首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Purpose

Sustainable management of riparian zone soils is required to ensure the health of natural ecosystems and maintenance of soil nitrogen (N) pools and soil N cycling. However, the effect of revegetation type and age on soil N pools remains poorly understood.

Materials and methods

This study compiled data from published articles to understand the effects of revegetation types and age on soil total N (TN) and soil inorganic N (NH4+-N, and NO3?-N) using a meta-analysis. We extracted 645 observations from 52 published scientific articles.

Results and discussion

The revegetation of riparian zones led to a significant increase of soil TN (mean effect size: 11.5%; 95% CI: 3.1% and 20.6%). Woodland increased soil TN significantly by 14.0%, which was associated with the presence of N fixing species and high litter inputs. Soil NH4+-N concentration significantly increased (mean effect size: 20.1%; 95% CI: 15.1% and 25.4%), whereas a significant decrease in soil NO3?-N (mean effect size: ? 21.5%; 95% CI: ? 15.0% and ? 27.5%) was observed. Of the revegetation types considered in this paper, NO3?-N concentration in soil followed the order: grassland < shrubland < woodland, suggesting that woodland might be more efficient in soil NO3?-N retention than grassland. The high plant N uptake and accelerated NO3?-N leaching in grassland could be related to the decreased soil NO3?-N in grassland compared with other revegetation types. Revegetation significantly decreased soil moisture by (mean effect size: ? 7.9%; 95% CI: ? 3.3% and ? 12.2%) compared with the control, which might be associated with the selection of exotic species as dominant vegetation in the riparian zone. Soil TN increased in revegetation ages between 10 and 40 years following revegetation and was related to increased soil organic carbon inputs within those ages following the establishment.

Conclusions

This study provides insight into influence of different vegetation types and age on soil N pools and soil moisture. This study also highlights the importance of revegetation in riparian zones to increase soil TN.

  相似文献   

2.
Tutua  Shane  Zhang  Yaling  Xu  Zhihong  Blumfield  Tim 《Journal of Soils and Sediments》2019,19(11):3786-3796
Purpose

This study aimed to investigate the benefits of retaining harvest residues on the dynamics of soil C and N pools following clear-cut harvesting of a slash pine plantation in South East Queensland of subtropical Australia.

Materials and methods

Immediately following clear-cut harvesting, macro-plots (10?×?10 m) were established on a section of the plantation in a randomised complete block design with four blocks and three treatments: (1) residue removal (RR0), (2) single level of residue retention (RR1) and (3) double level of residue retention (RR2). Soils were sampled at 0, 6, 12, 18 and 24 months following clear-cutting and analysed for total C and N, microbial biomass C (MBC) and N (MBN), hot water–extractable organic C (HWEOC), hot water–extractable organic N (HWEON), NH4+–N and NOx?–N.

Results and discussion

The study showed that although soil total C decreased in the first 12 months following clear-cutting, harvest residue retention increased soil total C and N by 45% (p?<?0.001) and 32% (p?<?0.001), respectively, over the 12–24 months. NH4+–N, HWEOC, HWEON and MBC showed initial surges in the first 6 months irrespective of residue management, which declined after the 6th month. However, residue retention significantly increased HWEOC and HWEON over the 12–24 months (p?<?0.001).

Conclusions

This study demonstrated that harvest residue retention during the inter-rotation period can minimise large changes in C and nutrient pools, and can even increase soil C and nutrient pools for the next plantation rotation.

