首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The disposition kinetics and appropriate dosage regimen for kanamycin were investigated in buffalo calves following a single intravenous dose of 10 mg/kg body weight. The distribution and elimination half-lives were 0.12±0.01 h and 1.94±0.11 h, respectively. The apparent volume of distribution and total body clearance were 0.2±0.01 L/kg and 92.9±3.69 ml/kg/h, respectively. About 74% of the administered dose was excreted in urine in 24 h. A suitable dosage regimen for the intravenous administration of kanamycin was also calculated.Abbreviation SEM standard error of the mean  相似文献   

2.
The disposition kinetics, urinary excretion and a dosage regimen for ciprofloxacin after a single intravenous administration of 5 mg/kg was investigated in 5 healthy buffalo calves. The disposition kinetics were best fitted to a three-compartment open model. After 1 min, the concentration of ciprofloxacin in plasma was 8.50±0.39 g/ml and the minimum therapeutic concentration was maintained for 10 h. The elimination half-life and volume of distribution were 3.88 and 0.08 h and 3.97±0.22 L/kg, respectively. The total body clearance and T/P ratio were 0.709±0.025 L/kg per h and 6.13±0.54, respectively. Approximately 28.3% of the total administered dose of ciprofloxacin was recovered in urine within 24 h of administration. To maintain a minimum therapeutic plasma concentration of 0.10 g/ml, a satisfactory intravenous dosage regimen of ciprofloxacin, computed on the basis of disposition kinetic data obtained in healthy buffalo calves, would be 3 mg/kg repeated at 12 h intervals.  相似文献   

3.
The pharmacokinetics and dosage regimen of ceftriaxone were investigated in buffalo calves (n = 6) following a single intravenous administration of ceftriaxone (10 mg/kg). The elimination rate constant was 0.18 +/- 0.01 h(-1) and the elimination half-life was 3.79 +/- 0.09 h. The apparent volume of distribution (Vd(area)) was 1.40 +/- 0.01 L/kg and the total plasma clearance was 0.26 +/- 0.01 L/(kg h). Approximately 43% of total administered dose of ceftriaxone was excreted in urine within 8 h. To maintain a minimum therapeutic concentration of 1 microg/ml, a satisfactory intravenous dosage regimen of ceftriaxone in buffalo calves is 13 mg/kg repeated at 12 h intervals.  相似文献   

4.
The distribution half-life, elimination half-life, apparent volume of distribution and total body clearance of carbenicillin in healthy buffalo calves following a single intravenous administration (50 mg/kg) were 0.057±0.005 h, 1.688±0.11 h, 0.185±0.021 L kg-1 and 75.97±6.519 ml kg-1 h-1 respectively. A satisfactory dosage regimen for carbenicillin in buffalo calves was calculated to be 56 mg/kg followed by 52 mg/kg body weight repeated at 6 h intervals.  相似文献   

5.
The disposition kinetics and dosage regimen of enrofloxacin were investigated in breeding buffalo bulls following a single intramuscular administration of 5 mg/kg. The absorption half-life, half-life of the terminal phase, apparent volume of distribution and total body clearance were 0.262±0.099 h, 1.97±0.23 h, 0.61±0.13 L/kg and 210.2±18.6 ml/(kg.h), respectively. Therapeutic plasma levels (1 g/ml) were maintained for up to 6 h. A satisfactory intramuscular dosage regimen for enrofloxacin in buffalo bulls would be 8.5 mg/kg followed by 8.0 mg/kg at 8 h intervals.  相似文献   

6.
The disposition kinetics and dosage regimen of sulfapyridine were studied in buffalo calves following a single intravenous dose of 100 mg/kg. Distribution half-life (t1/2 alpha) elimination half-life (t1/2 beta) and Vd (area) was 0.181 +/- 0.008 h, 13.4 +/- 0.52 h and 0.59 +/- 0.03 L kg-1, respectively. Total body clearance, which represents the sum of all clearance processes, and tissue/plasma (T/P) ratio were calculated to be 31.1 +/- 2.28 ml kg-1 h-1 and 2.25 +/- 0.09, respectively. A satisfactory intravenous dosage regimen of sulfapyridine in buffalo would be 104 mg/kg followed by 75 mg/kg at 24 h intervals.  相似文献   

