首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
北京地区番茄黄化曲叶病毒病的鉴定及防治对策   总被引:14,自引:2,他引:12  
番茄黄化曲叶病毒病是一种由烟粉虱传播的病毒病,给番茄生产造成严重威胁。2009年在北京郊区调查时发现部分保护地种植的番茄植株表现典型黄化曲叶症状。通过提取典型症状样品总DNA利用粉虱传双生病毒检测简并引物PA/PB,进行PCR扩增到541bp的特异条带。通过测序和核苷酸序列比对表明该序列与番茄黄化曲叶病毒序列相似性最高为99%。分子检测结果表明北京郊区部分保护地种植的番茄已被烟粉虱传播的番茄黄化曲叶病毒侵染危害。  相似文献   

2.
为了明确关中地区越冬茬番茄黄化曲叶病毒病发生和流行规律,通过分析该病发生与番茄品种、定植期及传播介体烟粉虱之间的关系,并采用PCR技术对田间病原进行分子鉴定。结果表明,番茄黄化曲叶病毒病在8月中下旬至11月上中旬开始侵染,翌年3月中下旬发生再侵染,秋季病情减轻;烟粉虱种群数量与病害发生程度呈线性正相关;不同番茄品种对番茄黄化曲叶病毒(Tomato yellow leaf curl virus,TYLCV)的抗性差异显著,其中大番茄品种布鲁尼1288和DRW7728,小番茄品种千禧和美红对该病表现为免疫;分子检测结果表明,4个样品中均扩增出543 bp的特异片段,与NCBI数据库Gen Bank的TYLCV序列(登录号为GU084381、KC138544.1、KC138543.1和JX456642.1)的相似性达99%。研究表明,关中地区番茄病毒病为番茄黄化曲叶病毒病,番茄品种、定植期及烟粉虱发生动态是影响该病发生的主要因素。  相似文献   

3.
南宁市朱槿曲叶病毒病病原分子鉴定和寄主范围研究   总被引:4,自引:0,他引:4  
[目的] 明确南宁市朱槿曲叶病毒病的病原及其寄主范围,初步了解各朱槿品种的抗病性。[方法] 对采自南宁市区的朱槿病株分离物进行分子鉴定及寄主范围测定;进行朱槿曲叶病毒病发生情况调查,根据发病率高低和症状轻重对南宁市常见的朱槿品种抗病性进行初步评价。[结果] 基因克隆与序列比较结果表明,该病的病原为木尔坦棉花曲叶病毒(Cotton leaf curl Multan virus, CLCuMV),其DNA A全长含2 737个核苷酸,伴随有卫星DNAβ分子,分子大小为1 346个核苷酸;研究发现该病毒可以通过B型烟粉虱传播,烟粉虱接种和PCR检测试验〖JP2〗结果表明,该病毒可侵染朱槿、红麻、棉花、西菲葵、黄蜀葵等5种供试的锦葵科植物,表现典型曲叶症状;初步调查评价结果,‘朱砂红朱槿’、‘泰国黄朱槿’、‘重粉朱槿’、‘锦球朱槿’和‘马旦朱槿’属于高度感病品种;‘阿美丽坚朱槿’、‘乳斑朱槿’属于感病品种;‘大红朱槿’、‘大红花’和‘粉喇叭’属于中抗品种;‘红龙朱槿’、‘红喇叭’、‘青杆吊钟’和‘七彩朱槿’属于高抗品种。[结论] 上述结果可为有效控制朱槿曲叶病毒病提供依据。  相似文献   

4.
番茄黄化曲叶病毒(tomato yellow leaf curl virus, TYLCV)是一种由烟粉虱传播的单链环状DNA病毒, 在田间可与多种病毒发生复合侵染, 如番茄褪绿病毒(tomato chlorosis virus, ToCV)等?本文对比了TYLCV单独侵染和TYLCV与ToCV复合侵染对烟粉虱获取和传播TYLCV的影响?结果表明, 与取食TYLCV单独侵染的番茄相比, 取食复合侵染番茄的烟粉虱对TYLCV的传毒率显著提高, 且番茄植株和烟粉虱体内TYLCV的病毒积累量也显著提高?试验结果说明复合侵染会提高烟粉虱的传毒率, 促进TYLCV的发生与流行?  相似文献   