  相似文献   

3.
Abstract

To determine the relationships between microbial biomass nitrogen (N), nitrate–nitrogen leaching (NO3-N leaching) and N uptake by plants, a field experiment and a soil column experiment were conducted. In the field experiment, microbial biomass N, 0.5 mol L?1 K2SO4 extractable N (extractable N), NO3-N leaching and N uptake by corn were monitored in sawdust compost (SDC: 20 Mg ha?1 containing 158 kg N ha?1 of total N [approximately 50% is easily decomposable organic N]), chemical fertilizer (CF) and no fertilizer (NF) treatments from May 2000 to September 2002. In the soil column experiment, microbial biomass N, extractable N and NO3-N leaching were monitored in soil treated with SDC (20 Mg ha?1) + rice straw (RS) at five different application rates (0, 2.5, 5, 7.5 and 10 Mg ha?1 containing 0, 15, 29, 44 and 59 kg N ha?1) and in soil treated with CF in 2001. Nitrogen was applied as (NH4)2SO4 at rates of 220 kg N ha?1 for SDC and SDC + RS treatments and at a rate of 300 kg N ha?1 for the CF treatment in both experiments. In the field experiment, microbial biomass N in the SDC treatment increased to 147 kg N ha?1 at 7 days after treatment (DAT) and was maintained at 60–70 kg N ha?1 after 30 days. Conversely, microbial biomass N in the CF treatment did not increase significantly. Extractable N in the surface soil increased immediately after treatment, but was found at lower levels in the SDC treatment compared to the CF treatment until 7 DAT. A small amount of NO3-N leaching was observed until 21 DAT and increased markedly from 27 to 42 DAT in the SDC and CF treatments. Cumulative NO3-N leaching in the CF treatment was 146 kg N ha?1, which was equal to half of the applied N, but only 53 kg N ha?1 in the SDC treatment. In contrast, there was no significant difference between N uptake by corn in the SDC and CF treatments. In the soil column experiment, microbial biomass N in the SDC + RS treatment at 7 DAT increased with increased RS application. Conversely, extractable N at 7 DAT and cumulative NO3-N leaching until 42 DAT decreased with increased RS application. In both experiments, microbial biomass N was negatively correlated with extractable N at 7 DAT and cumulative NO3-N leaching until 42 DAT, and extractable N was positively correlated with cumulative NO3-N leaching. We concluded that microbial biomass N formation in the surface soil decreased extractable N and, consequently, contributed to decreasing NO3-N leaching without impacting negatively on N uptake by plants.  相似文献   

4.
ABSTRACT

Plant nitrogen (N)-acquisition strategy affects soil N availability, community structure, and vegetation productivity. Cultivated grasslands are widely established to improve degraded pastures, but little information is available to evaluate the link between N uptake preference and forage crop biomass. Here an in-situ 15N labeling experiment was conducted in the four cultivated grasslands of Inner Mongolia, including two dicots (Medicago sativa and Brassica campestris) and two monocots (Bromus inermis and Leymus chinensis). Plant N uptake rate, shoot- and root biomass, and concentrations of soil inorganic-N and microbial biomass-N were measured. The results showed that the root/shoot ratios of the dicots were 2.6 to 16.4 fold those of the monocots. The shoot N concentrations of the dicots or legumes were 40.6% to 165% higher than those of the monocots or non-legumes. The four forage crops in the cultivated grassland preferred to uptake more NO3?-N than NH4+-N regardless of growth stages, and the NH4+/NO3? uptake ratios were significantly lower in the non-legumes than in the legumes (p < 0.05). Significant differences in the NH4+-N rather than NO3?-N uptake rate were observed among the four forages, related to plant functional types and growth stages. The NH4+ uptake rate in the perennial forages exponentially decreased with the increases in shoot-, root biomass, and root/shoot ratio. Also, the plant NH4+/NO3? uptake ratio was positively correlated with soil NH4+/NO3? ratio. Our results suggest that the major forage crops prefer to absorb soil NO3?-N, depending on soil inorganic N composition and belowground C allocation. The preferential uptake of NO3?-N by forages indicates that nitrate-N fertilizer could have a higher promotion on productivity than ammonium-N fertilizer in the semi-arid cultivated grassland.  相似文献   

5.
To evaluate the validity of different indices in estimating soil readily mineralizable N, soil microbial biomass (Nmic), soil active N (SAN), soluble organic N (SON), net N mineralization rate (NNR) and gross N mineralization rate (GNR) in mineral soils (0-10 cm) from six forest stands located in central Germany were determined and compared with two sampling times: April and November. Additionally, soil density fractionation was conducted for incubated soils (with addition of ^15NH4-N and glucose, 40 days) to observe the sink of added ^15N in different soil fractions. The study showed that Nmic and NNR in most stands differed significantly (P 〈 0.05) between the two sampling times, but not GNR, SAN and SON. In November, no close relationships were found between GNR and other N indices, or between Nrnic, SON, and SAN and forest type. However, in April, GNR was significantly correlated (P 〈 0.05) with Nmic, SAN, and NNR along with Nmlc under beech being significantly higher (P 〈 0.05) than under conifers. Furthermore, density fractionation revealed that the light fraction (LF, 0.063-2 mm, 〉 1.7 gcm^-3) was not correlated with the other N indices. In contrast, results from the incubation study proved that more 15N was incorporated into the heavy fraction (HF 〈 0.063 ram, 〉 1.7 g cm^-3) than into LF, indicaing that more labile N existed in HF than in LF. These findings suggested that attention should be paid to the differences existing in N status between agricultural and forest soils.  相似文献   

