首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hexosamine concentration, DNA concentration, and [35S]sulfate incorporation for articular cartilage obtained from various sites in the metacarpophalangeal and carpal joints of horses were measured. The same measurements were made on the repair tissue filling full-thickness articular defects in the intermediate carpal bone and on cartilage surrounding partial-thickness defects 6 weeks after the defects were created arthroscopically. Cellularity (measured as DNA concentration), proteoglycan content (measured as hexosamine concentration), and proteoglycan synthesis (measured as [35S]sulfate incorporation) varied according to the site sampled. Cartilage from the transverse ridge of the head of the third metacarpal bone and the radial facet of the third carpal bone had the lowest hexosamine concentration, whereas rate of proteoglycan synthesis was lowest in cartilage from the transverse ridge of the head of the third metacarpal bone and the distal articular surface of the radial carpal bone. Repair tissue filling a full-thickness cartilage defect at 6 weeks was highly cellular. It was low in proteoglycan content, but was actively synthesizing these macromolecules. In contrast, the cartilage surrounding a partial-thickness defect was unchanged 6 weeks after the original defect was made.  相似文献   

2.
The concentration-effect relationships of phenylbutazone, indomethacin, betamethasone, pentosan polysulphate (PPS) and polysulphated glycosaminoglycan (PSGAG), on proteoglycan synthesis by equine cultured chondrocytes grown in monolayers, and articular cartilage explants were measured. The effect of PSGAG on interleukin-1beta induced suppression of proteogycan synthesis was also investigated. Proteoglycan synthesis was measured by scintillation assay of radiolabelled sulphate (35SO4) incorporation. Polysulphated glycosaminoglycan and PPS stimulated proteoglycan synthesis in chondrocyte monolayers in a concentration-related manner with maximal effects being achieved at a concentration of 10 microg/mL. Polysulphated glycosaminoglycan reversed the concentration-related suppression of proteoglycan synthesis induced by interleukin-1beta. Neither PSGAG nor PPS exerted significant effects on radiolabel incorporation in cartilage explants. Betamethasone suppressed proteoglycan synthesis by both chondrocytes and explants at high concentrations (0.1-100 microg/mL), but the effect was not concentration-related. At low concentrations (0.001-0.05 microg/mL) betamethasone neither increased nor decreased proteoglycan synthesis. Phenylbutazone and indomethacin increased radiolabel incorporation in chondrocyte cultures but not in cartilage explants at low (0.1, 1 and 10 microg/mL), but not at high (20 and 100 microg/mL) concentrations. These findings may be relevant to the clinical use of these drugs in the treatment of equine disease.  相似文献   

3.
OBJECTIVE: To determine whether enrofloxacin has detrimental, dose-dependent effects on equine articular cartilage in vitro. ANIMALS: Cartilage explants were developed from 6 healthy horses between 0 and 96 months old. PROCEDURE: Patellar cartilage explants were incubated in 5 concentrations of enrofloxacin (2 microg/ml, 10 microg/ml, 1,000 microg/ml, 10,000 microg/ml, and 50,000 microg/ml) for 72 hours. Proteoglycan synthesis (Na35SO4 incorporation for 24 hours), proteoglycan degradation (Na35SO4 release for 72 hours), endogenous proteoglycan content (dimethylmethlene blue assay), and total protein content were determined. Cartilage explants were evaluated by use of histomorphologic and histomorphometric techniques (toluidine blue stain) for cytologic and matrix characteristics. Quantitative data were analyzed with a one-way ANOVA to compare results among various enrofloxacin concentration groups and the control group. A general linear model was used to determine whether age had an effect. RESULT: Proteoglycan synthesis was excellent in control specimens and in specimens incubated in low concentrations of enrofloxacin (2 microg/ml and 10 microg/ml). High concentrations of enrofloxacin (> 1,000 microg/ml) effectively eliminated proteoglycan synthesis regardless of horse age. Proteoglycan degradation at low concentrations (2 microg/ml and 10 microg/ml) was not different than control. High concentrations of enrofloxacin (> 1,000 microg/ml) caused significant degradation. Different concentrations of enrofloxacin did not affect endogenous proteoglycan. High concentrations of enrofloxacin were associated with a significant increase in number of pyknotic nuclei. CONCLUSION: Concentrations of enrofloxacin that might be achieved following systemic administration did not suppress chondrocyte metabolism in vitro. High concentrations of enrofloxacin (> 1,000 microg/ml) were toxic to chondrocytes.  相似文献   

