclimation to contrasting climates. The boreal representatives were trembling aspen (Populus tremuloides Michx.) and paper birch (Betula papyrifera Marsh.), while the temperate species were eastern cottonwood (Populus deltoides Bartr ex. Marsh var. deltoides) and sweetgum (Liquidambar styraciflua L.). Assessments were conducted on seedlings grown from seed sources collected near southern and northern range boundaries, respectively. Nighttime rates of leaf dark respiration (R(d)) at common temperatures, as well as R(d)'s short-term temperature sensitivity (energy of activation, E(o)), were assessed for all species and gardens twice during a growing season. Little evidence of R(d) thermal acclimation was observed, despite a 12 °C range in average air temperature across gardens. Instead, R(d) variation at warm temperatures was linked most closely with prior leaf photosynthetic performance, while R(d) variation at cooler temperatures was most strongly related to leaf nitrogen concentration. Moreover, E(o) differences across species and gardens appeared to stem from the somewhat independent limitations on warm versus cool R(d). Based on this construct, an empirical model relying on R(d) estimates from leaf photosynthesis and nitrogen concentration explained 55% of the observed E(o) variation.  相似文献   

8.
Ranchers need alternative livestock feeds when herbaceous forages become limiting in summer. Our objectives were to determine: (1) leaf and stem biomass components, (2) nutritive value [in vitro dry matter digestibility (IVDMD), total nonstructural carbohydrate (TNC), N, and N digestibility] of leaves for animal browse, (3) concentration of the secondary metabolites robinin and mimosine, and (4) in vitro leaf and bark toxicity for black locust (Robinia pseudoacacia L.) and mimosa (Albizia julibrissin Durz.), respectively, pollarded at 50 cm in Arkansas, USA. Black locust exceeded mimosa for every yield component (leaf mass tree−1, leaves shoot−1, shoots tree−1, shoot mass tree−1, stem basal area, and biomass tree−1) except mass leaf−1. Projected yields were 1,900 and 1,600 kg leaves ha−1 for black locust and mimosa, respectively, assuming a population of 12,300 trees ha−1. Mimosa leaves had greater IVDMD, TNC, and N digestibility than black locust. Mimosa leaves exceeded the nutritional N requirements of growing cattle (Bos taurus L.) and goats (Capra hircus L.), but protein supplementation would be needed for growing goats grazing black locust leaves. Tissue concentrations of secondary metabolites robinin and mimosine were below detectable limits in black locust and mimosa, respectively. The extract of black locust bark, but not leaves, was toxic to bioassayed African green monkey (Cercopithecus aethiops L.) cells. Either black locust or mimosa could provide moderate quantities of high quality, rotationally grazed forage for goats during summer months when herbaceous forage may in short supply.  相似文献   

9.
To determine the effects of shade on biomass, carbon allocation patterns and photosynthetic response, seedlings of loblolly pine (Pinus taeda L.), white pine (Pinus strobus L.), red maple (Acer rubrum L.), and yellow-poplar (Liriodendron tulipifera L.) were grown without shade or in shade treatments providing a 79 or 89% reduction of full sunlight for two growing seasons. The shade treatments resulted in less total biomass for all species, with loblolly pine showing the greatest shade-induced growth reduction. Yellow-poplar was the only species to show increased stem height growth in the 89% shade treatment. The shade treatments increased specific leaf area of all species. Quantum efficiency, dark respiration and light compensation point were generally not affected by the shade treatments. Quantum efficiency, dark respiration, maximum photosynthesis and light compensation point did not change consistently between the first and second growing seasons. We conclude that differences in shade tolerance among these species are not the result of changes in the photosynthetic mechanism in response to shade.  相似文献   