6.
Abstract

The effects of steam sterilization (SS), methyl bromide (MeBr) fumigation and chloropicrin (CP) fumigation on soil N dynamics and microbial properties were evaluated in a pot experiment. All disinfection treatments increased the NH+ 4-N level and inhibited nitrification. The additional NH+ 4-N in the CP treatment probably originated from the decomposition of microbial debris by surviving microbes, while that in the SS treatment was attributable to deamination processes of soil organic N occurring in a less labile fraction in addition to the decomposition of microbial debris. The MeBr fumigation increased the level of NH+ 4-N without changing the soil microbial biomass. Based on the determinations of soil microbial biomass, substrate utilization activity (Biolog method) and microbial community structure (phospholipid fatty acid method), the effects of the MeBr, CP and SS treatments on the microbial community were compared. The MeBr fumigation had relatively mild and short-term effects on microbial biomass and activity, but altered the community structure drastically by promoting the growth of gram-positive bacteria. The CP fumigation had large and long-term impacts on microbial biomass and activity; the community structure remained unaffected except for the gram-negative bacteria. Steam sterilization had severe and persistent effects on all parameters. The severity of the effects decreased in the order SS ≥ CP > MeBr.  相似文献   

7.
Nitrate-N (NO3 ?-N) is a ubiquitous pollutant in both surface and groundwater in many agro-ecosystems. This has elicited a concerted effort to identify management strategies that mitigate NO3 ?–N pollution, without compromising crop yield. This study was conducted on a field site located at the Bio-Environmental Engineering Centre (BEEC) in Truro, NS, Canada during 1999 and 2000. The site has been used since 1997 to investigate the relative effect of inorganic versus organic fertilizer (liquid hog manure; LHM) applied at rates (70 kg N ha?1) on NO3 ?-N leaching from a carrot rotation system. NO3 ?-N concentrations were monitored in both the soil profile and in tile drainage effluents from eight treatment plots. The LHM treatment elicited significantly (P < 0.01) higher soil NO3 ?-N concentrations than inorganic fertilizer (IF) in June and October during 1999, but not 2000. The sampling date and soil depth were significant in most cases. Annual flow weighted averages (FWA) of NO3 ?-N in drainage water were generally greater for plots receiving LHM (15.4 and 10.5 mg L?1 for 1999 and 2000, respectively), when compared to IF (8.9 and 6.0 mg L?1 for 1999 and 2000, respectively), but the difference was significant (P < 0.05) only in 1999. Maximum NO3 ?-N concentrations in drainage water were similar for both treatments, while the LHM treatment had a significantly higher percentage of samples that were > 10 mg L?1. The total NO3 ?-N load was greater for the LHM treatment when compared to the IF treatment in 1999. Barley and carrot yields were unaffected by treatment applications.  相似文献   

8.
Xiao  Lie  Liu  Guobin  Li  Peng  Xue  Sha 《Journal of Soils and Sediments》2019,19(11):3679-3687
Purpose

Elevated CO2 and nitrogen (N) addition both affect soil microbial communities, which significantly influence soil processes and plant growth. Here, we evaluated the combined effects of elevated CO2 and N addition on the soil–microbe–plant system of the Chinese Loess Plateau.

Materials and methods

A pot cultivation experiment with two CO2 treatment levels (400 and 800 μmol mol?1) and three N addition levels (0, 2.5, and 5 g N m?2 year?1) was conducted in climate-controlled chambers to evaluate the effects of elevated CO2 and N addition on microbial community structure in the rhizosphere of Bothriochloa ischaemum using phospholipid fatty acid (PLFA) profiles and associated soil and plant properties. Structural equation modeling (SEM) was used to identify the direct and indirect effects of the experimental treatments on the structure of microbial communities.

Results and discussion

Elevated CO2 and N addition both increased total and fungal PLFAs. N addition alone increased bacterial, Gram-positive, and Gram-negative PLFAs. However, elevated CO2 interacting with N addition had no significant effects on the microbial community. The SEM indicated that N addition directly affected the soil microbial community structure. Elevated CO2 and N addition both indirectly affected the microbial communities by affecting plant and soil variables. N addition exerted a stronger total effect than elevated CO2.

Conclusions

The results highlighted the importance of comprehensively studying soil–microbe–plant systems to deeply reveal how characteristics of terrestrial ecosystems may respond under global change.