4.
Using arthroscopic technique, identical diameter defects were created in the proximal articular surface of both intermediate carpal bones of 6 horses. One of each pair of defects was deepened to penetrate the subchondral plate. Removed cartilage was assayed for [35S] sulfate incorporation, total hexosamine content, and DNA content. Six weeks later, cartilage was harvested and similarly analyzed from the distolateral portion of the radius directly opposite the created lesions and the distomedial portion of the radius distant from the lesion. The repair tissue filling the full-thickness defect and the cartilage at the periphery of the partial-thickness lesion also were analyzed. There was a marked increase in synthetic activity (35S sulfate incorporation) opposite the full-thickness defect, compared with the cartilage opposite the partial-thickness defect. A marked decrease in glycosaminoglycan content in the cartilage opposite the full-thickness defect was found as compared with that opposite the partial-thickness defect. The repair tissue filling the full-thickness defect was highly cellular, high in synthetic activity, but low in glycosaminoglycan content. Insignificant changes occurred in the cartilage adjacent to the partial-thickness defect. On the basis of these results, we suggest that full-thickness defects at 6 weeks result in more detrimental change to the cartilage opposite it than do partial-thickness lesions of the same diameter.  相似文献   

5.
OBJECTIVE: To study in vitro (1) the dose-response relationships between proteoglycan metabolism in normal and corticosteroid-treated articular cartilage; (2) long-term proteoglycan metabolism after treatment of articular cartilage with corticosteroids; and (3) the effect of corticosteroids on proteoglycan metabolism in articular cartilage treated with monocyte-conditioned medium (MCM). STUDY DESIGN: Equine and canine articular cartilage explants were treated with corticosteroids and MCM. Proteoglycan synthesis and degradation were measured by radioactive labeling in short-term culture, and the long-term effect of corticosteroid treatment on proteoglycan metabolism was studied in normal explants. ANIMALS: Two young cross-breed horses and 3 young Labrador retrievers. METHODS: Equine articular cartilage explants were incubated in medium containing methylprednisolone sodium succinate (MPS) at 0, .001, .01, .1, 1, and 10 mg/mL (final concentration) for 1 day and then in fresh medium without MPS. Proteoglycan synthesis was measured by incorporation of sodium [35S]sulfate at 1, 3, 7, 10, and 13 days after initial treatment with MPS. Proteoglycan release was measured from separate explants prelabeled with sodium [35S]sulfate and treated similarly. Equine articular cartilage explants were treated with equine MCM simultaneously with, and 24 hours before MPS, at 0, 0.01, 0.1, 1, or 5 mg/mL for 72 hours. Proteoglycan synthesis and degradation in these explants was compared. Proteoglycan synthesis and degradation were measured similarly in canine articular cartilage explants treated simultaneously with canine MCM and MPS at 0, 0.001, 0.01, 0.1, 1 and 10 mg/mL for 72 hours. Equine articular cartilage explants treated with 0, 0.01, 0.1, 1, and 5 mg/mL of MPS for 72 hours were evaluated histologically. RESULTS: Proteoglycan synthesis in normal equine articular cartilage was severely depressed by 10 mg/mL MPS for 24 hours, and proteoglycan synthesis failed to recover after 13 days of culture in medium without MPS. Cartilage treated with 5 mg/mL MPS had pyknotic chondrocyte nuclei and empty lacunae. Concentrations of 1 and 0.1 mg/mL MPS depressed proteoglycan synthesis in normal equine cartilage explants. For these 2 concentrations, proteoglycan synthesis recovered 2 days after MPS removal and increased significantly (P < .05) 7 days after treatment with MPS compared with controls without MPS. Concentrations of 0.001 and 0.01 mg/mL MPS did not significantly affect proteoglycan synthesis in normal equine cartilage explants. Cumulative proteoglycan loss over 13 days in culture from normal equine explants treated for 24 hours with different concentrations of MPS was not significantly different between treatment groups at any time point. MCM significantly depressed proteoglycan synthesis in both canine and equine articular cartilage explants and significantly increased proteoglycan release. These effects were prevented in the canine explants by simultaneous treatment with MPS at 1 and 0.1 mg/mL, and proteoglycan release induced by MCM in equine articular cartilage was inhibited by 1 mg/mL MPS. CONCLUSIONS: Concentrations of 1.0 and 0.1 mg/mL MPS alleviated articular cartilage degradation in MCM-treated articular cartilage in vitro. These concentrations of MPS in contact with normal cartilage explants for 24 hours are unlikely to be detrimental in the long term to proteoglycan synthesis. The response of articular cartilage to MPS was affected by treatment with MCM so that results of experiments with normal articular cartilage explants may not reflect results obtained with abnormal cartilage. CLINICAL RELEVANCE: It may be possible to find an intraarticular concentration of corticosteroid that protects articular cartilage against cytokine-induced matrix degradation yet not have prolonged or permanent detrimental effects on chondrocyte matrix synthesis.  相似文献   

