首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 359 毫秒
1.
大豆对大豆花叶病毒株系SC6和SC17抗病基因的精细定位   总被引:1,自引:0,他引:1  
针对我国北方和长江流域大豆产区广泛分布的SMV株系SC6和SC17,利用2个抗病大豆品种Q0926和中豆35分别与感病品种南农1138-2和南农菜豆5号配制2个抗感杂交组合Q0926×南农1138-2和中豆35×南农菜豆5号以及一个抗抗组合Q0926×中豆35,研究3个组合的F1、F2、F2:3抗性遗传规律,探讨Q0926对SC6和中豆35对SC17及2个抗病品种对同一SMV株系抗性基因的等位关系,并对大豆对2个株系的抗病基因进行了标记定位。结果显示,Q0926×南农1138-2和中豆35×南农菜豆5号2个抗感杂交组合在分别接种SC6和SC17后,F1表现抗病,F2呈3抗∶1感分离比例,F2:3家系呈1抗∶2分离∶1感病的分离比率,表明Q0926对SC6和中豆35对SC17的抗病性分别由1对显性基因控制;抗抗组合Q0926×中豆35的F1和F2在接种2个株系后均未发现感病单株,表明Q0926与中豆35对SC6和SC17株系的抗病基因分别是等位或紧密连锁的。分别利用2个抗感组合的F2和F2:3群体对2个抗病基因的定位结果显示,第2染色体上的25个SSR标记与抗SC6的基因RSC6连锁,最近的2个标记与抗性基因RSC6的排列次序和遗传距离为BARCSOYSSR_02_0617(0.775 cM)-RSC6-BARCSOYSSR_02_0621(0.519 cM);第2染色体上的38个SSR标记与抗SC17的基因RSC17连锁。最近的2个标记与抗性基因RSC17的排列次序和遗传距离为BARCSOYSSR_02_0622(0.264 cM)-RSC17-BARCSOYSSR_02_0627(0.262 cM),其对应的物理区间分别为52 kb和60 kb。抗性遗传研究为抗大豆花叶病毒育种的亲本选配、后代选择提供了理论指导,抗性基因的标记定位研究为抗性基因的分子标记辅助选择和抗病基因的图位克隆奠定了基础。  相似文献   

2.
为了研究大豆广谱抗源对我国大豆花叶病毒优势株系SC3和SC7的遗传方式及抗源材料对SMV抗性基因间的等位性关系,利用广谱抗源科丰1号和齐黄1号与感病材料南农1138-2配制抗感及抗抗杂交组合,通过人工摩擦接种法进行鉴定。结果发现,接种株系SC3和SC7后,科丰1号和齐黄1号与南农1138-2配制抗感组合的F1均表现抗病,经卡方测验,F2抗感分离比例符合3∶1,F2∶3家系分离比例为1(抗)∶2(分离)∶1(感),说明这2个广谱抗源均有1对显性基因控制株系SC3和SC7的抗性;等位性测验结果表明2个抗抗组合的F1对SC3和SC7优势株系均表现抗病,F2分离比符合15(抗)∶1(感),说明科丰1号和齐黄1号对株系SC3和SC7的抗性基因不等位且独立遗传。进一步分析2个广谱抗源携带的抗性基因可以发现,科丰1号对株系SC3的抗性基因RSC3和齐黄1号对SC7株系的抗性基因RSC7Q可能位于大豆的2号和13号染色体上,为利用大豆广谱抗源进行抗SMV育种奠定了很好的基础。  相似文献   

3.
中棉所12的黄萎病抗性遗传与育种应用研究   总被引:1,自引:0,他引:1  
 以2个海岛棉品种和5个陆地棉品种为材料与中棉所12进行正反交,配制14个杂交组合的F1和F2 。采用纸钵育苗,撕底伤根接种方法对14个组合的F1和F2群体进行黄萎病抗性鉴定。结果表明,以中棉所12作父本与海岛棉抗黄萎病品种或陆地棉抗黄萎病品种进行杂交,F2抗(耐)病株与感病株的分离符合3:1的分离规律,说明海岛棉的抗黄萎病性对于中棉所12的耐黄萎病性为显性,中棉所12的耐黄萎病性对于陆地棉的感黄萎病性为显性,控制黄萎病抗性的基因为一个显性主基因。然而,以中棉所12为母本与海岛棉品种、抗病陆地棉品种和感病陆地棉品种进行杂交,F2群体中90%以上的个体为抗病类型,说明中棉所12的细胞质中存在着抗黄萎病的遗传成分,具有细胞质母体遗传的特点,在棉花抗黄萎病育种中具有重要的利用价值。  相似文献   