7.
The pharmacokinetic behavior of cefepime was studied in healthy and febrile cross-bred calves after single intravenous administration (10 mg/kg). The fever was induced with E. coli lipopolysaccharide (1 μg/kg, IV). The drug concentration in plasma was detected by microbiological assay method using E. coli (MTCC 739) test organism. Pharmacokinetic analysis of disposition data indicated that intravenous administration data were best described by 2 compartment open model. At 1 min the concentration of cefepime in healthy and febrile animals were 55.3 ± 0.54 μg/ml and 50.0 ± 0.48 μg/ml, respectively and drug was detected up to 12 h. The elimination half-life of cefepime was increased from 1.26 ± 0.01 h in healthy animals to 1.62 ± 0.09 h in febrile animals. Drug distribution was altered by fever as febrile animals showed volume of distribution (0.27 ± 0.02 L/kg) higher than normal animal (0.19 ± 0.01 L/kg). Total body clearances in healthy and febrile animals were 104.4 ± 2.70 and 114.2 ± 1.20 ml/kg/h, respectively. To maintain minimum therapeutic concentration of 1 μg/ml, a satisfactory dosage regimen of cefepime in healthy and febrile cross-bred calves would be 15.5 mg/kg and 8.2 mg/kg body weight, respectively, to be repeated at 8 h intervals. The T>MIC values (8 h) of cefepime suggested that this agent is clinically effective in the treatment of various infections.  相似文献   

8.
The plasma levels, disposition kinetics and a dosage regimen for pralidoxime (2-PAM) were investigated in male buffalo calves following single intramuscular administration (15 or 30 mg/kg). The effects of 2-PAM on various blood enzymes were also determined. The absorption half-life, elimination half-life, apparent volume of distribution and total body clearance of 2-PAM were 1.08±0.19 h, 3.14–3.19 h, 0.83–1.01 L/kg and 184.9–252.1 ml/(kg h), respectively. At doses of 15 and 30 mg/kg body weight, a plasma concentration 4 g/ml was maintained for up to 4 and 6 h, respectively. Pralidoxime significantly lowered the serum level of transferases, phosphatases and lactate dehydrogenase but did not influence the acetylcholinesterase and carboxylesterase enzymes. The most appropriate dosage regimen for 2-PAM in the treatment of organophosphate toxicity in buffaloes would be 25 mg/kg followed by 22 mg/kg at 8 h intervals.  相似文献   

9.
The pharmacokinetics and dosage regimen of cefotaxime following its single subcutaneous administration (10 mg/kg) were investigated in buffalo calves. Plasma and urine samples were collected over 10 and 24 h post administration, respectively. Cefotaxime in plasma and urine was estimated by microbiological assay technique using E. coli as test organism. The pharmacokinetic profiles fitted one-compartment open model. The peak plasma levels of cefotaxime were 6.48 ± 0.52 µg/ml at 30 min and the drug was detected upto 10 h. The absorption half-life and elimination half-life were 0.173 ± 0.033 h and 1.77 ± 0.02 h, respectively. The apparent volume of distribution and total body clearance were 1.17 ± 0.10 l/kg and 0.45 ± 0.03 l/kg/h, respectively. The urinary excretion of cefotaxime in 24 h, was 5.36 ± 1.19 percent of total administrated dose. A satisfactory subcutaneous dosage regimen for cefotaxime in buffalo calves would be 13 mg/kg repeated at 12 h intervals.  相似文献   

10.
The disposition and dosage regimen of cephaloridine were investigated in healthy calves following a single intramuscular administration of 10 mg/kg. The absorption halflife, climination halflife, apparent volume of distribution and total body clearance were 0.107±0.025 h, 2.08±0.14 h, 0.70±0.07L kg-1 and 235.8±21.9 ml kg-1 h-1, respectively. Therapeutic plasma levels (1 g/ml) were maintained for up to 7 h. A satisfactory intramuscular dosage regimen for cephaloridine in calves would be 10 mg/kg repeated at 8 h intervals.  相似文献   