6.
The effects of intra-articular administration of methylprednisolone acetate (MPA) on the healing of full-thickness osteochondral defects and on normal cartilage were evaluated in 8 horses. In group-1 horses (n = 4), a 1-cm-diameter, full-thickness defect was created bilaterally in the articular cartilage on the dorsal distal surface of the radial carpal bone. Cartilage defects were not created in group-2 horses (n = 4). One middle carpal joint was randomly selected in each horse (groups 1 and 2), and treated with an intra-articular injection of 100 mg of MPA, once a week for 4 treatments. Injections began 1 week after surgery in group-1 horses. The contralateral middle carpal joint received intra-articular injections of an equivalent volume of 0.9% sodium chloride solution (SCS), and served as a control. Horses were evaluated for 16 weeks, then were euthanatized, and the middle carpal joints were examined and photographed. Synovial and articular cartilage specimens were obtained for histologic and histochemical evaluation. Gross morphometric evaluation of the healing defects in group-1 horses revealed that 48.6% of the defect in control joints and 0% of the defect in MPA-treated joints was resurfaced with a smooth, white tissue, histologically confirmed as fibrocartilage. This replacement tissue was a firmly attached fibrocartilage in control joints and a thin fibrous tissue in MPA-treated joints. The articular cartilage in joints treated with MPA had morphologic changes, including chondrocyte cluster formation, loss of palisading architecture, and cellular necrosis in both groups of horses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
OBJECTIVE: To evaluate the effects of dimethyl sulfoxide (DMSO) on equine articular cartilage matrix metabolism. STUDY DESIGN: Using a cartilage explant culture system, proteoglycan (PG) synthesis, PG release, lactate metabolism, chondrocyte viability, and metabolism recovery were determined after cartilage exposure to DMSO. SAMPLE POPULATION: Cartilage harvested from metacarpophalangeal and metatarsophalangeal joints of 12 horses (age range, 1 to 10 years). METHODS: Explants were exposed to concentrations of DMSO (1% to 20%) for variable times (3 to 72 hours). PG synthesis and release were determined by a radiolabel incorporation assay and dimethylmethylene blue (DMMB) dye assay, respectively. Lactate released into culture media was measured, and chondrocyte viability was assessed using the Formizan Conversion Assay and a paravital staining protocol. Metabolism recovery was assessed in explants that were allowed to recover in maintenance media after exposure to DMSO. RESULTS: PG synthesis and lactate metabolism were inhibited in a dose- and time-dependent manner after exposure to DMSO concentrations > or = 5%; there was no significant alteration in PG release. No change in chondrocyte viability was detected after incubation with DMSO. PG synthesis and lactate metabolism returned to baseline rates when allowed a recovery period after exposure to DMSO. CONCLUSIONS: DMSO concentrations > or = 5% suppress equine articular cartilage matrix metabolism. Suppression of PG synthesis and lactate metabolism is reversible and does not appear to be the result of chondrocyte death. CLINICAL RELEVANCE: Equine clinicians adding DMSO to intraarticular lavage solutions should be aware that DMSO may have deleterious effects on equine articular cartilage matrix metabolism.  相似文献   

