首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six diets were formulated to contain corn starch, tapioca starch, or dextrin at 10% and 20% inclusion levels and fed to humpback grouper fingerlings to apparent satiation for 10 weeks. Growth and feed utilization efficiency of humpback grouper were not affected by dietary carbohydrate source and level. Only slightly higher growth was observed in fish fed 20% dietary carbohydrate compared to the fish fed 10% carbohydrate irrespective of carbohydrate source. Body indices and whole body proximate composition of fish in the present study were generally independent of diet, except that muscle lipid of fish fed diets with 7.6% lipid and 20% carbohydrate was significantly lower than the other groups. In view of the lower price and local availability of tapioca starch compared to corn starch and dextrin, tapioca starch is the preferred source of starch in practical diets for humpback grouper.  相似文献   

2.
Manipulation of the ratio of amylopectin (α‐[1,4] and α‐[1,6] linked glucose) to amylose (α‐[1,41 linked glucose) starches in the carbohydrate fraction of the diet has been used to improve carbohydrate and lipid metabolism in mammalian models. A 10‐wk feeding trial was conducted to determine the effect of dietary amylopectin/amylose ratio on growth and composition of growth of advanced sunshine bass (Morone chrysops × M. saxatilis) fingerlings (60 g, initial weight). Fish were fed cold‐pelleted, semipurified, isonitrogenous (35% crude protein), isocaloric (3.6 kcaVg protein), isolipidic (5%) diets containing 25% carbohydrate. The carbohydrate fraction of the diets was composed of either glucose, dextrin, 100% amylopectin/0% amylose, 70% amylopectin/30% amylose, or 30% amylopectin/70% amylose. Diets differing in ratios of amylopectin/amylose were achieved by adjusting the proportion of high‐amylopectin (100% amylopectin) to high‐amylose (70% amylose) corn starch. Diets were fed to fish in quadruplicate 76‐L tanks (seven fish/tank) connected to a brackish water (5‐7%v) recirculating culture system with biofiltration. Weight gain ranged from 195 to 236% of initial weight (60 g) and was significantly greater (P < 0.1) for fish fed diets containing 25% carbohydrate as dextrin or as 70% amylose and significantly lower in fish fed diets in which carbohydrate was composed of 30% amylose, 100% amylopectin, or glucose. Feed efficiency ranged from 0.52 to 0.61 and was higher in fish fed the diet containing the highest concentration of amylose and lower in fish fed the diet containing glucose. Hepatosomatic index was highest (2.71) in fish fed the diet containing glucose and lowest (1.401.45) in fish fed diets containing high‐amylose cornstarch. Intraperitoneal fat ratio was distinctly lower in fish fed diets containing some amylose as compared to those fed diets without amylose. Liver lipid was significantly lower (4.8%) in fish fed the diet containing glucose and almost twice as high (7.3‐8.9%) in fish fed the diets containing any starch. Glycogen content of the liver decreased from approximately 12% in fish fed the diet containing glucose to 5% in fish fed the diets containing amylose. Muscle proximate composition and ratio were unaffected by the dietary treatments. Fasting levels (15 h) of blood glucose in fish reared for 10 wk on the diet containing glucose were significantly elevated (5.5 mmol/L) when compared to fasting levels of those that had been reared on diets containing starch (3.4‐1.1 mmol/L). Fish fed the diet containing glucose exhibited maximum blood concentrations (14.6 mmoVL) 4 h postprandial then rapidly declined to nearly fasting levels within 8 h postprandial. In contrast, maximum plasma glucose concentrations in fish fed diets containing starch were roughly half (6.8‐8.1 mmol/L) those of fish fed the diet containing glucose. Blood glucose in fish fed diets containing dextrin or predominantly amylopectin starch remained elevated longer than that of fish fed diets containing glucose or predominantly amylose starch. Glycemic response appeared to decrease with increasing dietary amylose content. These data suggest that feeding diets in which a greater portion of the starch is amylose may be a useful strategy for improving carbohydrate use in sunshine bass.  相似文献   