10.
If an increase in temperature will limit the growth of a species, it will be in the warmest portion of the species distribution. Therefore, in this study we examined the effects of elevated temperature on net carbon assimilation and biomass production of northern red oak (Quercus rubra L.) seedlings grown near the southern limit of the species distribution. Seedlings were grown in chambers in elevated CO(2) (700 μmol mol(-1)) at three temperature conditions, ambient (tracking diurnal and seasonal variation in outdoor temperature), ambient +3 °C and ambient +6 °C, which produced mean growing season temperatures of 23, 26 and 29 °C, respectively. A group of seedlings was also grown in ambient [CO(2)] and ambient temperature as a check of the growth response to elevated [CO(2)]. Net photosynthesis and leaf respiration, photosynthetic capacity (V(cmax), J(max) and triose phosphate utilization (TPU)) and chlorophyll fluorescence, as well as seedling height, diameter and biomass, were measured during one growing season. Higher growth temperatures reduced net photosynthesis, increased respiration and reduced height, diameter and biomass production. Maximum net photosynthesis at saturating [CO(2)] and maximum rate of electron transport (J(max)) were lowest throughout the growing season in seedlings grown in the highest temperature regime. These parameters were also lower in June, but not in July or September, in seedlings grown at +3 °C above ambient, compared with those grown in ambient temperature, indicating no impairment of photosynthetic capacity with a moderate increase in air temperature. An unusual and potentially important observation was that foliar respiration did not acclimate to growth temperature, resulting in substantially higher leaf respiration at the higher growth temperatures. Lower net carbon assimilation was correlated with lower growth at higher temperatures. Total biomass at the end of the growing season decreased in direct proportion to the increase in growth temperature, declining by 6% per 1 °C increase in mean growing season temperature. Our observations suggest that increases in air temperature above current ambient conditions will be detrimental to Q. rubra seedlings growing near the southern limit of the species range.  相似文献   

11.
Trees exposed to elevated CO2 partial pressure ([CO2]) generally show increased rates of photosynthesis and growth, but effects on leaf respiration are more variable. The causes of this variable response are unresolved. We grew 12-year-old sweetgum trees (Liquidambar styraciflua L.) in a Free-Air CO2 Enrichment (FACE) facility in ambient [CO2] (37/44 Pa daytime/nighttime) and elevated [CO2] (57/65 Pa daytime/nighttime) in native soil at Oak Ridge National Environmental Research Park. Nighttime respiration (R(N)) was measured on leaves in the upper and lower canopy in the second (1999) and third (2000) growing seasons of CO2 fumigation. Leaf respiration in the light (R(L)) was estimated by the technique of Brooks and Farquhar (1985) in the upper canopy during the third growing season. There were no significant short-term effects of elevated [CO2] on R(N) or long-term effects on R(N) or R(L), when expressed on an area, mass or nitrogen (N) basis. Upper-canopy leaves had 54% higher R(N) (area basis) than lower-canopy leaves, but this relationship was unaffected by CO2 growth treatment. In August 2000, R(L) was about 40% of R(N) in the upper canopy. Elevated [CO(2)] significantly increased the number of leaf mitochondria (62%), leaf mass per unit area (LMA; 9%), and leaf starch (31%) compared with leaves in ambient [CO(2)]. Upper-canopy leaves had a significantly higher number of mitochondria (73%), N (53%), LMA (38%), sugar (117%) and starch (23%) than lower-canopy leaves. Growth in elevated [CO2] did not affect the relationships (i.e., intercept and slope) between R(N) and the measured leaf characteristics. Although no factor explained more than 45% of the variation in R(N), leaf N and LMA were the best predictors for R(N). Therefore, the response of RN to CO2 treatment and canopy position was largely dependent on the magnitude of the effect of elevated [CO2] or canopy position on these characteristics. Because elevated [CO2] had little or no effect on N or LMA, there was no effect on R(N). Canopy position had large effects on these leaf characteristics, however, such that upper-canopy leaves exhibited higher R(N) than lower-canopy leaves. We conclude that elevated [CO2] does not directly impact leaf respiration in sweetgum and that barring changes in leaf nitrogen or leaf chemical composition, long-term effects of elevated [CO2] on respiration in this species will be minimal.  相似文献   

12.
Seasonal variation in the biomass and total non-structural carbohydrate content (TNC) of fine roots of teak (Tectona grandis L. f.) were studied in 19- and 29-year-old plantations in a dry tropical region. Fine root TNC content was highest during the dry summer (May), and lowest in the early part of the rainy season (July). Generally, seasonal trends in TNC content were the opposite of those in fine root biomass. The TNC concentration of roots increased with diameter and decreased with soil depth. In the 19-year-old plantation, fine root TNC content was approximately 12% higher than in the 29-year-old plantation.  相似文献   