8.
The effect of intra-articular polysulfated glycosaminoglycan (PSG) on repair of chemical and physical articular cartilage injuries was evaluated in 8 horses. In each horse, a partial- and a full-thickness articular cartilage defect was made on the distal articular surface of the radial carpal bone. In the contralateral middle carpal joint, a chemical articular cartilage injury was induced by injecting 50 mg of Na monoiodoacetate (MIA). Four of the 8 horses were not treated (controls), and 4 horses were treated by intra-articular injection of 250 mg of PSG into both middle carpal joints once a week for 5 treatments starting 1 week after cartilage injury. Horses were maintained for 8 weeks. There was less joint circumference enlargement in PSG-treated horses in MIA-injected and physical defect carpi, compared with that in controls. In MIA-injected joints, there was less articular cartilage fibrillation and erosion, less chondrocyte death, and greater safranin-O staining for glycosaminoglycans in PSG-treated horses. Evaluation of joints in which physical defects were made revealed no differences between control and PSG-injected joints. None of the partial-thickness defects had healed. Full-thickness defects were repaired with fibrous tissue (which was more vascular and cellular in PSG-injected joints) and occasionally small amounts of fibrocartilage. Seemingly, PSG had chondroprotective properties in a model of chemically induced articular cartilage damage, whereas PSG had no obvious effect in a physical articular cartilage-defect model.  相似文献   

9.
Effect of diet on longitudinal bone growth and osteochondrosis in swine   总被引:1,自引:0,他引:1  
Weanling gilts were fed either a 12% or 16% protein diet for 10 weeks. Animals fed the 12% protein diet had reduced body weights and reduced longitudinal bone growth as measured in the distal radial growth plate. There was no difference in the growth plate widths between the two animal groups, but there was a significant reduction in the daily rate of cell production in the proliferative zone of animals fed the 12% protein diet. No effect of diet on the rate of expansion of the epiphysis at the articular-epiphyseal junction of the distal femur or humerus could be detected. All animals in both groups had morphologic cartilage lesions consistent with early changes associated with osteochondrosis (OCD), and there was no difference in the lesion morphology between the dietary groups. Areas of disorderly endochondral ossification in the radial growth plate were associated with perpendicular growth cartilage infractions. Growth plate lesions were characterized by increased widths of the maturing cartilage zone without increased width of the proliferative zone or an increase in the daily rate of cell production. Focal growth plate lesions developed because of a transitory inhibition of cartilage mineralization and resorption. Disorderly foci of endochondral ossification beneath articular cartilage were characterized by an area of chondrocyte necrosis which prevented normal cartilage matrix mineralization. Lamellae of cartilage necrosis were also present within the reserve zone of the articular cartilage. These were associated with abnormalities of the cartilage canal vessels, and chondrocyte necrosis was considered to precede degenerative changes in articular cartilage matrix.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Brachygnathia superior and generalized diarthrodial degenerative joint disease were seen in 17 related, purebred Angus calves ranging in age from 2 days to 4 months. Craniometrical studies revealed decreased maxillary and palatine bone lengths and increased cranial, skull, and facial indices. Radiological evaluation of major appendicular joints demonstrated lipping of the joint margins with osteophyte formation, sclerosis of subchondral bone, and narrowing of joint spaces. Synovial fluid evaluation indicated joint degeneration but no etiologic agent. Rheumatoid factor analysis of plasma was negative. Grossly, all major appendicular joints were defective including the atlanto-occipital articulation. Lesions ranged from loss of surface luster to erosions and deep ulcers with eburnation of the subchondral bone and secondary proliferative synovitis. Histological changes were degeneration of the articular cartilage matrix, chondrocyte necrosis, flaking and fibrillation, chondrone formation, erosions and ulcers of the articular cartilage with subchondral bone sclerosis, vascular invasion with fibrosis, and chronic, nonsuppurative, proliferative synovitis. Growth plates had defective chondrocyte proliferation and hypertrophy with aberrant ossification of calcified cartilaginous matrix. Histochemical analysis of cartilage and bone failed to incriminate which component was defective, glycosaminoglycan or collagen, but indicated different distribution or absence of one or the other. Genealogic studies revealed a genetic basis for the new defect.  相似文献   