3.
The effect of dietary carbohydrate complexity on growth, feed utilization and activity of selected key liver enzymes of intermediary metabolism were studied in gilthead sea bream juveniles. Four isonitrogenous (50% crude protein) and isolipidic (16% crude lipids) diets were formulated to contain 20% of pregelatinized maize starch, dextrin, maltose or glucose. Triplicate groups of fish (117 g initial weight) were fed each diet to near satiation during 6 weeks. No effect of dietary carbohydrate on growth was noticed. Feed efficiency was lower in fish fed the glucose diet than the maltose and dextrin diets. The lowest protein efficiency ratio was observed in fish fed the glucose diet. Six hours after feeding, glycemia was higher in fish fed the glucose diet than the maltose and starch diets. Liver glycogen content was unaffected by dietary carbohydrate complexity. Hepatic glucokinase (GK) activity was higher in fish fed the glucose and the maltose diets, while higher pyruvate kinase (PK) activity was recorded in fish fed the glucose diet than in fish fed the starch diet. Fructose-1,6-bisphosphatase (FBPase) and glucose-6-phosphate dehydrogenase (G6PD) activities were higher in fish fed the starch diet compared to dextrin and glucose diets. Data suggest that dietary glucose and maltose are more effective than complex carbohydrates in enhancing liver glycolytic activity. Dietary glucose also seems to be more effective than starch in depressing liver gluconeogenic and lipogenic activities. Overall, dietary maltose, dextrin or starch was better utilized than glucose as energy source by gilthead sea bream juveniles.  相似文献   

4.
Triplicate groups of Mystus nemurus (Cuvier & Valenciennes) were fed isoenergetic semipurified diets containing seven dietary protein levels from 200 to 500 g kg–1 diet for 10 weeks. Dietary protein was supplied by graded amounts of a protein mixture (tuna muscle meal:casein:gelatine) at a fixed ratio of 50:37.5:12.5. Mystus nemurus fingerlings of initial weight 7.6 ± 0.2 g were fed close to apparent satiation at 2.5% of their body weight per day in two equal feedings. Growth performance and feed utilization efficiency increased linearly with dietary protein level from 202 to 410 g kg–1 diet and declined with protein levels of 471 g kg–1 diet or above. Protein efficiency ratio and apparent net protein utilization started to decline when the fish were fed with dietary protein levels exceeding 471 g kg–1 diet. Fish fed with lower protein diets (202–295 g kg–1 diet) had significantly ( P  < 0.05) higher carcass lipid content compared with fish fed with higher protein diets. Carcass lipid contents were inversely related to moisture content. Dietary protein did not significantly affect fish carcass protein and ash content. Using two-slope broken-line analysis, the dietary protein requirement for M. nemurus based on percentage weight gain was estimated to be 440 g kg–1 diet with a protein to energy ratio of 20 mg protein kJ–1 gross energy. This level of protein in the diet is recommended for maximum growth of M. nemurus fingerlings weighing between 7 and 18 g under the experimental conditions used in this study.  相似文献   