4.
本研究旨在改良武运粳8号的条纹叶枯病抗性。2004年,在扬州对江苏省1981—2002年间审定的25个迟熟中粳品种进行产量鉴定,从中筛选出直立穗高产品种武运粳8号作为条纹叶枯病抗性改良的受体亲本。利用抗条纹叶枯病品种葵风为供体亲本,通过杂交和回交,同时利用4个与条纹叶枯病抗性基因紧密连锁的分子标记STS11-31、STS11-71、STS11-19和STS11-43进行辅助选择,至2008年正季,共计获得 70个BC3F5以及115个BC4F4抗条纹叶枯病的稳定株系。经回交后代农艺性状、产量性状、品质性状和抗性的系统鉴定,从中筛选出10个BC4F5株系和2个BC3F6株系,这些株系综合性状与武运粳8号已十分相近,保持了武运粳8号的丰产性和优质,明显提高了条纹叶枯病的抗性。  相似文献   

5.
通过对小麦品种石麦12春化特性的遗传和分子标记研究,探索黄淮冬麦区小麦冬、春性改良途径和分子标记辅助选择技术。石麦12与冬性品种石家庄8号杂交后代F2:3株系中的春性株系、冬春性分离株系、冬性株系的分离比例符合1∶2∶1,表明石麦12具有一个显性春化基因,经已知春化基因的基因特异性标记鉴定为Vrn-D1。利用Vrn-D1的基因特异性标记对上述F2:3株系进行冬、春性鉴定的结果与表型鉴定结果一致,说明该分子标记可用于小麦冬、春性改良中对Vrn-D1的辅助选择。在高海拔、长日照地区夏播是小麦冬、春性表型鉴定的一个快速、简便途径。  相似文献   

6.
大豆对两个大豆花叶病毒本地株系抗性的遗传研究   总被引:9,自引:1,他引:8  
本试验用5个抗病材料与3个丰产感病品种共配制10个杂交组合。对各组合 F_1、F_2、F_3或 BC_1世代进行了抗性鉴定,结果表明:(1)AGS-9对 S_A 或 S_C 的抗性受单个显性基因控制,不受母本细胞质的影响;(2)广吉、AGS-9、大白麻中,抗 S_A 的基因具等位性,广吉、AGS-9、徐州424、兖黄1号中,抗 S_C 的基因亦具等位性,(3)广吉 AGS-9中,  相似文献   

7.
为了定位中国普通菜豆的抗炭疽病基因, 选取抗炭疽病地方品种红芸豆(国家库编号F2322)与高感菜豆品种京豆(国家库编号F0777)配制杂交组合, 构建F2抗感分离群体和F2:3家系, 用菜豆炭疽菌81号生理小种鉴定抗病性并分析遗传性。结果表明, 红芸豆对菜豆炭疽菌81号小种的抗性是由一显性单基因控制的, 暂将该基因命名为Co-F2322。用分离群体分组分析法(BSA)和SSR、CAPs分子标记技术, 将该基因定位在B1连锁群上, 利用软件Mapmaker 3.0和Mapchart 3.0计算标记与目的基因间的遗传距离, 检测到3个SSR标记BMc32、C871、Pvm98和2个CAPs标记g1224、g683与抗炭疽病基因连锁, 遗传距离分别为26.06、3.58、13.56、3.81和12.75 cM。  相似文献   

8.
通过杂交方法获得八倍体小偃麦与中间偃麦草杂种后代,对该杂交后代进行了形态学观察和细胞遗传学分析。杂交当代结实率为10%~39%;F1表现为两亲中间型,多年生,抗小麦多种病害,生长的第2和第3年结少量种子,结实率为2%~3%;F2分离复杂,出现八倍体小偃麦类型和中间偃麦草类型的多年生材料;F3和F4代出现一些普通小麦类型的多年生小麦,表现多分蘖、多小穗、抗病、抗寒。F1根尖减数分裂中发现49条染色体,在减数分裂中期I形成14~17个二价体和4~21个单价体;而F2和F3代减数分裂时形成14~21个二价体和9~17个单价体。杂种后代结实率逐代恢复。F1植株已在田间自然条件下生长5年。从F4代中获得了4个植株高大(140 cm)、分蘖丰富(60个以上)、小穗多(25~30个)的饲草型多年生小麦株系,它们不仅具有良好的刈割再生能力,而且兼抗多种病害,抗寒性好,草质与中间偃麦草相似。还获得了一些普通小麦类型的多年生株系,有待进一步改良。这些结果为多年生小麦的遗传研究和利用提供了信息和材料基础。  相似文献   