11.
The disposition kinetics, urinary excretion and dosage regimen of amikacin after a single intravenous administration of 10 mg/kg was investigated in six cross-bred bovine calves. At 1 min, the concentration of amikacin in the plasma was 116.9±3.16 µg/ml and the minimum therapeutic concentration was maintained for 8 h. The elimination half-life and volume of distribution were 3.09±0.27 h and 0.4±0.03 L/kg, respectively. The total body clearance (ClB) and T/P ratio were 0.09±0.002 L/kg/h and 4.98±0.41, respectively. Approximately 50% of the total dose of amikacin was recovered in the urine within 24 h after administration. Amikacin in concentrations ranging from 5 to 150 µg/ml bound to plasma proteins to the extent of 6.32%±0.42%. A satisfactory intravenous dosage regimen of amikacin in bovine calves would be 13 mg/kg followed by 12 mg/kg at 12 h intervals.  相似文献   

12.
We investigated the disposition kinetics and urinary excretion of cefpirome in buffalo calves after a single intravenous administration of 10 mg/kg. Also, an appropriate dosage regimen was calculated. At 1 min after injection, the concentration of cefpirome in the plasma was 57.4 ± 0.72 µg/ml, which declined to 0.22 ± 0.01 µg/ml at 24 h. The cefpirome was rapidly distributed from the blood to the tissue compartment as shown by the high distribution coefficient values (8.67 ± 0.46/h), and by the drug''s rate of transfer constant from the central to the peripheral compartment, K12 (4.94 ± 0.31/h). The elimination halflife and the volume of distribution were 2.14 ± 0.02 h and 0.42 ± 0.005 l/kg, respectively. Once the distribution equilibrium was reached between the tissues and plasma, the total body clearance (ClB) and the ratio of the drug present in the peripheral to the central compartment (T/P ratio) were 0.14 ± 0.002 l/kg/h and 1.73 ± 0.06, respectively. Based on the pharmacokinetic parameters we obtained, an appropriate intravenous cefpirome dosage regimen for treating cefpiromesensitive bacteria in buffalo calves would be 8.0 mg/kg repeated at 12 h intervals for 5 days, or until persistence of the bacterial infection occurred.  相似文献   

13.
Disposition kinetics of gentamicin was determined in buffalo calves following repeated parenteral administration of 5 mg/kg body weight. The absorption (t1/2 Ka) and elimination half-life (t1/2 beta) were found to be 0.40 +/- 0.12 and 4.33 +/- 0.39 h, respectively. Statistical comparison of the values of pharmacokinetic determinants generated in this study with the corresponding values following single intramuscular injection at the same dose level as reported earlier by GARG and GARG, 1990, revealed that the consecutive administration of drug influenced the pharmacokinetics profile of gentamicin. Elimination half-life was significantly longer (P < 0.05). Since elimination rate constant value was significantly reduced, the subsequent dosage will have to be reduced particularly if kidney functions are not normal. Otherwise, dosage regimen need not be changed.  相似文献   

14.
1. The pharmacokinetics of monensin, including half‐life, apparent volume of distribution, total body clearance, systemic bio‐availability and tissue residues were determined in broiler chickens. The drug was given by intracrop and intravenous routes in a single dose of 40 mg/kg body weight.

2. Following intravenous injection the kinetic disposition of monensin followed a two compartments open model with absorption half life of 0.59 h, volume of distribution of 4.11 I/kg and total body clearance of 28.36 ml/kg/min. The highest serum concentrations of monensin were reached 0.5 h after intracrop dosage with an absorption half‐life of 0.27 h and an elimination half life of 2.11 h. The systemic bioavailability was 65.1% after intracorp administration. Serum protein‐binding tendency of monensin calculated in vitro was 22.8%.

3. Monensin concentrations in the serum and tissues of chickens after a single intracrop dose of pure monensin (40 mg/kg body weight) were higher than those after feeding a supplemented monensin pre‐mix (120 mg/kg) for 2 weeks. Monensin residues were detected in tested body tissues, collected 2, 4, 6 and 8 h after oral administration. The highest conentration was found in the liver. In addition, monensin residues were detected only in liver, kidney and fat 24 h after the last oral dose. No monensin residues could be detected in tissues after 48 h, except in liver which cleared completely by 72 h.  相似文献   