5.
番茄褪绿病毒Tomato chlorosis virus(ToCV)是一种由烟粉虱Bemisia tabaci传播的正义单链RNA病毒,在田间常与番茄黄化曲叶病毒Tomato yellow leaf curl virus(TYLCV)复合侵染而造成番茄生产上重大的经济损失。为了明确ToCV与TYLCV的复合侵染对烟粉虱传播ToCV所造成的影响,本文采用RT-PCR以及qRT-PCR检测了复合侵染的番茄对烟粉虱获取和传播ToCV的影响。研究表明,烟粉虱取食复合侵染的番茄后对ToCV的传播效率显著提高,仅25头烟粉虱的传毒率即可达到100%,ToCV在烟粉虱以及番茄体内的累积量均显著提高。说明这种复合侵染促进了烟粉虱对ToCV的传播,在田间应当及时防控烟粉虱,警惕病毒与烟粉虱的蔓延。  相似文献   

6.
为了明确早春茬番茄定植时间与番茄黄化曲叶病毒病发生的关系,采取小区对比试验对不同定植时间下番茄上烟粉虱种群消长动态、番茄黄化曲叶病毒病发病株率、发病程度及番茄产量和经济效益等进行了系统调查。结果表明:番茄田烟粉虱种群消长动态在年度间基本相同,4月上旬始见,5月中旬达到高峰,烟粉虱发生后15 d左右出现番茄黄化曲叶病毒病症状。4月上旬以前定植番茄黄化曲叶病毒病发生较轻,单位面积产量和经济效益较高,4月上旬以后定植发病较重,产量和经济效益较低。定植时间(X_1)与番茄黄化曲叶病毒发病株率(Y_1)及病情指数(Y_2)均呈显著正相关,其相关关系为Y_1=1.470 4X_1+7.947 2,Y_2=0.876 7X_1-6.441 7。生产实践中采取双膜或三膜覆盖栽培等措施适当提早定植,避免番茄感病期与烟粉虱发生高峰期相遇,在不使用任何防治措施下,可有效预防番茄黄化曲叶病毒病暴发成灾。  相似文献   

7.
番茄褪绿病毒tomato chlorosis virus (ToCV)是我国蔬菜生产的重要新发病毒,其寄主范围逐年扩大。2019年10月项目组在山东寿光西葫芦温室调查时发现部分叶片呈现黄化、脉间褪绿,类似于ToCV侵染症状,并伴有烟粉虱发生。利用特异性引物检测发现,扩增的目的片段与GenBank中登录的侵染番茄的ToCV基因序列(登录号:KC887998.1)同源性高达99.58%,充分说明西葫芦植株已被ToCV侵染。通过对病毒病发生规律和烟粉虱虫口数量调查发现,西葫芦定植后1个月表现侵染症状的植株为2.0%,定植后2个月达到4.2%,定植后4个月后高达68.2%,病毒发生呈指数增长,而烟粉虱虫口数量却维持较低密度。从济南和德州采集的西葫芦疑似病叶和烟粉虱中也检出ToCV病毒,说明该病毒可能已经在山东省设施西葫芦主要种植区普遍发生,并经烟粉虱广泛传播,需引起高度重视。  相似文献   