  相似文献   

9.
Yao  Yihan  Cao  Shanzhi  Gong  Xueliu  Singh  Bhupinder Pal  Fang  Yunying  Ge  Tida  Wang  Hailong  Li  Yongfu 《Journal of Soils and Sediments》2022,22(10):2640-2653
Purpose

Intensive long-term management practices in forest ecosystems can markedly influence soils’ physicochemical and microbial properties. However, their effects on the magnitude of nutrient pools and activities of enzymes regarding nutrient cycling in subtropical forest soils remain unclear. This study aimed to examine effects of long-term intensive management (organic mulching and chemical fertilization) on concentrations of different C, N, and P fractions and activities of enzymes involved with nutrient cycling in a subtropical Lei bamboo (Phyllostachys violascens) forest soil.

Materials and methods

Soil samples were taken from a chronosequence of Lei bamboo forests with intensive management spanning 0, 5, 10, and 15 years. Concentrations of various forms of C, N, and P, as well as activities of β-glucosidase, cellobiohydrolase, urease, protease, and acid phosphatase were measured.

Results and discussion

The results revealed that the concentrations of different classes of C (water-soluble organic C, hot-water-soluble organic C, and readily oxidizable C), N (NH4+-N, NO3?-N, and water-soluble organic N), and P [resin-inorganic P (Pi), NaHCO3-Pi, NaHCO3-organic P (Po), NaOH-Pi, NaOH-Po, HCl-Pi, and residual-P] were enhanced markedly with prolonged duration of intensive management. Furthermore, activities of β-glucosidase, cellobiohydrolase, urease, protease, and acid phosphatase were increased following a 5-year treatment, while they were markedly reduced from 5- to the 15-year treatments. The 15 years of intensive management significantly reduced microbial biomass C and N concentrations by 8.2% and 31.9%, respectively, compared to the control.

Conclusions

We concluded that long-term intensive management led to the accumulation of C, N, and P, while it negatively impacted microbial biomass and activities of enzymes involved in nutrient cycling in subtropical Lei bamboo forest soils. Consequently, a reduction in chemical fertilizers should be considered toward the long-term sustainable development of subtropical Lei bamboo forests.

  相似文献   

10.
We examined effects of wetting and then progressive drying on nitrogen (N) mineralization rates and microbial community composition, biomass and activity of soils from spinifex (Triodia R. Br.) grasslands of the semi-arid Pilbara region of northern Australia. We compared soils under and between spinifex hummocks and also examined impacts of fire history on soils over a 28 d laboratory incubation. Soil water potentials were initially adjusted to −100 kPa and monitored as soils dried. We estimated N mineralization by measuring changes in amounts of nitrate (NO3-N) and ammonium (NH4+-N) over time and with change in soil water potential. Microbial activity was assessed by amounts of CO2 respired. Phospholipid fatty acid (PLFA) analyses were used to characterize shifts in microbial community composition during soil drying. Net N mineralized under hummocks was twice that of open spaces between hummocks and mineralization rates followed first-order kinetics. An initial N mineralization flush following re-wetting accounted for more than 90% of the total amount of N mineralized during the incubation. Initial microbial biomass under hummocks was twice that of open areas between hummocks, but after 28 d microbial biomass was<2 μ g−1 ninhydrin N regardless of position. Respiration of CO2 from soils under hummocks was more than double that of soils from between hummocks. N mineralization, microbial biomass and microbial activity were negligible once soils had dried to −1000 kPa. Microbial community composition was also significantly different between 0 and 28 d of the incubation but was not influenced by burning treatment or position. Regression analysis showed that soil water potential, microbial biomass N, NO3-N, % C and δ15N all explained significant proportions of the variance in microbial community composition when modelled individually. However, sequential multiple regression analysis determined only microbial biomass was significant in explaining variance of microbial community compositions. Nitrogen mineralization rates and microbial biomass did not differ between burned and unburned sites suggesting that any effects of fire are mostly short-lived. We conclude that the highly labile nature of much of soil organic N in these semi-arid grasslands provides a ready substrate for N mineralization. However, process rates are likely to be primarily limited by the amount of substrate available as well as water availability and less so by substrate quality or microbial community composition.  相似文献   

11.
Wang  Xiangxiang  Cui  Yongxing  Wang  Yuhan  Duan  Chengjiao  Niu  Yinan  Sun  Ruxiao  Shen  Yufang  Guo  Xuetao  Fang  Linchuan 《Journal of Soils and Sediments》2022,22(2):536-546
Purpose

Variation in soil microbial metabolism remains highly uncertain in predicting soil carbon (C) sequestration, and is particularly and poorly understood in agroecosystem with high soil phosphorus (P) variability.

Materials and methods

This study quantified metabolic limitation of microbes and their association with carbon use efficiency (CUE) via extracellular enzymatic stoichiometry and biogeochemical equilibrium models in field experiment employing five inorganic P gradients (0, 75, 150, 225, and 300 kg P ha?1) in farmland used to grow peas.