5.
Three levels of dietary protein (26, 28, or 32%) and four levels of animal protein (0, 2, 4, or 6%) were evaluated in a factorial experiment for pond-raised channel caffish using practical-type extruded feeds. Meat, bone, and blood meal (65% protein) was used as the animal protein source. Channel catfish fingerlings (average weight: 69 glfish) were stocked into 48 0.04-ha ponds at a rate of 24,700 fishha. Four ponds were used for each dietary treatment. Fish were fed once daily to apparent satiation for 158 d. No differences were observed in weight gain, feed consumption, feed conversion ratio, survival, and hematocrits of channel catfish fed diets containing various levels of dietary protein and animal protein. Inclusion of animal protein in the diet did not affect fish dressout, percentage visceral fat, or fillet composition. Comparison of means pooled by dietary protein without regard to animal protein showed that fish fed diets containing 26% protein had a lower percentage dressout than fish fed higher protein diets (55.4% vs. 56.3%). Fish fed the 32% protein diet had lower visceral fat than those fed the 26% or 28% protein diet (2.9% vs. 3.6% or 3.4%). Fillet fat was lower for fish fed the 32% protein diet than for fish fed the 26% protein diet (5.8% vs. 7.1%). Fillet fat in fish fed the 28% protein diet (6.5%) was not different from fish fed either 26% or 32% dietary protein. No differences were detected in fillet protein, moisture, and ash concentrations among fish fed diets containing various concentrations of protein. There were no interactions between dietary protein and animal protein for any variables. Results from the present study indicate that animal protein can be eliminated from diets for grow out of channel catfish fed to apparent satiation using diets containing 26% to 32% crude protein.  相似文献   

6.
Pikeperch Sander lucioperca fingerlings were fed nine practical diets containing three levels of protein (P=34%, 43% and 50%), lipid (L=10%, 16% and 22%) and carbohydrate (C=10%, 15% and 20%) for 10 weeks in a recirculating water system at 23°C. Dietary treatments were distributed by orthogonal design with dietary energy content ranging from 15.5 to 23.1 MJ kg?1 diet. Significant differences (P<0.05) in weight gain (%) and feed efficiency (FE) were observed after feeding trial. Relatively low growth and FE were found in fish fed diets containing 34% dietary protein level compared with that of fish fed diets with 43–50% protein levels, suggesting that 34% dietary protein probably is below the protein requirements of pikeperch fingerlings. Fish fed diets containing P43L10C15, P43L22C20 and P50L16C20 had significantly (P<0.05) higher weight gain and FE than fish fed the diets containing other dietary P/L/C ratios. There was no significant difference in weight gain and FE between fish fed diets of P43L10C15, P43L22C20 and P50L16C20. These results may indicate that pikeperch require at least 43% of dietary protein for adequate growth and FE, and considering the fish growth and feed ingredient cost P43L10C15 diet is more cost‐effective formulation for pikeperch fingerling. However, protein efficiency was not significantly affected by dietary P/L/C ratio.  相似文献   

7.
A study was conducted to evaluate low‐protein traditional or alternative diets for pond‐raised hybrid catfish, Ictalurus punctatus × Ictalurus furcatus. Three 24% protein diets containing decreasing levels of soybean meal (30, 20, and 15%) and increasing levels of cottonseed meal and corn germ meal were compared with a 28% protein control diet. Hybrid catfish fingerlings (mean initial weight = 71 g/fish) were stocked into 20 earthen ponds (0.04 ha) at a density of 14,826 fish/ha with five ponds per dietary treatment. Fish were fed once daily to apparent satiation for a 191‐d growing season. There were no significant differences in total diet fed, net yield, weight gain, feed conversion ratio (FCR), survival, or fillet proximate nutrient composition among dietary treatments (P ≥ 0.10). However, regression analysis showed for fish fed 24% protein diets there was a linear increase in FCR as soybean meal levels decreased (P = 0.06). Compared with fish fed the 28% protein control diet, fish fed 24% protein diets had lower carcass and fillet yield. Results demonstrate a 24% protein alternative diet containing 20% soybean meal may be substituted for 28% protein diets for hybrid catfish during food fish production.  相似文献   