11.
Objective: To characterize the impact of age, gender, location and individual animal variation on the composition of articular cartilage from the metacarpophalangeal joint of horses. Design: Cartilage specimens were obtained from the metacarpophalangeal joints of 28 male, female and castrated male horses ranging in age from one day to 27 years of age. Cartilage samples from the distal metacarpus, proximal first phalanx and proximal sesamoids were analyzed separately. Chondrocyte number, DNA content, proteoglycan concentration and total collagen content were determined for each animal and joint location. Results: Age and joint location had a significant effect on chondrocyte number and DNA content with higher cell counts and DNA content detected in cartilage from the youngest age groups and in cartilage from the metacarpus and proximal sesamoids. The influence of age on chondrocyte numbers was not significant in horses over two years of age. Both age and joint location also influenced total proteoglycan and collagen content. Lower proteoglycan and collagen concentrations were detected in younger horses, and cartilage from the metacarpus had lower proteoglycan and collagen concentrations than that from other joint locations. Gender did not appear to influence chondrocyte number or matrix content of equine articular cartilage. However, there was significant residual variation in cellularity, proteoglycan levels and collagen content between individual animals that could not be explained by the signalment factors considered in this study. Conclusions: Future studies examining equine articular cartilage should avoid direct morphologic comparisons between animals of different ages, and any comparisons made between individuals should be interpreted cautiously. In addition, in vitro tissue culture models should avoid the use of cartilage pooled from different animals or from different locations within the same joint.  相似文献   

12.
OBJECTIVE: To assess the cellular, biochemical, and histologic effects of bipolar radiofrequency-generated heat on canine articular cartilage. SAMPLE POPULATION: Articular cartilage explants (n = 72) from 6 canine cadavers and cultured articular chondrocytes from 5 canine cadavers. PROCEDURE: Cartilage explants were randomly assigned to receive no treatment or treatment with focal (3 seconds) or diffuse bipolar radiofrequency. Following treatment, methylene blue permeability assay was performed (n = 12) and remaining samples (60) were cultured. Immediately and 5, 10, and 20 days after treatment, cultured explants were assessed for glycosaminoglycan (GAG) and collagen contents, type II collagen and matrix metalloproteinase (MMP)-13 immunoreactivity, and modified Mankin histologic scores. Liquid culture media were collected every 4 days and GAG content measured. Additionally, cultured chondrocytes were exposed for 3 seconds to media preheated to 37 degrees, 45 degrees, or 55 degrees C. Cell viability was determined via 2 different assays immediately and 24 hours after treatment. RESULTS: Radiofrequency-treated cartilage had reduced permeability and considerable histologic damage, compared with control samples; most treated samples had reduced collagen II staining and increased MMP-13 immunostaining. Compared with other treatments, less GAGs were released from cartilage after diffuse radiofrequency treatment throughout the study period. Cell viability was significantly different between controls and cells treated at 55 degrees C immediately and 24 hours after heat treatment. CONCLUSIONS AND CLINICAL RELEVANCE: In this study, bipolar radiofrequency treatment had detrimental effects on normal articular cartilage cells and extracellular matrix with probable long-term clinical consequences. The usefulness of radiofrequency for treatment of osteoarthritic articular cartilage requires further investigation.  相似文献   