Results and discussion

Results showed P fertilization significantly increased soil Olsen-P and NO3?-N contents, and enzyme activities (β-1,4-glucosidase and β-D-cellobiosidase) were significantly affected by P fertilization. It indicated that P fertilization significantly decreased microbial P limitation due to the increase of soil available P. Interestingly, P application also significantly decreased microbial nitrogen (N) limitation, a phenomenon primarily attributable to increasing NO3?-N content via increasing biological N fixation within the pea field. Furthermore, P fertilization increased microbial CUE because the reduction in microbial N and P limitation leads to higher C allocation to microbial growth. Partial least squares path modeling (PLS-PM) further revealed that the reduction of microbial metabolic limitation is conducive to soil C sequestration.

Conclusions

Our study revealed that P application in agroecosystem can alleviate not only microbial P limitation but also N limitation, which further reduces soil C loss via increasing microbial CUE. This study provides important insight into better understanding the mechanisms whereby fertilization mediates soil C cycling driven by microbial metabolism in agricultural ecosystems.

  相似文献   

12.
A 56-day aerobic incubation experiment was performed with 15-nitrogen (N) tracer techniques after application of wheat straw to investigate nitrate-N (NO3-N) immobilization in a typical intensively managed calcareous Fluvaquent soil. The dynamics of concentration and isotopic abundance of soil N pools and nitrous oxide (N2O) emission were determined. As the amount of straw increased, the concentration and isotopic abundance of total soil organic N and newly formed labeled particulate organic matter (POM-N) increased while NO3-N decreased. When 15NO3-N was applied combined with a large amount of straw at 5000 mg carbon (C) kg?1 only 1.1 ± 0.4 mg kg?1 NO3-N remained on day 56. The soil microbial biomass N (SMBN) concentration and newly formed labeled SMBN increased significantly (P < 0.05) with increasing amount of straw. Total N2O-N emissions were at levels of only micrograms kg?1 soil. The results indicate that application of straw can promote the immobilization of excessive nitrate with little emission of N2O.  相似文献   

13.
Fei  Chao  Zhang  Shirong  Wei  Wenliang  Liang  Bin  Li  Junliang  Ding  Xiaodong 《Journal of Soils and Sediments》2020,20(3):1199-1207
Purpose

Phosphorus (P) mobility in soil is controlled by its forms and soil sorption capacity. The P forms and soil sorption capacity are both affected by nitrogen (N) and carbon (C) addition. This paper aimed to (i) analyze effects of N and straw application on the different forms and content of P in the soil and its leachates in greenhouse soil, and (ii) explain variations in soil P transformation and transport in terms of contributing soil factors.

Material and methods

In this study, the impacts of N and straw application on the transformation and transport of soil P were investigated after 17 years in a greenhouse. Four fertilization regimes were implemented: farmer standard fertilization practice (CK), straw incorporation treatment (SC), optimized N fertilizer application (ON), and combined straw and optimized N fertilizer application (SN). P forms and its contents were determined in the selected leached water and its related soil samples.

Results and discussion

Compared with CK, ON treatment significantly (p < 0.05) decreased total phosphorus (Pt) and the proportion of organic phosphorus (Po) in soil, while straw amendment did not affect soil Pt content. SC, ON, and SN all decreased soil available phosphorus (Pa) but enhanced P transformation, as evidenced by the increase in the ratio of Pa to Pt and microbial phosphorus (MBP) and alkaline phosphatases (ALP) in soil. After SN implementation, soil P adsorption capacity increased significantly and was associated with higher soil organic matter (SOM) and CaCO3. ON showed lower Pt in the leachate than CK, but SC did not lead to significantly different. Under the SN regime, Pt loss by leaching decreased by 29.4% compared with CK and significantly reduced proportion of total dissolve P (DPt) in leachate.

Conclusions

Our study highlights that straw and optimized N fertilizer in SN treatment not only generates lower P loss by leaching but also promotes the transformation of soil P, which were attributed to higher soil Pa in greenhouse soil. This finding further indicates that P transformation and transport in the different fertilizer regimes was primarily linked to pH and SOM in greenhouse soil.

  相似文献   

14.
Purpose

The aim of this research was to quantify the effect of plantain (Plantago lanceolata L.) on soil nitrification rate, functional gene abundance of soil ammonia oxidisers, and the concomitant effect on nitrous oxide emissions from urine patches in a shallow, free-draining soil in Canterbury during late autumn/winter season.