8.
A study was conducted to examine the efficacy of crystalline lysine in alternative diets for pond‐raised hybrid catfish, ♀ Ictalurus punctatus × ♂ Ictalurus furcatus. Two 28% protein alternative diets supplemented with l ‐lysine HCl at the required level based on 62% (previously published value) or 100% lysine availability were compared with a traditional 28% protein control diet. Hybrid catfish fingerlings (mean initial weight = 43 g/fish) were stocked into 15 earthen ponds (0.04 ha) at a density of 14,826 fish/ha with five ponds per treatment. Fish were fed once daily to apparent satiation for a 173‐d growing season. There were no significant differences in total diet fed, net yield, weight gain, and survival among dietary treatments. There were also no significant differences in carcass yield, fillet yield, and fillet proximate composition and fillet lysine concentration among treatments. Fish fed the traditional control diet had slightly, but significantly, lower feed conversion ratio than fish fed alternative diets, which is likely related to higher dietary fiber levels in the alternative diets. Results from this study show that crystalline lysine can be considered 100% available when used to supplement lysine‐deficient diets for pond‐raised hybrid catfish.  相似文献   

9.
A feeding trial was conducted to evaluate the effects of Optimûn, a commercial nucleotide (NT) product, on the growth, haemato‐immunological and serum biochemical parameters and stress responses of Caspian brown trout fingerlings (average initial weight of 12.26 g). A basal diet was supplemented with levels of 0 (control), 1.5, 2.5, 3.5 and 5 g NT kg?1 to formulate five experimental diets. After 8 weeks of feeding trial, fish fed diet with 2.5 g NT kg?1 had the highest final weight compared with other treatments. The fish fed diets with 2.5 g NT kg?1 had higher blood protein, albumin, albumin/globulin ratio, red blood cells, white blood cells and lymphocyte content and lower alkaline phosphatase. The lysozyme activity in serum was found to be significantly (P < 0.05) greater in fish fed diet with 2.5 g NT kg?1. Concerning both stressors (confinement and salinity stress), fish fed diet with 2.5 g NT kg?1 had lower plasma cortisol and glucose levels. Thus, administration of 2.5 g kg?1 of the Optimûn dietary nucleotide formula is recommended to promote growth and immunity as well as to enhance stress responses of Caspian brown trout.  相似文献   

10.
Five isonitrogenous (420 g kg?1 crude protein) and isoenergetic (16.3 kJ g?1) practical diets were formulated to contain fish oil (FO), Kilka fish oil (KFO), linseed (LO), canola (CO) and soybean (SBO) oils fed to juveniles of three‐spot gourami (Trichopodus trichopterus) (initial weight 1 ± 0.03 g) three times per day to apparent satiation for 14 weeks. Results showed the mean final weight of brooders was not significantly affected by dietary oil sources. Specific growth rate for fish fed in SBO and CO diets was statistically higher than for fish fed diet LO. Fish fed diets CO and KFO showed in significantly higher GSI value compared with other diets. Absolute fecundity was greatest in fish fed diets KFO and CO, which significantly differ with other treatments. Except for KFO diet, high fertilization percentages (87.3–93.45%) were observed in other treatments. Fatty acid composition of muscle and egg was found to be positively correlated with their respective dietary lipid sources. High levels of EPA, DHA and n‐3 HUFA in brooders fed diet FO negatively affect egg quality parameters. Therefore, the results demonstrated that vegetable oil‐based diets (CO, SBO and LO, respectively) can positively affect on growth performance of juveniles compared with fish oil‐based diets. Furthermore, CO and LO diets, respectively, showed positive effects on reproductive performance in Ttrichopterus compared with fish oil diets during experimental period under controlled conditions.  相似文献   