9.
普通小麦品种Brock抗白粉病基因分子标记定位   总被引:4,自引:2,他引:2  
为明确利用Brock转育成的小麦抗白粉病品系3B529(京411*7//农大015/Brock, F6)抗性的遗传基础,将高感白粉病小麦品系薛早和3B529杂交,获得F1代、F2分离群体和F2:3家系。抗病性鉴定和遗传分析结果表明,3B529对E09小种的抗性受1对显性基因控制,暂被定名为MlBrock。利用BSA和分子标记分析,获得了与MlBrock连锁的3个SSR标记Xcfd81、Xcfd78、Xgwm159和2个SCAR标记SCAR203和SCAR112,根据SSR和SCAR标记在中国春缺体四体、双端体和缺失系的定位结果,将MlBrock定位在小麦染色体臂5DS Bin 0~0.63区间上。MlBrock与Xcfd81和SCAR203共分离,与SCAR112的遗传距离为0.5 cM。这些分子标记的建立有利于今后Brock抗白粉病基因分子标记辅助选择和基因聚合。综合抗白粉病基因MlBrock的染色体定位和抗谱分析结果,推测MlBrock很可能是Pm2基因。  相似文献   

10.
 应用中国农业大学化控中心筛选的抗Bt Cry1Ac蛋白鼠单克隆抗体和兔多克隆抗体,建立了Bt Cry1Ac蛋白的双抗夹心酶联免疫检测法(Sandwich ELISA)。该方法的检测范围为0.78~50.0 ng·g-1,线性回归方程y=0.6634x-1.7387,决定系数为0.992。该方法与国外商业化试剂盒检测结果完全一致,可用于转基因抗虫棉Bt毒蛋白定性和定量检测。采用所建立的方法对亲本之一为非转基因抗虫棉的杂交F1、F2种子进行检测,结果F1全部为阳性,F2阴性和阳性数量比为1∶3,符合性状分离定律;此外,模拟检测种子的偶然基因改造成分混杂(Adventitious Presence,AP)检测结果为:对于Bt毒蛋白含量在140 ng以上的单粒种子,最低检测比例为1∶110。  相似文献   

11.
Soybean mosaic virus (SMV) commonly affects soybean production worldwide, and the SC18 strain has been widespread in China. This study aimed to characterize and map the SC18 resistance genes present in soybean cultivars ‘Kefeng No. 1’ and ‘Qihuang 22’. Inheritance analysis revealed that two independent single dominant genes in Kefeng No. 1 and Qihuang 22 confer resistance to SC18. Using simple sequence repeat (SSR) markers and bulked segregant analysis, the Kefeng No. 1 and Qihuang 22 resistance genes were located on soybean chromosomes 2 and 13, respectively. We further screened two populations of recombinant inbred lines with 32 SSR markers in the target region, where the resistance gene in Kefeng No. 1 was fine mapped to an 80‐kb region containing six putative genes. Sequence and expression analyses of these genes revealed that SMV resistance in Kefeng No. 1 was probably attributable to three of the candidate genes (i.e. Glyma.02G127800, Glyma.02G128200 and Glyma.02G128300). Collectively, the results of this study will greatly facilitate the cloning of SC18 resistance genes and marker‐assisted breeding of SMV‐resistant soybean cultivars.  相似文献   

12.
Soybean mosaic virus (SMV) can cause serious yield losses in soybean. Soybean cultivar ‘RN‐9’ is resistant to 15 of 21 SMV strains. To well‐characterize this invaluable broad‐spectrum SMV‐resistance, populations (F1, F2 and F2:3) derived from resistant (R) × susceptible (S) and R × R crosses were tested for SMV‐SC18 resistance. Genetic analysis revealed that SC18 resistance in ‘RN‐9’ plus two elite SMV‐resistant genotypes (‘Qihuang No.1’ and ‘Kefeng No.1’) are controlled by independently single dominant genes. Linkage analysis showed that the resistance of ‘RN‐9’ to SMV strains SC10, SC14, SC15 and SC18 is controlled by more than one gene(s). Moreover, Rsc10‐r and Rsc18‐r were both positioned between the two simple sequence repeats markers Satt286 and Satt277, while Rsc14‐r was fine‐mapped in 136.8‐kb genomic region containing sixteen genes, flanked by BARCSOYSSR_06_0786 and BARCSOYSSR_06_0790 at genetic distances of 3.79 and 4.14 cM, respectively. Allelic sequence comparison showed that Cytochrome P450‐encoding genes (Glyma.06g176000 and Glyma.06g176100) likely confer the resistance to SC14 in ‘RN‐9’. Our results would facilitate the breeding of broad‐spectrum and durable SMV resistance in soybeans.  相似文献   