Materials and methods

Urine was collected from dairy cows grazing either ryegrass/white clover (RGWC), 30% plantain (P30) mixed in with RGWC or 100% plantain (P100) pasture, and applied at two rates (700 or 450 kg N ha?1) to intact soil blocks growing either RGWC, P30 or P100 pasture.

Results and discussion

Results showed that increased plantain content reduced N-concentration in urine from 7.2 in RGWC urine to 4.5 and 3.7 g N L?1 in P30 and P100 urine, respectively. Total N2O emissions and emission factors (EF3) from urine-treated pastures were low, <?2 kg N ha?1 and <?0.22%, respectively. Urine application at the lower urine N-loading rate of 450 kg N ha?1 (i.e. representative of that in a P30 urine patch) resulted in 30% lower N2O emissions (P?<?0.01) and 35% lower soil nitrate concentrations (P?<?0.001) compared to those at the higher urine loading rate of 700 kg N ha?1 (i.e. representative of that in a RGWC urine patch). Increasing plantain content in the pasture sward from 0 to 30% and 100% with urine N applied at the same loading rate did not reduce N2O emissions or nitrification compared to the standard ryegrass-white clover pasture. Cow urine derived from the different pasture diets had no effect on N2O emissions, N transformation or ammonia-oxidiser abundance in soil compared to the RGWC urine applied at the same rate.

Conclusions

The main effect of plantain in this study appears to be related to the reduction in urine N-loading rate, rather than factors related to urine properties or plantain-soil interactions.

  相似文献   

15.
Purpose

This study examined the usefulness of 15N natural abundance (δ15N) with in situ core incubation to quantify the predominant N transformation processes in a natural suburban forest of subtropical Australia, which was subjected to prescribed burning.

Materials and methods

In situ core incubation for 3 days with 20 ml water, or 160.79 ml of 60 mg L?1 NO3?-N surface application, and in situ core with 160.79 ml water but without incubation were set up in Toohey forest for sampling three times as before (once) and after (twice) a prescribed burning. The δ15N of NH4+-N and NO3?-N in the top 5 cm soil before and after the incubation, and δ15N of NO3?-N in the 5–10 cm soil before incubation were compared with each other to examine the soil N mineralisation, nitrification, denitrification, and nitrate leaching processes.

Results and discussion

The significant decrease in δ15N of NH4+-N after incubation under 20 ml water treatment was ascribed to soil N mineralisation, and the significant decrease in δ15N of NH4+-N and significant increase in δ15N of NO3?-N after incubation with elevated water and nitrate inputs were associated with N mineralisation and nitrification, respectively, 2 months after the burning. The 160.79 ml water treatment also triggered nitrification in the baseline soil cores in both samplings after the burning. Water was crucial to stimulate soil N mineralisation and nitrification, but excessive water depleted labile N pools and reduced N mineralisation and nitrification. Burning effects were hard to separate from the seasonal impacts on soil N cycling processes.

Conclusions

The δ15N in soil mineral N pools was sensitive to indicate soil N mineralisation and nitrification processes. Soil water and labile N were determining factors for N transformations in the soil. It is suggested that δ15N combined with soil inorganic N concentrations and net N transformation rates could be used to identify primary N transformation processes. More frequent samplings would be needed to differentiate burning impacts from the seasonal impacts on soil N cycling processes.

  相似文献   

16.
Purpose

Land application of farm dairy effluent (FDE) to pasture soils is the preferred practice in New Zealand. Recently, a new FDE treatment technology has been developed to recycle the water for washing the yard Cameron and Di (J Soils Sediments 2018). Here we report a lysimeter study to compare the leaching losses of Escherichia coli, phosphorus (P), and nitrogen (N) and emissions of greenhouse gases from the treated FDE compared with the untreated original FDE.

Materials and methods

Lysimeters were collected from a Balmoral silt loam soil (Typic Dystrudept, USDA) and installed in a field trench facility. Treatments included (1) treated effluent (TE), (2) a mixture of TE and recycled water (M), (3) untreated original FDE (FDE), and (4) water as control. The effluents were applied at a surface application rate of 24 mm on each lysimeter in May and again in September 2017. Measurements included leaching losses of E. coli, total phosphorus (TP), dissolved reactive phosphorus (DRP), total mineral nitrogen (TN), ammonium-N (NH4+-N), and nitrate-N (NO3?-N); emissions of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4); herbage yield; and N uptake.