11.
Abstract— A 2 × 5 factorial experiment was conducted using practical-type extruded feeds containing 20, 24, 28, 32, or 36% crude protein with or without animal protein. The animal protein supplement consisted of 4% menhaden fish meal and 4% meat, bone and blood meal. Channel catfish fingerlings (average size: 26.3 g/fish) were stocked into 50 0.04-ha ponds at a rate of 24,700 fishha. Five ponds were used for each dietary treatment. Fish were fed once daily to satiation for 202 d. There were no differences in feed conversion ratio (FCR), percentage fillet moisture, and survival among treatments. In fish fed diets containing no animal protein, feed consumption, weight gain, and percentage dressout were lower for fish fed the 20% protein diet than those fed diets containing 28% and 32% protein. Fish fed 28, 32, or 36% protein diets without animal protein did not differ in respect to percentage dressout and percentage visceral fat; fish fed the 36% protein diet had higher percentage fillet protein and a lower percentage fillet fat than fish fed other diets with the exception of fish fed the 28% protein diet. In fish fed diets containing animal protein, feed consumption, weight gain, percentage fillet protein and ash, and percentage dressout were lower and visceral fat was higher for fish fed the 20% protein diet than those fed other diets. Fish fed diets containing 24% protein and above with animal protein were not different in respect to weight gain and feed consumption, but fish fed the 24% protein diet had a higher percentage fillet fat than fish fed a 32% or 36% protein diet. Fish fed the 32% protein diet had a lower visceral fat. Considering animal protein vs non-animal protein with the data pooled across all diets without regard to dietary protein level, weight gain and FCR of fish fed diets containing animal protein were higher than those fed diets containing no animal protein. However, weight gain of fish fed diets containing 20, 28, or 32% protein with or without animal protein did not differ. Dressout percentage and fillet protein were higher and fillet fat was lower for fish fed diets containing no animal protein than those fed diets containing animal protein. Data from this study indicated that animal protein may not be a necessary dietary ingredient for fish fed 28% or 32% protein diets typically used for grow out of pond-raised channel catfish under satiation feeding conditions. Whether animal protein should be included in catfish diets containing less than 28% protein is unclear, since fish fed the 24% protein diet benefited from animal protein but those fed the 20% protein diet did not benefit from animal protein. Additional studies to provide more information on low-protein, all-plant diets are currently being conducted.  相似文献   

12.
Groups of rainbow trout fingerlings from ten different families were sampled after 12 and 24 weeks feeding on each of three diets which were similar in protein and energy content but had different percentages of metabolizable energy present as carbohydrate: 17, 25 and 38%. Fish fed different diets had the same dressed carcass weights, expressed as percentage of body weight, but fish fed higher carbohydrate diets had heavier livers and a higher percentage of discoloured livers. Chemical analyses of fish bodies showed lower fat and energy but higher protein and ash content for those fed higher carbohydrate diets. Livers contained more fat and carbohydrate but the same dry matter, and faeces showed less dry matter, more protein and the same energy content in fish with higher dietary carbohydrate. Utilization of dietary energy and protein was poorer in fish fed high levels of carbohydrate, but health of all fish appeared good. Little variation between different fish families, and no interaction between fish family and diet was found for any of the above parameters, indicating that prospects for change through selective breeding are poor.  相似文献   

13.
An eight-week feeding trial was conducted to examine the possibility of replacing fish meal with poultry by-product meal (PBM) at high inclusion levels in the diets of the humpback grouper, Cromileptes altivelis, a carnivorous marine tropical fish. Six isolipidic (12%) and isoproteic (50%), experimental diets were formulated to contain graded levels of PBM. Fish meal protein was replaced with a feed-grade PBM at 50, 75 or 100% level (FPBM50, FPBM75, FPBM100, respectively), or a pet food grade PBM at 75 or 100% replacement level (PPBM75 and PPBM100, respectively). The control diet contained Danish fish meal as the sole protein source. The experimental diets were fed close to apparent satiation, twice a day to triplicate groups of humpback grouper fingerlings (12.4 ± 0.2 g). The grouper fingerlings were randomly distributed into groups of 15 fish in cylindrical cages (61 cm depth and 43 cm diameter) and placed in a 150-ton seawater polyethylene tank. Except for fish fed the FPBM100 diet, growth performance, survival, and feed utilization efficiency for fish fed PBM-based diets were not significantly lower (P > 0.05) compared to fish fed the control diet. The PBM source and dietary level did not significantly affect (P > 0.05) the hepato- and visero-somatic indices or the condition factor of fish. Dry matter and protein apparent digestibility coefficients (ADC) of the diets decreased with increasing dietary PBM, and ranged from 64.3-71.5% and 86.2 to 91.2%, respectively. High values (91.7 to 96.7%) for lipid ADC were observed in all diets, with no significant differences among dietary treatments. Whole-body moisture and lipid contents of the fish were not affected by the inclusion of PBM in the diets. With the exception of fish fed the FPBM100 diet, whole-body protein of fish fed the PBM-based diets was slightly higher than that of fish fed the control diet. There was a trend of increased whole-body ash with the increase in dietary levels of PBM. The results from this study indicate that good quality terrestrial PBM can successfully replace more than half the protein from marine fish meal in the diets for humpback grouper. However, total replacement of fish meal with PBM might be constrained by lowered nutrient digestibility and limiting essential amino acids, especially lysine and methionine.  相似文献   