13.
Barbaroux C  Bréda N 《Tree physiology》2002,22(17):1201-1210
We tested the hypothesis that broad-leaved forest species with contrasting wood anatomy and hydraulic system (ring-porous versus diffuse-porous) also differ in distribution and seasonal dynamics of carbohydrate reserves in stem wood. Total nonstructural carbohydrate (TNC) reserves (starch and sugars) were measured enzymatically in the 10 youngest stem xylem rings of adult oak (Quercus petraea (Matt.) Liebl.) and beech (Fagus sylvatica L.) trees during an annual cycle. Radial distribution of carbohydrates was investigated according to ring age. On all dates, oak trees had twofold higher TNC concentration than beech trees (41 versus 23 mg g(DM)(-1)), with starch accounting for the high TNC concentration in oak. Seasonal dynamics of TNC concentration were significantly (P < 0.05) more pronounced in oak (20-64 mg TNC g(DM)(-1)) than in beech (17-34 mg TNC g(DM)(-1)). A marked decrease in TNC concentration was observed in oak trees during bud burst and early wood growth, whereas seasonal fluctuations in TNC concentrations in beech trees were small. The radial distribution of TNC based on ring age differed between species: TNC was restricted to the sapwood rings in oak, whereas in beech, it was distributed throughout the wood from the outermost sapwood ring to the pith. Although the high TNC concentrations in the outermost rings accounted for most of the observed seasonal pattern, all of the 10 youngest xylem rings analyzed participated in the seasonal dynamics of TNC in beech trees. The innermost sapwood rings of oak trees had low TNC concentrations. Stem growth and accumulation of carbon reserves occurred concomitantly during the first part of the season, when there was no soil water deficit. When soil water content was depleted, stem growth ceased in both species, whereas TNC accumulation was negligibly affected and continued until leaf fall. The contrasting dynamics and distribution of carbohydrate reserves in oak and beech are discussed with reference to differences in phenology, early spring growth and hydraulic properties between ring-porous trees and diffuse-porous trees.  相似文献   

14.
Maier CA 《Tree physiology》2001,21(16):1183-1193
Stem respiration and growth in 10-year-old loblolly pine (Pinus taeda L.) plantations were measured monthly during the third year of fertilization and irrigation treatments to determine whether soil resource availability differentially altered growth and respiration in stem tissue. Fertilized trees had significantly greater stem biomass, stem nitrogen concentration ([N]) and growth rate than unfertilized trees. Stem respiration (Rt) was significantly greater in fertilized trees when expressed on a per unit surface area (Rt,a, micromol CO2 m-2 s-1), sapwood volume (Rt,v, micromol CO2 m-3 s-1), or mass (Rt,w, nmol CO2 g-1 s-1) basis; however, there was no difference between treatments when expressed as a function of stem N content (Rt,n, micromol CO2 (mol N)-1 s-1). Irrigation had no significant effect on Rt or annual stem growth. Daily total respiration (Rd, mol CO2 m-2 day-1) and stem diameter growth both had a seasonal bimodal pattern with peaks in early spring and midsummer. Stem [N] declined significantly during the growing season. Stem growth rate and [N] explained 75% of the seasonal variation in temperature-normalized Rt,a. The mature tissue method was used to partition total stem respiration (Rt) into maintenance (Rm) and growth (Rg) components. There was a linear correlation between winter Rt,v, a measure of basal Rm, and sapwood N content; however, Rt,v per unit N was greater in January before diameter growth started than in the following December after growth ceased, indicating that Rt,v declined as stem diameter increased. Consequently, estimates of annual maintenance respiration (RM) based on January data were 44% higher than estimates based on December data. Growth respiration was correlated with stem growth rate (r2 = 0.55). The growth respiration coefficient (rg)-the slope of the relationship between Rg and stem growth rate-was 0.24. Respiration accounted for 37% of annual stem carbon budget. Stem carbon-use efficiency (CUE)-the ratio of stem growth to stem growth plus respiration-averaged 0.63 and was unaffected by fertilization.  相似文献   