13.
Three doses of sodium monoiodoacetate (MIA) were used to induce degenerative changes in articular cartilage in middle carpal joints of horses. Twelve young (2- to 5-year-old) horses, free of lameness, were randomly allotted to 3 groups. One middle carpal joint of each horse was injected with 0.9% NaCl solution (control joint). The contralateral middle carpal joint was injected with 0.09 mg of MIA/kg of body weight (group 1); 0.12 mg/kg (group 2); or 0.16 mg/kg (group 3). After MIA administration, horses were allowed ad libitum exercise in a 2-acre paddock for 12 weeks. At the end of the study, gross and microscopic tissue changes were evaluated and biochemical analyses of articular cartilage were done. Grossly, diffuse partial-thickness articular cartilage lesions were observed in group-2 (n = 2) and group-3 (n = 4) horses, but not in group-1 horses. Articular cartilage uronic acid content was significantly (P less than 0.03) decreased in all MIA-injected joints, compared with controls. Articular cartilage matrix staining with safranin-O was decreased in 3 of 4 MIA-injected joints of group-1 horses and in all MIA-injected joints of group-2 and group-3 horses, compared with controls (P less than 0.06). Microscopic degenerative changes in articular cartilage were not significantly different between MIA-injected and control joints in group-1 horses, but were increased (P less than 0.06) in all MIA-injected joints of group-2 and group-3 horses, compared with controls. Qualitatively, decreased matrix staining and degenerative changes were more severe in group-3 horses. On the basis of articular cartilage gross and microscopic changes, as well as biochemical changes, 0.12 mg of MIA/kg injected intra-articularly was determined to induce moderate degrees of articular cartilage degeneration. This model of chemically induced articular cartilage injury could be useful for evaluating treatment effects of anti-arthritic drugs in horses.  相似文献   

14.
15.
OBJECTIVE: To investigate the effects of enrofloxacin and magnesium deficiency on explants of equine articular cartilage. SAMPLE POPULATION: Articular cartilage explants and cultured chondrocytes obtained from adult and neonatal horses. PROCEDURE: Full-thickness explants and cultured chondrocytes were incubated in complete or magnesium-deficient media containing enrofloxacin at concentrations of 0, 1, 5, 25, 100, and 500 microg/ml. Incorporation and release of sulfate 35S over 24 hours were used to assess glycosaminoglycan (GAG) synthesis and degradation. An assay that measured binding of dimethylmethylene blue dye was used to compare total GAG content between groups. Northern blots of RNA from cultured chondrocytes were probed with equine cDNA of aggrecan, type-II collagen, biglycan, decorin, link protein, matrix metalloproteinases 1, 3, and 13, and tissue inhibitor of metalloproteinase 1. RESULTS: A dose-dependent suppression of 35S incorporation was observed. In cartilage of neonates, 35S incorporation was substantially decreased at enrofloxacin concentrations of 25 mg/ml. In cartilage of adult horses, 35S incorporation was decreased only at enrofloxacin concentrations of > or =100 microg/ml. Magnesium deficiency caused suppression of 35S incorporation. Enrofloxacin or magnesium deficiency did not affect GAG degradation or endogenous GAG content. Specific effects of enrofloxacin on steady-state mRNA for the various genes were not observed. CONCLUSION AND CLINICAL RELEVANCE: Enrofloxacin may have a detrimental effect on cartilage metabolism in horses, especially in neonates.  相似文献   