14.
An 8-week feeding trial was conducted to evaluate the effect of dietary carbohydrate sources on the growth performance and hepatic carbohydrate metabolic enzyme activities of juvenile cobia. Six experimental diets were formulated to contain 20% glucose, sucrose, maltose, dextrin, corn starch and wheat starch respectively. The results indicated that fish fed the wheat starch and dextrin diets showed significantly better weight gain, specific growth rate and protein efficiency ratio compared with those fed the other diets. However, fish fed the glucose diet had a significantly lower survival and condition factor than those fed the other diets. There were significant differences in the total plasma glucose and triglyceride concentration in fish fed diets with different dietary carbohydrate sources. Haematocrit, haemoglobin, red blood cell and leucocytes were significantly affected by the dietary carbohydrate sources. The activities of glucose-6-phosphate dehydrogenase (G6PD), 6-phosphofructokinase (PFK) and fructose-1,6-bisphosphatase (FBPase) were significantly affected by the dietary carbohydrate sources, while fish fed the glucose diet showed higher G6PD, PFK and FBPase activities than those fed the other diets. These data indicated that dextrin and wheat starch were the most optimal carbohydrate sources for juvenile cobia.  相似文献   

15.
The present study investigated the optimum dietary protein level for the maturation of adult Pangasianodon hypophthalmus broodstock. Four isocaloric diets containing 250, 300, 350 and 400 g kg?1 of protein levels were prepared and presented to triplicate groups of fish. The fish (mean weight 770 ± 17.23 g and 712 ± 23.42 g for females and males respectively) were stocked in outdoor canvas tanks (4 m × 1 m × 1 m) at a stocking density of 20 fish/tank with a male: female ratio of 1:4. The fish were fed the test diets to satiation twice daily for 6 months. Gonadosomatic index (GSI) and fecundity were similar among fish fed dietary protein levels, higher than those fed on the 250 g kg?1. Final weight, weight gain, oocyte weight were significantly highest (< 0.05) for the fish fed 350 and 400 g kg?1 dietary protein treatments. Only the 350 g kg?1 dietary protein treatment resulted in significantly best ovipositor diameter and % ripe egg. Amino acid levels were highest in the muscle followed by the oocyte and liver of fish fed 350 and 400 g kg?1 dietary protein levels. The present results suggested that a dietary protein level of 350 g kg?1 can be recommended for the development of P. hypophthalmus broodstock.  相似文献   