Results and discussion

The results showed that E. coli, TP, and DRP leaching losses from the TE were 1.31?×?1010 cfu/ha, 0.26 kg P/ha, and 0.009 kg DRP/ha and from M treatments were 6.96?×?108 cfu/ha, 0.18 kg P/ha, and 0.004 kg DRP/ha, respectively, which were significantly (P?<?0.05) lower than those from the FDE which were 4.21?×?1010 cfu/ha, 1.75 kg P/ha, and 0.034 kg DRP/ha, respectively. There were no significant differences in NO3?-N leaching losses amongst the different forms of effluents. There were no significant differences in total N2O, CO2 emissions, and CH4 uptakes from the different effluents (P?<?0.05). Herbage dry matter yields and N uptakes were also similar in the different effluent-treated lysimeters.

Conclusions

Results from this research indicate that land application of the treated effluents (TE) or a mixture of TE plus clarified water (M) would result in significant environmental benefits by reducing E. coli and P leaching without increasing greenhouse gas emissions.

  相似文献   

17.
Wang  Weidong  Liu  Weiyue  Wu  Di  Wang  Xiaoxia  Zhu  Guibing 《Journal of Soils and Sediments》2019,19(2):1005-1016
Purpose

Nitrogen (N) is one of the major elements causing eutrophication in freshwater lakes, and the N cycle is mainly driven by microorganisms. Lake littoral zones are found to be “hotspots” for N removal from both the basin and receiving waters. However, the environmental factors that drive the distribution of microorganisms are diverse and unclear. Here, we examined the differentiation of nitrogen and microbial community between the littoral and limnetic sediments to explore their interactions.

Materials and methods

Sediment samples were collected in the littoral and limnetic zones of Chaohu Lake in winter (ca. 7 °C) and autumn (ca. 22 °C). Abundances of the bacterial and archaeal genes amoA (ammoxidation), nirS and nirK (denitrification), hzsB (anaerobic ammonium oxidation; anammox), and nrfA (dissimilatory nitrate reduction to ammonium; DNRA) were measured via quantitative real-time polymerase chain reaction (qPCR). Clone libraries were constructed for further phylogenetic analysis to study the community composition.

Results and discussion

We observed significant higher concentration values in terms of sedimentary NH4+-N and NO3?-N in the limnetic zone than littoral zone (p?<?0.05; n?=?12). In general, abundance values of the above six genes in the littoral zone were all higher than those in the limnetic zone, while higher in winter (7 °C) than in autumn (22 °C) (p?<?0.05; n?=?6). The spatial heterogeneity had the most significant effect on the distribution of ammonia-oxidizing archaea (AOA) and anammox bacteria abundance. Both temporal (temperature) and spatial heterogeneity affected the abundance of ammonia-oxidizing bacteria (AOB). The variation in the abundance of denitrifying bacteria and DNRA bacteria mainly reflected the temporal (temperature) heterogeneity.

Conclusions

The six N-cycle-related microorganisms were affected by different environmental factors and presented different distribution patterns. The lower nitrogen content and the higher microbial abundance and diversity showed that the littoral zone was the “hotspot” of N-cycling-related microorganisms in a large, eutrophic, and turbid lake. It is suggested that increasing the area and restoring the ecological function of the littoral zone was effective and significant in eutrophic lake management.

  相似文献   

18.
Simple and rapid chemical indices of soil nitrogen (N)-supplying capacity are necessary for fertilizer recommendations. In this study, pot experiment involving rice, anaerobic incubation, and chemical analysis were conducted for paddy soils collected from nine locations in the Taihu Lake region of China. The paddy soils showed large variability in N-supplying capacity as indicated by the total N uptake (TNU) by rice plants in a pot experiment, which ranged from 639.7 to 1,046.2 mg N pot−1 at maturity stage, representing 5.8% of the total soil N on average. Anaerobic incubation for 3, 14, 28, and 112 days all resulted in a significant (P < 0.01) correlation between cumulative mineral NH4+-N and TNU, but generally better correlations were obtained with increasing incubation time. Soil organic C, total soil N, microbial C, and ultraviolet absorbance of NaHCO3 extract at 205 and 260 nm revealed no clear relationship with TNU or cumulative mineral NH4+-N. Soil C/N ratio, acid KMnO4-NH4+-N, alkaline KMnO4-NH4+-N, phosphate–borate buffer extractable NH4+-N (PB-NH4+-N), phosphate–borate buffer hydrolyzable NH4+-N (PBHYDR-NH4+-N) and hot KCl extractable NH4+-N (HKCl−NH4+-N) were all significantly (P < 0.05) related to TNU and cumulative mineral NH4+-N of long-term incubation (>28 days). However, the best chemical index of soil N-supplying capacity was the soil C/N ratio, which showed the highest correlation with TNU at maturity stage (R = −0.929, P < 0.001) and cumulative mineral NH4+-N (R = −0.971, P < 0.001). Acid KMnO4-NH4+-N plus native soil NH4+-N produced similar, but slightly worse predictions of soil N-supplying capacity than the soil C/N ratio.  相似文献   