8.
研究烟粉虱传播番茄褪绿病毒Tomato chlorosis virus (ToCV)的发生规律,建立其预测预报模型,能够指导田间早期有效防治。本研究于2014年-2018年每年采集山东寿光蔬菜基地大棚番茄和杂草的植株叶片,并收集植株上携带的所有烟粉虱,以健康番茄、杂草叶片和室内饲养的健康烟粉虱为阴性对照;实验室ToCV侵染性克隆接种的感病叶片以及从感病叶片上获毒的烟粉虱为阳性对照,将采集的样品带回实验室进行检测和鉴定等试验。根据病情发生规律,建立了番茄褪绿病毒病的预测预报模型,模拟所得方程为:Y=2.570+0.089X4-7.548X7,其中Y为11月份番茄褪绿病毒病发生率,X4为采集的样品上平均每株所携带的烟粉虱数量,X7为采集的田间杂草的带毒率。预测模拟结果显示,烟粉虱数量以及杂草的带毒率与番茄褪绿病毒病的发生率极显著正相关,回归检测结果历史符合率为96.8%以上。明确了影响番茄褪绿病毒病发生的影响因子,基于烟粉虱数量以及杂草的带毒率,构建了病害预测预报模型。研究结果有助于及时发现番茄褪绿病毒病并采取相应预防措施。  相似文献   

9.
调查发现,番茄黄化曲叶病毒病及其传播媒介烟粉虱在平谷秋茬番茄上的发生重于春茬番茄。品种缺乏抗性、幼苗带毒、烟粉虱肆虐、化学防治效果差、种植者对该病害及其传毒媒介缺乏认识,是该病害大规模发生的主要原因。提出了对该病宜采取的农业防治、物理防治及化学防治相结合的综合防治措施。  相似文献   

10.
为明确烟粉虱传播的番茄褪绿病毒(Tomato chlorosis virus,ToCV)与番茄黄化曲叶病毒(Tomato yellow leaf curl virus,TYLCV)对不同番茄品种的复合侵染情况,于2015年11月在山东省寿光市温室内采集13个番茄品种共390份疑似发病植株叶片,对不同番茄品种的TYLCV抗性和2种病毒的复合侵染以及温室内发病番茄植株上烟粉虱成虫的带毒率进行检测。结果表明,采集的13个番茄品种经分子标记检测鉴定均为TYLCV杂合抗性;不同番茄品种ToCV与TYLCV的复合侵染率存在明显差异,大果番茄粉宴和贝瑞上复合侵染率最高可达73.3%,而樱桃番茄八喜上未检测到这2种病毒的复合侵染。此外,在发病番茄植株上采集的烟粉虱成虫体内可检测到2种病毒,其中烟粉虱ToCV带毒率为90.7%,TYLCV带毒率为80.0%,同时检测到ToCV与TYLCV的概率为71.3%。表明ToCV和TYLCV的复合侵染在山东省番茄生产中普遍发生,烟粉虱可同时携带这2种病毒并广泛传播。  相似文献   

11.
The name Tomato yellow leaf curl virus (TYLCV) has been applied to a group of virus species of the genus Begomovirus in the family Geminiviridae that cause a similar tomato disease worldwide. In 1995, TYLCV was first reported in Algarve (southern Portugal) as responsible for an epidemic outbreak of a severe tomato disease. Molecular data have shown that this Portuguese TYLCV isolate was distinct from those previously reported in Europe, as it belonged to the TYLCV-Israel species 1 . Since then, TYLCV epidemics have occurred annually, being a limiting factor mainly for autumn/winter glasshouse tomato crops. In 1998, TYLCV was also found associated with the emergence of a novel disease of Phaseolus vulgaris in Algarve. The affected bean plants were severely stunted and gave no marketable yield. However, the disease occurs only sporadically, even in conditions of high TYLCV infection pressure. Recently, Tomato chlorosis virus (ToCV), a whitefly-transmitted bipartite closterovirus (genus Crinivirus , family Closteroviridae ), was found associated with an unusual tomato yellow leaf syndrome, in single or mixed infection with TYLCV. The impact of this new pathosystem on tomato production has yet to be determined. Surveys are in progress in mixed cropping systems infested with whiteflies. So far, TYLCV and ToCV diseases are limited to the Algarve region.  相似文献   