16.
An 8‐week feeding trial was conducted to investigate the optimum dietary protein and lipid levels for growth, feed utilization and body composition of Pseudobagrus ussuriensis fingerlings (initial weight: 3.40 ± 0.01 g). Twelve diets containing four protein levels (350, 400, 450 and 500 g kg?1 crude protein) and three lipid levels (50, 100 and 150 g kg?1 crude lipid) were formulated. Fish were randomly allotted to 36 aquaria (1.0 × 0.5 × 0.8 m) with 25 fish to each glass aquarium. Fish were fed twice daily (08:00 and 16:00) to apparent satiation. The results showed that weight gain and specific growth rate (SGR) decreased with increasing dietary lipid level from 50 to 150 g kg?1 at the same dietary protein level. Fish fed the diets containing 150 g kg?1 lipid exhibited higher feed conversion ratio (< 0.05), lower protein efficiency ratio (PER) and nitrogen retention efficiency (NRE) relative to fish fed the diet containing 50 and 100 g kg?1 lipid. Weight gain and SGR significantly increased with increasing dietary protein from 350 to 450 g kg?1 at the same dietary lipid level, and even a little decline in growth with the further increase in dietary protein to 500 g kg?1. Daily feed intake, NRE and PER were significantly affected by both dietary protein and lipid levels (P < 0.05) and tended to decrease with increasing dietary protein and lipid levels. Whole‐body protein content increased as protein levels increased and lipid levels decreased. Whole‐body lipid and muscle lipid content increased with increasing dietary lipid level, and decreased with increasing dietary protein at each lipid level. There was no significant difference in condition factor and viscerosomatic index among fish fed the diets. Hepatosomatic index was affected by dietary lipid level (P < 0.05), and increased with increasing dietary lipid level at the same protein level. These results suggest that the diet containing 450 g kg?1 protein and 50 g kg?1 lipid with a P/E ratio of 29.1 mg protein kJ?1 is optimal for growth and feed utilization of P. ussuriensis fingerlings under the experimental conditions used in the study.  相似文献   

17.
为探讨在低蛋白水平(40%)下,饲料中不同种类的碳水化合物(葡萄糖、蔗糖和糊精)对大菱鲆幼鱼[(8.12±0.04)g]生长、成活、饲料利用、体组成和血液生理生化指标等的影响,实验在对照组饲料中未添加可消化碳水化合物,含40%的蛋白质和18%的脂肪,然后在对照组饲料的基础上,调节脂肪水平为12%,分别添加15%的葡萄糖、蔗糖和糊精配制3组实验饲料。在流水式养殖系统中进行9周的大菱鲆生长实验。结果显示,各处理组大菱鲆成活率均高于95.24%,并且各组间无显著差异;对照组和糊精组大菱鲆的增重率(WGR)和特定生长率(SGR)均显著高于葡萄糖组和蔗糖组。各组间的日摄食率(DFI)没有显著差异。对照组和糊精组饲料效率(FE)显著高于蔗糖组,但葡萄糖组FE与其它各组无显著差异;各处理组间蛋白质和脂肪表观消化率(ADC)未受碳水化合物种类的显著影响,而可消化碳水化合物的ADC依次为:葡萄糖组>糊精组>蔗糖组(。葡萄糖组的能量ADC最高,蔗糖组的最低;除对照组肌肉脂肪含量显著高于其它各组外,碳水化合物的种类对大菱鲆肌肉常规组成及糖原含量无显著影响,但显著影响了肝脏的脂肪和糖原含量。大菱鲆肝脏脂肪含量依次为对照组>糊精组>蔗糖组>葡萄糖组,肝脏糖原含量依次为葡萄糖组>蔗糖组>糊精组>对照组;不同碳水化合物种类对大菱鲆幼鱼血浆葡萄糖含量没有显著影响,但显著影响血浆总氨基酸、胰岛素、总胆固醇(CHO)和甘油三酯(TAGs)的含量。结果表明,本实验条件下,大菱鲆对糊精的利用效率优于葡萄糖和蔗糖,并且不同种类的碳水化合物通过糖脂关联代谢等途径对大菱鲆幼鱼的体组成和血液生理生化指标造成一定的影响。  相似文献   