19.
Combined application of synthetic nitrogen (N) fertilizers and organic materials can enhance soil quality, but little is known about the distribution of fertilizer N among different soil fractions after crop harvest. A pot experiment using 15N tracer was employed to address this question with three treatments, i.e., labeled urea-only (15NU), labeled urea + rice straw (15NU-S) and labeled rice straw + urea (15NS-U) applied to a Ferallic Cambisol (1:1 type soil clay mineral) and a Calcaric Fluvisol (2:1 clay mineral). Soil microbial biomass N, fixed ammonium (fixed NH4+), exchangeable ammonium and soil organic N fractions by hydrolysis (6 N HCl) and their isotope abundance were determined after the rice harvest. Soil newly formed N in urea + straw (U-S) treatments (15NU-S, 15NS-U) was the sum of labeled urea-N in 15NU-S and labeled straw-N in 15NS-U. Compared with 15NU, U-S significantly (P < 0.05) increased the content and percentage of newly formed total soil N, acid insoluble N, amino acid N, and hydrolysable unknown N in both soils. In U-S treatment, straw amendment significantly (P < 0.05) reduced the content and percentage of newly formed fixed-NH4+-N in Fluvisol as compared with 15NU treatments. Soil microbes contributed to the larger percentage of newly formed amino acid N (P < 0.01) in Cambisol as compared with Fluvisol. Fertilizer N in various soil fractions was therefore strongly affected by clay mineral type and microbes after the combined application of organic materials and synthetic N fertilizer.  相似文献   

20.
Li  Xingfu  Ding  Chengxiang  Bu  He  Han  Liliang  Ma  Pu  Su  Derong 《Journal of Soils and Sediments》2020,20(3):1480-1493
Purpose

Hulunbuir steppe has flat terrain and wide riparian zone of rivers and lakes on it. Owing to climate change, these riparian zones are often submerged or dried. This not only results in the instability of biodiversity in these regions but also affects the soil biogeochemical cycles. Soil C:N:P ecological stoichiometry plays a vital role in predicting and understanding the balance of multiple chemicals in ecological interactions. However, few studies have examined the soil C:N:P ecological stoichiometry in riparian zones of Hulunbuir steppe under different submergence states. Our objectives were to explore whether submergence frequencies impact soil C:N:P stoichiometry and identify the key factors.

Materials and methods

Four study sites were selected along the Hui river in Hulunbuir steppe, and three plots of different submergence frequencies, high (HF-sub, 5 to 7 times per year), moderate (MF-sub, 2 to 3 times per year), and low (LF-sub, unflooded or flooded once per year), were selected for each study site. Soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP), their ecological stoichiometric ratios (soil C:N, N:P, and C:P), soil ammonia nitrogen (NH4+-N), nitrate nitrogen (NO3?-N), available phosphorus (AP), soil pH, electrical conductivity (EC), soil moisture content (SMC), soil bulk density (SBD), porosity, and hardness were measured and analyzed.

Results and discussion

The results indicated that soil C:N:P ecological stoichiometry was notably affected by submergence frequency across the four study sites (P?<?0.05). SOC, TN, TP, and their stoichiometric ratios changed regularly with the submergence frequency change, whereas their trends were inconsistent at different drainage basins. Soil C:N decreased with the decrease in submergence frequency but kept in a narrow scope, whereas the N:P and C:P were changed greatly under different submergence frequencies. Further analysis found that these significant variations in N:P and C:P were mainly due to the changes in soil TP which suggested there might be a P limitation in the riparian zones. The results of redundancy analysis (RDA) and path analysis indicated that soil AP and NO3?-N were the key indirect factors affecting soil C:N:P ecological stoichiometry under different submergence frequencies, and SMC was an indirect factor.

Conclusions

We demonstrated that the soil C:N:P ecological stoichiometry was significantly affected by the submergence frequency in the riparian zones of Hulunbuir steppe. Soil N:P and C:P were more susceptible to change than C:N under different submergence frequencies. If the contents of soil AP and NO3?-N were appropriate, soil C:N:P ecological stoichiometry will be more beneficial to regulating the cycle and balance of soil nutrient elements in the riparian zones, which can promote the riparian zones to provide better ecological functions.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号