12.
A virus causing a disease of tomato, prevalent in the southern provinces of Iran, with symptoms of leaf-curling, stunting, reduction of leaf size, leaf corrugation, shortening of internodes and severe reduction in fruit yield, was shown to be transmissible to healthy tomato plants by grafting and by whiteflies ( Bemisia tabaci ), but not by sap inoculation. Geminivirus DNA was detected in extracts of diseased tomato plants by dot-blot hybridization assays using as probes full-length cloned DNA of Australian, Italian (Sardinian) or Jordanian strains of tomato yellow leaf curl virus (TYLCV). Geminivirus coat protein was detected in whitefly inoculated plants by dot immunobinding assay using polyclonal antibody raised against Jordanian TYLCV. A limited survey using the dot-blot hybridization assay for virus detection indicated the presence of the virus in tomato-growing provinces of southern but not northern Iran. Whitefly transmission experiments to tomato under controlled greenhouse conditions showed that some isolates of TYLCV-like geminiviruses from different parts of Iran differ in symptomatology.  相似文献   

13.
 由粉虱传双生病毒引起的番茄曲叶病[1]在我国最初仅分布在海南、云南、广东和广西,自2006年上海市和浙江省先后在番茄上发现番茄黄化曲叶病毒(Tomato yellow leaf curl virus,TYLCV)以来,该病害蔓延迅速,在多个省份的番茄上暴发成灾[2]。引起番茄曲叶病害的病原较复杂,在我国其主要病原为TYLCV、中国番木瓜曲叶病毒(Papaya leaf curl China virus, PaLCuCNV)、中国番茄黄化曲叶病毒(Tomato yellow leaf curl China virus, TYLCCNV)、泰国番茄黄化曲叶病毒(Tomato yellow leaf curl Thailand virus, TYLCTHV)和台湾番茄曲叶病毒(Tomato leaf curl Taiwan virus, ToLCTWV)[2~5],而浙江省的主要病原为TYLCV和ToLCTWV。选育抗病品种是防治番茄黄化曲叶病最有效的手段。了解番茄品种对不同双生病毒的抗性,对因地制宜布局抗病品种具有重要意义。浙杂502、浙粉701、浙粉702是浙江省大规模种植的番茄品种,为了解这些品种对上述5种病毒的抗性,本研究利用5种病毒的侵染性克隆,在人工接种条件下,综合评定分析这3个番茄品种的抗病指标。  相似文献   

14.
Genomic characterization using nonradioactive probes, polymerase chain reaction with degenerate primers for whitefly transmitted geminiviruses and nucleotide sequencing were used to describe a new bipartite geminivirus, associated with dwarfing and leaf curling of tomatoes and peppers in Jamaica. Partial DNA-A and DNA-B clones were obtained. DNA sequence analysis showed that tomato and pepper samples have a similar geminivirus associated with them. Nucleotide sequence identity > 92% between the common regions of DNA-A and DNA-B confirmed the bipartite nature of the Jamaican geminivirus isolates. Nucleotide sequence comparisons of DNA-A and DNA-B with those of geminiviruses representing the major phylogenetic groups of Western Hemisphere geminiviruses showed the greatest similarity to potato yellow mosaic virus and members of the Abutilon mosaic virus cluster of geminiviruses. This new virus is given the name tomato dwarf leaf curl virus (TDLCV) because of the dwarfing and leaf curling symptoms associated with infected tomato plants. Polymerase chain reaction and Southern hybridization showed mixed infections of TDLCV with tomato yellow leaf curl virus from Israel in 16% of the field samples of tomatoes and peppers.  相似文献   