16.
OBJECTIVE: To study the effect of polysulfated glycosaminoglycan (PSGAG) on proteoglycan metabolism and DNA content of control and osteoarthritic (OA) cartilage. STUDY DESIGN: An in vitro study comparing the effects of PSGAG on articular cartilage explants from canine stifle joints with and without chronic OA after transection of the left cranial cruciate ligament. SAMPLE POPULATION: Five large cross-breed dogs. METHODS: Cartilage explants (6 to 13 per treatment group) from the medial side of the femoral trochlea and medial femoral condyle from both stifles of each dog were incubated in a defined medium containing 0, 0.05, 0.5, or 5 mg/mL of PSGAG. After 72 hours in culture, explants were pulsed for 6 hours with sodium [35S]sulfate. Aminophenylmercuric acetate (APMA) was used to activate endogenous neutral matrix metalloproteinases (MMPs) and induce proteoglycan degradation in the radiolabeled explants. DNA content and radioactivity were measured in papain-digested explants, and radioactivity was measured in the medium by liquid scintillation counting. Proteoglycan synthesis and degradation were calculated. Cartilage was examined histologically for signs of OA. A mixed model analysis of variance and linear contrasts were used to test for significant (P < .05) effects of OA and treatment with PSGAG. RESULTS: Transection of the cranial cruciate ligament produced OA in operated joints. DNA content and proteoglycan synthesis of OA cartilage were significantly lower than in cartilage from control joints. For both DNA content and proteoglycan synthesis, significant interactions occurred between the concentration of PSGAG and whether the articular cartilage was from OA or control joints. The two lower concentrations of PSGAG (0.05 and 0.5 mg/mL) predominantly increased DNA content in OA cartilage (7 and 18%, respectively, compared with 0 mg/mL PSGAG) while the highest concentration (5 mg/mL) predominantly increased DNA content in control cartilage (30% compared with 0 mg/mL PSGAG). PSGAG at .05 mg/mL predominantly decreased proteoglycan synthesis in OA cartilage (19% reduction compared with 0 mg/mL PSGAG) while PSGAG at .5 and 5 mg/mL predominantly decreased proteoglycan synthesis in control cartilage (17 and 55% reduction, respectively, compared with 0 mg/mL PSGAG). Following activation of MMPs, PSGAG caused a dose-dependent decrease in degradation of radiolabeled proteoglycan in both OA and control cartilage. CONCLUSIONS: OA cartilage was responsive to treatment with PSGAG at 100-fold lower concentration than control cartilage. When treated with PSGAG, articular cartilage explants maintained or increased DNA content at the expense of proteoglycan synthesis. Following MMP activation, proteoglycan degradation was inhibited in OA and control explants in a dose-dependent manner. CLINICAL RELEVANCE: If the results of this study extend to in vivo use, treatment with PSGAG may modify the progression of OA in articular cartilage by maintaining chondrocyte viability or stimulating chondrocyte division as well as protecting against extracellular matrix degradation.  相似文献   

17.
Apoptotic death of articular chondrocytes has been implicated in the pathogenesis of osteoarthritis (OA). Apoptotic pathways in chondrocytes are multi-faceted, although some cascades appear to play a greater in vivo role than others. Various catabolic processes are linked to apoptosis in OA cartilage, contributing to the reduction in cartilage integrity. Recent studies suggest that beta1-integrin mediated cell-matrix interactions provide survival signals for chondrocytes. The loss of such interactions and the inability to respond to IGF-1 stimulation may be partly responsible for the hypocellularity and matrix degradation that characterises OA. Here we have reviewed the literature in this area of cartilage cell biology in an effort to consolidate the existing information into a plausible hypothesis regarding the involvement of apoptosis in the pathogenesis of OA. Understanding of the interactions that promote chondrocyte apoptosis and cartilage hypocellularity is essential for developing appropriately targeted therapies for inhibition of chondrocyte apoptosis and the treatment of OA.  相似文献   