15.
Khurana  Ekta  Singh  J.S. 《New Forests》2004,27(2):139-157
The impact of seed size and successional status on seedling growth under elevated CO2 was studied for five dry tropical tree species viz. Albizia procera, Acacia nilotica, Phyllanthus emblica, Terminalia arjuna and Terminalia chebula. Seedlings from large (LS) and small seeds (SS) were grown at two CO2 levels (ambient and elevated, 700–750 ppm). CO2 assimilation rate, stomatal conductance, water use efficiency and foliar N were determined after 30 d exposure to elevated CO2. Seedlings were harvested after 30 d and 60 d exposure periods. Height, diameter, leaf area, biomass and other growth traits (RGR, NAR, SLA, R:S) were determined. Seedling biomass across species was positively related with seed mass. Within species, LS seedlings exhibited greater biomass than SS seedlings. Elevated CO2 enhanced plant biomass for all the species. The relative growth rate (RGR), net assimilation rate (NAR), CO2 assimilation rate, R:S ratio and water use efficiency increased under elevated CO2. However, the positive impact of elevated CO2 was down regulated beyond 30 d exposure. Specific leaf area (SLA), transpiration rate, stomatal conductance declined due to exposure to elevated CO2. Fast growing, early successional species exhibited greater RGR, NAR and CO2 assimilation rate. Per cent enhancement in such traits was greater for slow growing species. The responses of individual species did not follow functional types (viz. legumes, non-legumes). The enhancement in biomass and RGR was greater for large-seeded species and LS seedlings within species. This study revealed that elevated CO2 could cause large seeded, slow growing and late successional species to grow more vigorously.  相似文献   

16.
Plant size often influences shade tolerance but relatively few studies have considered the functional response of taller plants to contrasting light environments. Several boreal and sub-boreal Abies, Picea and Pinus species were studied along a light (0-90% full sunlight) and size (30-400-cm high) gradient to examine the interactive influence of tree size and light availability on aboveground biomass distribution. Sampling was conducted in two regions of Canada: (A) British Columbia, for Abies lasiocarpa (Hook.) Nutt., the Picea glauca (Moench.) Voss x P. engelmannii Parry ex. Engelm. complex and Pinus contorta Dougl. var. latifolia Engelm.; and (B) Quebec, for Abies balsamea (L.) Mill., Picea glauca (Moench. Voss) and Pinus banksiana (Lamb.). All biomass distribution traits investigated varied with size, and most showed a significant interaction with both size and light, which resulted in increasing divergences among light classes as size increased. For example, the proportion of needle mass decreased as size increased but the rate of decrease was much greater in saplings growing at below 10% full sunlight. Needle area ratio (total needle area:aboveground mass) followed a similar pattern, but decreased more rapidly with increasing tree size for small trees up to 1 m tall. The proportion of needle biomass (needle mass ratio) was always lower in taller trees (i.e., > 1 m tall) than in small trees (< 1 m tall) and increasingly so at the lowest solar irradiances (0-10% full sunlight). Thus, extrapolating the functional response to light from small seedling to taller individuals is not always appropriate.  相似文献   

17.
针对铁尾矿植被恢复时植物可选种类少、适应性差,影响植被修复技术推广的现状,在唐山首钢马兰庄镇铁尾矿废弃地上直接播种紫苜蓿、紫穗槐、皂荚、暴马丁香、刺槐5种植物,对每种植物的株高、地径、根长、地上生物量、地下生物量和根冠比等生长指标进行测定分析,结果表明:到2014年9月,刺槐在5种植物中表现最佳,适应性最强,株高(77.67cm)、地径(6.33cm)、根长(23.97cm)、地上生物量(2 040.19g/m~2)和地下生物量(839.01g/m~2)及这5种指标的年生长量均达最大值;除地径外,紫苜蓿的各项生长指标表现次之;紫穗槐、暴马丁香、皂荚较差。2013年9月,各植物的根冠比由大到小依次为紫穗槐(1.04)、皂荚(0.83)、暴马丁香(0.56)、刺槐(0.37)、紫苜蓿(0.32);2014年9月各植物的根冠比由大到小依次为皂荚(1.71)、暴马丁香(0.91)、紫穗槐(0.80)、紫苜蓿(0.50)、刺槐(0.41)。综合考虑,刺槐和紫苜蓿可分别作为适宜铁尾矿修复的最佳树种和草本植物。  相似文献   