15.
番茄褪绿病毒Tomato chlorosis virus(ToCV)是严重危害世界经济作物的一种病毒,寄主范围广泛。田间调查发现黄瓜Cucumis sativus表现出叶片黄化、脉间褪绿的疑似番茄褪绿病毒感病症状,同时叶片背面聚集了大量烟粉虱。采用RT-PCR方法对样品叶片和烟粉虱进行检测,ToCV感染率为65%,且发病叶片上烟粉虱携带ToCV。为进一步确定黄瓜是否为番茄褪绿病毒的新寄主,室内利用农杆菌侵染性克隆接种健康黄瓜,结果显示:接种30 d的黄瓜新生叶片出现褪绿症状。采用ToCV HSP70基因的引物对田间黄瓜叶片、烟粉虱和室内黄瓜新生叶片进行RT-PCR,扩增出约450 bp的条带,在NCBI上BLAST显示与KC887999.1的同源性最高,为99%。这些数据表明黄瓜是番茄褪绿病毒的寄主。这是ToCV感染黄瓜的首次报道。  相似文献   

16.
Potato (Solanum tuberosum) is one of the important vegetable crops in the world and its production is seriously affected by apical leaf curl disease in northern India. This paper reveals the role of cucurbits in maintaining Tomato leaf curl New Delhi virus (ToLCNDV) and Potato apical leaf curl (PALCD) disease in that region. The affected plants showed severe leaf curling and stunted growth. The begomovirus causing leaf curling and mosaic disease in cucurbits could be easily transmitted by the whitefly to potato crops and develop apical leaf curl disease in northern India. The movement of the virus by whiteflies from cucurbits to potato and tomato is possible because of overlapping of planting and harvesting dates of these crops. The causal virus was identified as a begomovirus on the basis of whitefly transmission, PCR, dot blot hybridization, cloning and sequencing of the coat protein gene. The comparison of full length coat protein gene sequence homology revealed that 90% identity with the coat protein gene of ToLCNDV- [Luffa] isolate and the phylogenetic tree derived from these sequences with other selected begomoviruses formed a close cluster with ToLCNDV isolates. The findings proved that the virus causing disease in cucurbits could easily move to tomato and potato and cause leaf curl disease naturally. This is the first observation on the role of sponge gourd for maintenance of ToLCNDV and serving as a host for PALCD in northern India. The findings indicate that the causal organism is a strain of ToLCNDV.  相似文献   

17.
ABSTRACT Epidemics of tomato yellow leaf curl disease (TYLCD) in the Dominican Republic in the early to mid-1990s resulted in catastrophic losses to processing tomato production. As part of an integrated management approach to TYLCD, the complete nucleotide sequence of a full-length infectious clone of an isolate of Tomato yellow leaf curl virus (TYLCV) from the Dominican Republic (TYLCV-[DO]) was determined. The TYLCV-[DO] genome was nearly identical in sequence (>97%) and genome organization to TYLCV isolates from Israel and Cuba. This established that TYLCV-[DO] is a bonafide TYLCV isolate (rather than a recombinant virus, such as isolates from Israel [Mild], Portugal, Japan, and Iran), and provided further evidence for the introduction of the virus from the eastern Mediterranean. A reduction in the incidence of TYLCV in the northern and southern processing tomato production areas of the Dominican Republic has been associated with the implementation of a mandatory 3-month whitefly host-free period (including tomato, common bean, cucurbits, eggplant, and pepper). Monitoring TYLCV levels in whiteflies, by polymerase chain reaction with TYLCV-specific primers, established that the incidence of TYLCV decreased markedly during the host-free period, and then gradually increased during the tomato-growing season. In contrast, TYLCV persisted in whiteflies and tomato plants in an area in which the host-free period was not implemented. Surveys for TYLCV reservoir hosts, conducted to identify where TYLCV persists during the host-free period, revealed symptomless infections in a number of weed species. The implications of these findings for TYLCV management in the Dominican Republic are discussed.  相似文献   