13.
14.
大豆花叶病引起的大豆顶端坏死症   总被引:5,自引:0,他引:5  
廖林  刘玉芝 《作物学报》1995,21(6):707-710
2个抗病亲本和2个感病亲本配制4个杂交组合和4个回交组合。调查其F1、F2和BCF1群体接种东北大豆花叶病毒二号株系后,顶端坏死株的形成和分离比例。F1表现两种类型:无症株和坏死株,F2表现三种类型:无症株、有症株(花叶、皱缩等)和坏死株。其分离比例或为3抗:1感,或为7抗;9感,χ^2测验符合一对显性基因控制或者两对隐性互补基因控制。  相似文献   

15.
16.
大豆花叶病毒(Soybean mosaic virus, SMV)病是大豆主要的病害之一,给我国大豆生产带来了巨大的损失。大豆抗病育种是目前防治大豆花叶病毒病最为经济有效的措施,发掘抗病基因是抗病育种的基础。本文在前期对大豆抗SMV株系SC3基因精细定位的基础上,克隆了2个具有TIR-NBS-LRR典型抗病结构域的基因(GmR47和GmR51)。生物信息学分析表明, GmR47和GmR51基因均在抗感品种中存在氨基酸位点的突变,而且突变位点都位于保守结构域内,这2个基因编码的蛋白质预测为烟草花叶病毒(TMV)抗性N蛋白;物种间同源比对结果显示, GmR47和GmR51基因与野生大豆亲缘较近。qRT-PCR结果表明, GmR47和GmR51能够响应SMV的侵染增加表达量,且在抗病品种中的表达量高于感病品种。2个基因存在IN1、IN2和IN3不同的剪接体,所有的剪接体都能够响应病毒的诱导增加表达量,且在抗病品种中的表达量高于感病品种, IN1和IN2的表达量随时间的变化较为明显, IN3的表达量则相对稳定,说明这些剪接体可能参与大豆对SMV的抗病过程。本研究为后续基因功能的研究奠定了基础。  相似文献   

17.
大豆对SMV SC-7株系群的抗性遗传与基因定位   总被引:5,自引:0,他引:5  
科丰1号×南农1138-2的P1、P2、F1和180个重组自交家系接种SC-7株系群的鉴定表明,P1与F1全抗,P2全感,说明抗性为显性;重组自交家系抗、感按1∶1分离,说明抗性由一对基因控制。利用王永军等的遗传连锁图对SC-7株系群的抗性基因进行连锁分析,将抗病基因Rsc-7定位于N8-D1b+W连锁群上,并与已定位的5个抗性基因中的3个连锁,还有一个与之相连锁的标记LC5T,其排列顺序和遗传距离为Rsa (30.6 cM) Rsc-7 (22.1 cM) Rn3 (10.3 cM) Rn1 (15.8 cM) LC5T。  相似文献   

18.
大豆花叶病毒病(SMV)和大豆孢囊线虫病(SCN)是危害大豆生产的重要病害。本试验以冀豆系列14个品种为材料,利用RAPD和SCAR标记技术对其进行了大豆花叶病毒病和孢囊线虫病的抗病基因型分析,以寻找可供在大豆生产和育种中利用的抗源。所用引物为重复性较好的OPL_07,OPAO_19和SCW_05。通过分析,我们初步推断冀豆4号和五星一号同时具有大豆花叶病毒SC和Sa两种株系的抗性基因,其中五星一号既具有大豆花叶病毒病抗性基因同时还具有大豆孢囊线虫病抗性基因,可推荐作为大豆生产和育种中优先选用的抗源材料。  相似文献   

19.
不同品种大豆抗旱性能比较研究   总被引:10,自引:1,他引:10  
多年生产实践表明,在众多影响内蒙古大豆生产发展的因素中,干旱是极为重要的障碍因子,大豆品种的抗旱性也成为大豆高产的重要性状。本试验着眼于内蒙古大豆旱作生产实际,选用21个大豆品种(系),对开花结荚期不同品种大豆的叶绿素含量、保护酶活性、相对含水量及质膜透性等与抗旱性有关的生理生化指标进行了测试,并利用抗旱隶属函数法对供试大豆品种的抗旱性能进行分析,判断抗旱性强弱,为大豆生产提供理论指导和技术支持。结果表明:供试品种根据抗旱性能可分为4类,强抗旱品种为半野生大豆、秣食豆、吉育39号及晋豆15,抗旱类型为吉育30、吉育70、九农20、兴抗线1号、兴00-5091、吉育55、吉育35、吉育47、王中王和吉育56,中抗旱类型的品种有抗线4号、CK125、开育10号和吉育62号,弱抗旱品种有吉育38、中作962及中作引1号。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号