18.
Influence of plant internal nitrogen (N) stocks on carbon (C) and N uptake and allocation in 3-year-old beech (Fagus sylvatica L.) was studied in two 15N- and 13C-labeling experiments. In the first experiment, trees were grown in sand and received either no N nutrition (-N treatment) or 4 mM unlabeled N (+N treatment) for 1 year. The -N- and +N-pretreated trees were then supplied with 4 mM 15N and grown in a 13CO2 atmosphere for 24 weeks. In the second experiment, trees were pretreated with 4 mM 15N for 1 year and then supplied with unlabeled N for 24 weeks and the remobilization of stored 15N was monitored. On the whole-plant level, uptake of new C was significantly reduced in -N-pretreated trees; however, partitioning of new C was not altered, although there was a trend toward increased belowground respiration. The amount of N taken up was not influenced by N nutrition in the previous year. In +N-pretreated trees, partitioning of new N was dominated by the fine roots (59.7% at Week 12), whereas in -N-pretreated trees, partitioning of new N favored stem, coarse roots and fine roots (24, 21 and 31.9%, respectively, at Week 12), indicating the formation of N stores. The contribution of previous-year N to leaf N was about 15%. The N remobilized for leaf formation had been stored in stem and coarse roots. We conclude that, within a growing season, the growth of beech is strongly determined by the availability of tree internal N stores, whereas the current N supply is of less importance.  相似文献   

19.
Bauer GA  Berntson GM 《Tree physiology》2001,21(2-3):137-144
We examined changes in root system architecture and physiology and whole-plant patterns of nitrate reductase (NR) activity in response to atmospheric CO2 enrichment and N source to determine how changes in the form of N supplied to plants interact with rising CO2 concentration ([CO2]). Seedlings of Betula alleghaniensis Britt. and Pinus strobus L., which differ in growth rate, root architecture, and the partitioning of NR activity between leaves (Betula) and roots (Pinus), were grown in ambient (400 microl l(-1)) and elevated (800 microl l(-1)) [CO2] and supplied with either nitrate (NO3-) or ammonium (NH4+) as their sole N source. After 15 weeks of growth, plants were harvested and root system architecture, N uptake kinetics, and NR activity measured. Betula alleghaniensis responded to elevated [CO2] with significant increases in growth, regardless of the source of N. Pinus strobus showed no significant response in biomass production or allocation to elevated [CO2]. Both species exhibited significantly greater growth with NH4+ than with NO3-, along with lower root:shoot biomass ratios. Betula showed significant increases in total root length in response to elevated [CO2]. However, root N uptake rates in Betula (for both NO3- and NH4+) were either reduced or unchanged by elevated [CO2]. Pinus showed the opposite response to elevated [CO2], with no change in root architecture, but an increase in maximal uptake rates in response to elevated [CO2]. Nitrate reductase activity (on a mass basis) was reduced in leaves of Betula in elevated [CO2], but did not change in other tissues. Nitrate reductase activity was unaffected by elevated [CO2] in Pinus. Scaling this response to the whole-plant, NR activity was reduced in elevated [CO2] in Betula but not in Pinus. However, because Betula plants were larger in elevated [CO2], total whole-plant NR activity was unaffected.  相似文献   

20.
Root respiration is closely related to root morphology, yet it is unclear precisely how to distinguish respiration-related root physiological functions within the branching fine root system. Root respiration and tissue N concentration were examined for different N fertilization treatments, sampling dates, branch orders and temperatures of larch (Larix gmelinii L.) and ash (Fraxinus mandshurica L.) using the excised roots method. The results showed that N fertilization enhanced both root respiration and tissue N concentration for all five branch orders. The greatest increases in average root respiration for N fertilization treatment were 13.30% in larch and 18.25% in ash at 6°C. However, N fertilization did not change the seasonal dynamics of root respiration. Both root respiration and root tissue N concentration decreased with increase in root branch order. First-order (finest) roots exhibited the highest respiration rates and tissue N concentrations out of the five root branch orders examined. There was a highly significant linear relationship between fine root N concentration and root respiration rate. Root N concentration explained >60% of the variation in respiration rate at any given combination of root order and temperature. Root respiration showed a classical exponential relationship with temperature, with the Q(10) for root respiration in roots of different branching orders ranging from 1.62 to 2.20. The variation in root respiration by order illustrates that first-order roots are more metabolically active, suggesting that roots at different branch order positions have different physiological functions. The highly significant relationship between root respiration at different branch orders and root tissue N concentration suggests that root tissue N concentration may be used as a surrogate for root respiration, simplifying future research into the C dynamics of rooting systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号