18.
Articular cartilage specimens from the distal articular surface of 32 radiocarpal bones from 24 2- to 5-year-old horses were analyzed. The total collagen content was determined on the basis of the 4-hydroxyproline content, using a colorimetric method. A method for estimating the proportions of types-I and -II collagen by measuring spectrophotometric densities of specific cyanogen bromide peptide bands from mixtures of types-I and -II collagen on sodium dodecyl sulfate-polyacrylamide gels was used. The cyanogen bromide peptides representative of each collagen types-I and -II were identified. The peptide ratios were then computed for each of several standards of type-I and -II mixtures. A standard curve was derived from the correlation between these ratios and the corresponding proportions of type-II collagen in standard mixtures. Galactosamine and glucosamine content (hexosamines) were measured by ion chromatography. The galactosamine-to-glucosamine ratio, chondroitin sulfate and keratan sulfate values, and total glycosaminoglycan content were derived from the measured hexosamine content. The total collagen content averaged 556 mg/g (55.6 mg/100 mg) of tissue (dry weight, [dw]). Type-II collagen was the major collagen type in normal articular cartilage specimens. The ratio of the area under the alpha 1 (II)CB10 peak to the area under the alpha 1 (I)CB 7,8 + alpha 1 (II)CB11 peak was a second-order polynomial function of the proportion of type-II collagen in the specimens. The mean galactosamine and glucosamine content were 20.6 mg/g and 7.9 mg/g (dw), respectively. The mean galactosamine-to-glucosamine ratio was 3.74 +/- 0.62.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Age related changes and osteochondrosis in swine were studied using light microscopy and electron microscopy in articular cartilage and light microscopy and epiphyseal cartilage of swine from three days to 30 weeks of age. Thickness, cellularity and vascularity of both the epiphyseal and articular cartilage, decreased as the swine aged. Osteochondrotic changes included formation of "plugs" of cartilage indicating localized failure of ossification and separation and space formation in epiphyseal cartilage. Eosinophilic streaks and space formation in epiphyseal cartilage was observed in relation to epiphyseal separation. Electron microscopy showed a continuous fibrillar layer on the surface of the cartilage corresponding to the lamina splendens of light microscopy. This layer increased in the thickness and showed accumulation of amorphous material between the fibrils with aging. In the matrix, the orientation and distribution of the collagen fibers changed with growth and thicker fibers with clear sub banding were more common in older age groups. Also, necrotic cells, glycogen containing bodies and cellular debris were noticed in the matrix of normal cartilage in old animals. Chondrocytes in the younger cartilage showed accumulation of organelles responsible for protein synthesis; while Golgi bodies, vesicles, lysosomes, well developed foot processes and other inclusions were noticed in older cartilage. Cartilage erosions had a clumped and disrupted lamina splendens on the surface and electron lucent patches in the ground substances of the matrix and chondrocyte cytoplasm.  相似文献   

20.
The articular cartilage from femorotibial joints of partial medial meniscectomized male guinea pigs was evaluated at 24, 48, 72, and 96 hours post-surgery to determine the sequential histopathologic and ultrastructural alterations. At 24 hours post-surgery, histopathologic alterations were in the superficial and middle layers and consisted of degeneration and necrosis of chondrocytes and minimal decreased intensity of toluidine blue matrix staining. Changes in chondrocytes and matrix became progressively more extensive 48 hours after surgery. Ultrastructurally, the changes in the superficial matrix appeared to be the result of loss of the fine granular material interspersed between collagen fibers. At 72 and 96 hours post-surgery, chondrocyte loss was extensive and surface fibrillation was seen. These findings suggested that chondrocyte death was the initial important event which led to progressive severe cartilage degeneration in this model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号