18.
台湾番茄曲叶病毒(Tomato leafcurl Taiwan virus,ToLCTWV)近年来在我国部分番茄种植区流行成灾,对番茄生产造成了严重损失。作者研究了B型烟粉虱对ToLCTWV的获取、保持,并测定了虫口密度、温度及植株苗龄对其传播该病毒的影响。结果表明,B型烟粉虱在感染ToLCTWV的番茄植株上取食0.5h即可在3.3%个体内检测到ToLCTWV DNA,取食48h后,带毒率达100%;ToLCTWV DNA可在B型烟粉虱体内终生存留。B型烟粉虱是ToLCTWV的高效媒介,每株1头带毒烟粉虱取食48h,植株发病率达50%~60%;每株5头取食,发病率达到或接近100%。介体虫口密度及植株苗龄是决定苗期发病程度的重要因子,虫口密度增加,病情指数上升;苗龄增大,病情指数下降。温度对发病率有显著影响,但对病情指数影响不显著。此外,温度与苗龄的互作、虫口密度与苗龄的互作以及三因子之间的互作都对病情指数有显著影响。这些结果提示,培育无病壮苗是防治台湾番茄曲叶病毒病的关键。  相似文献   

19.
Basic studies carried out in India showed that the incubation period of TLCV in plants varied from 8 days in August to 90 days in winter. The acquisition threshold for the whitefly,Bemisia tabaci Gen., was 31 min; it resulted in 3% transmission. An acquisition access of 24 h for a female whitefly on a TLCV source resulted in 30% transmission. A minimum feeding period of 32 min was required by a viruliferous whitefly to cause infection on tomato test plants; this gave 4% transmission. With inoculation access of 24 h on tomato test plants, the transmission rose to 24%. Starving the vector for 1 h pre-acquisition or 1 h pre-inoculation resulted in higher levels of transmission of TLCV: 36 and 40%, respectively, compared with 20% for non-starved whiteflies. Extending the fasting period beyond 1 h resulted in a reduced transmission level. The whiteflies could acquire the virus from the cotyledonary leaves of an infected tomato plant, with a resultant 28% transmission; but infection did not occur when the whiteflies had an inoculation access to such leaves. Higher transmission rates were obtained when the younger leaves on tomato plants were used for acquisition and inoculation. Transmission was 8 and 38% when five whiteflies per plant were allowed 24 h of acquisition access to 11- and 2-month-old virus sources, respectively. After an acquisition access of 24 h to a TLCV source, male and female whiteflies retained their infectivity for 5 and 53 days, respectively. Nymphs can acquire and transmit the virus. When ten whiteflies of each sex were given 24 h of acquisition and of inoculation access, the subsequent transmission rate of males and females was 56 and 86%, respectively. This virus is not transovarially transmitted. Whitefly colonies raised on brinjal were more efficient (70 and 84% transmission in two experiments) than those raised on chilli, cotton, cowpea, tobacco or tomato.  相似文献   

20.
Tomato yellow leaf curl begomovirus (TYLCV) severely invaded tomato plantations in Egypt (Lower and Middle Egypt) in 1989. This study aimed to discover the relationship between TYLCV and other epidemic-associated factors in the Fayium area. The rate of TYLCV infection was inspected visually for three successive years (1994/1996) in the Fayium area. During the same period, whiteflies were collected for virus detection using bait-plant and DNA hybridization techniques. DAS-ELISA was used to detect mixed virus infections in tomato plants. TYLCV infection was prevalent (60–68%) and severe (2.1–3.0) in the Fayium fields. Cucumber mosaic cucumovirus (CMV) was found in some fields (5–28%) with moderate severity (1.0–20). Potato Y potyvirus (PVY) and potato leaf roll polerovirus (PLRV) were found in few fields (5–19% and 5% respectively) at very low severity. There was a negative correlation between TYLCV occurrence and distance from the source of infection, and a positive correlation (98%) between TYLCV intensity and percentage of viruliferous whiteflies in 1994 and 1995. There was no positive correlation between TYLCV and the total population of whiteflies caught during the same period. Five percent of viruliferous whiteflies, as proved by cDNA hybridization, led to 46% TYLCV infection. The same percentage of whiteflies, as shown by bioassay, led to 68% TYLCV infection. Monitoring of viruliferous whiteflies could be used for early prediction of TYLCV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号