18.
The effects of long-term hyperglycaemia (5 months), through feeding high levels of dietary carbohydrates, on the non-specific immunity parameters of rainbow trout, Oncorhynchus mykiss (Walbaum), was assessed. Fish were fed one of three diets composed of a basal diet containing ≈ 14% digestible carbohydrate which was progressively diluted with gelatinized potato starch in the following ratios of basal diet to supplemental carbohydrate (gelatinized potato starch): 65:00, 65:20, 65:35. The three diets were pair-fed based on the feed intake of the fish fed the diet containing the highest level of starch (65:35) and representing 100% intake. The other diets were then fed at different levels in a manner that allowed all the groups of fish in the same block to receive the same amount of the basal diet [e.g. the basal diet (undiluted, 65:00) was fed at 65% of the dietary intake of the 65:35 diet]. Blood glucose concentrations and relative liver-to-body size increased with increased dietary carbohydrate intake. Feeding supplemental carbohydrates resulted in a small increase in weight gain of the fish at both supplemental levels. Pronephros tissue lysozyme activity and pronephros macrophage superoxide production were not affected by the dietary treatments. The results suggest the presence of advanced glycosylation end-products in muscle tissue collagen, but were not significantly different between treatments. No substantial effect of long-term feeding of a high carbohydrate diet on the non-specific immunity of rainbow trout was observed. However, the results suggest that dietary carbohydrates may have a slight stimulatory effect on phagocytosis at low–moderate levels.  相似文献   

19.
An 84‐day feeding trial was conducted to study the effect of different levels of dietary protein, 250 (P25), 300 (P30), 350 (P35), 400 (P40) and 450 g (P45) kg?1 dry matter (DM) on growth, feed intake, feed utilization and carcass composition of bagrid catfish Horabagrus brachysoma fingerlings. Triplicate groups of fingerlings with mean initial body weight of 2.2 g were fed the experimental diets twice daily, till satiation, in 150‐L tanks supplied with flow‐through freshwater. Daily dry matter intake by the fingerlings decreased significantly (P < 0.05) when fed P25 diet, containing 250 g protein kg?1. The highest body weight gain, specific growth rate (SGR) and protein efficiency ratio (PER), and the lowest feed conversion ratio (FCR) were observed in fish fed 350 g protein kg?1 diet. The fish fed with P45 diet had the lowest (P < 0.05) carcass lipid content. The polynomial regression analysis indicates that H. brachysoma fingerlings require 391 g dietary crude protein kg?1 diet.  相似文献   

20.
The main objective of this study was to evaluate the effects of replacing soybean meal (SBM) with cottonseed meal (CSM) on the growth performance, feed utilization and haematological parameters of mono‐sex male Nile tilapia fingerlings. Five isonitrogenous diets (containing 31.82% crude protein) containing graded levels of CSM to replace SBM protein were fed to triplicate groups of fish. The diets were supplemented with lysine so that they were similar to the control diet. After a 14‐week feeding experiment, the results revealed that up to 75% of SBM could be replaced by CSM without causing a significant reduction in growth. Fish fed the diet highest in CSM had a significantly lower protein efficiency ratio and a significantly higher feed conversion ratio than fish fed the other diets. High survival was observed in all the dietary treatments, and no significant difference was observed among treatments. The apparent digestibility coefficients (ADC) of dry matter and phosphorus decreased significantly with an increase in the dietary CSM level, whereas the ADC of lipid was not affected by the dietary treatment. The hepatosomatic index and the condition factor were significantly affected by the replacement of SBM by CSM. No significant differences were detected in the moisture, lipid and ash content in whole body and muscle samples, but protein in whole‐body samples was significantly affected by the CSM levels. Significant differences were found in the haemoglobin, haematocrit, red blood cell and white blood cell contents in fish fed diets with different CSM levels. Therefore, these findings suggest that up to 41.25% CSM can be used to replace 75% of SBM protein in diets for mono‐sex male Nile tilapia fingerlings without any adverse effects on the growth performance, feed utilization, body composition and haematological indexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号