15.
The pharmacokinetics and urinary excretion of gatifloxacin were investigated after a single intravenous injection of 4 mg/kg body weight in buffalo calves. The therapeutic plasma drug concentration was maintained for up to 12 h. Gatifloxacin rapidly distributed from blood to tissue compartments, which was evident from the high values of the distribution rate constant, α1 (11.1 ± 1.06 h−1) and the rate constant of transfer of drug from central to peripheral compartment, k 12 (6.29 ± 0.46 h−1). The area under the plasma drug concentration–time curve and apparent volume of distribution were 17.1 ± 0.63 (μg.h)/ml and 3.56 ± 0.95 L/kg, respectively. The elimination half-life (t 1/2 β), total body clearance (ClB) and the ratio of drug present in tissues and plasma (T/P) were 10.4 ± 2.47 h, 235.1 ± 8.47 ml/(kg.h) and 10.1 ± 2.25, respectively. About 19.7% of the administered drug was excreted in urine within 24 h. A satisfactory intravenous dosage regimen for gatifloxacin in buffalo calves would be 5.3 mg/kg at 24 h intervals. Abbreviations for pharmacokinetic parameters are given in the footnote of Table I  相似文献   

16.
Pharmacokinetics and urinary excretion of sulphadimidine (SDI) were determined in buffalo calves following single oral administration (150 mg/kg). The plasma levels of free sulphadimidine were above minimum effective therapeutic concentration (> 40 micrograms/ml) between 4 and 12 h and the N4-acetylated form of the drug was in the range of 7.2-19.3%. Kinetic evaluation of plasma levels was performed using a two-compartment open model. The absorption and elimination half-lives of SDI were 3.01 and 11.94 h, respectively. Based on this study, an optimal dosage regimen of sulphadimidine in buffalo calves would be 100 mg/kg, followed by 50 mg/kg at 12 h intervals. Sulphadimidine was mainly excreted in the urine as free amine. The percentage of N4-acetyl sulphadimidine in urine was comparatively higher than in plasma.  相似文献   

17.
The disposition kinetics of levofloxacin was investigated in six male crossbred calves following single intravenous administration, at a dose of 4 mg/kg body weight, into the jugular vein subsequent to a single intramuscular injection of paracetamol (50 mg/kg). At 1 min after the injection of levofloxacin, the concentration of levofloxacin in plasma was 17.2 ± 0.36 µg/ml, which rapidly declined to 6.39 ± 0.16 µg/ml at 10 min. The drug level above the MIC90 in plasma, was detected for up to 10 h. Levofloxacin was rapidly distributed from blood to the tissue compartment as evidenced by the high values of the distribution coefficient, α (17.3 ± 1.65 /h) and the ratio of K12/K21 (1.83 ± 0.12). The values of AUC and Vdarea were 12.7 ± 0.12 µg.h/ml and 0.63 ± 0.01 l/kg. The high ratio of the AUC/MIC (126.9 ± 1.18) obtained in this study indicated the excellent antibacterial activity of levofloxacin in calves. The elimination half-life, MRT and total body clearance were 1.38 ± 0.01 h, 1.88 ± 0.01 h and 0.32 ± 0.003 l/kg/h, respectively. Based on the pharmacokinetic parameters, an appropriate intravenous dosage regimen for levofloxacin would be 5 mg/kg repeated at 24 h intervals when prescribed with paracetamol in calves.  相似文献   

18.
Pharmacokinetic parameters which describe the distribution and elimination of sulphadimidine were determined in normal dogs and dogs in which fever was produced by an intravenous injection of escherichia and staphylococcal species of bacteria. Sulphadimidine was injected as a single intravenous bolus at the dose of 100 mg/kg and the kinetics of the drug were described in terms of the bi-exponential expression: Cp = Ae -α t + Be -β t . The distribution half-times of the drug were 1.52 h in the normal and 0.81 h in the febrile dogs. The drug distribution was significantly more rapid ( P < 0.05) in febrile than in normal dogs. Average ± SD values for the half-lives of the drug were 16.2 ± 5.7 h in normal and 16.7 ± 4.7 h in the febrile dogs. The apparent volume of distribution ( V ' d (area)) was 628 ± 251 ml/kg in the normal dogs, and was not statistically different from 495 ± 144 ml/kg in the febrile dogs. The volume of the central compartment ( V ' c ) was 445 ± 55 ml/kg in normal dogs and this was significantly higher ( P < 0.01) than the V ' c of 246 ± 72 ml/kg in the febrile dogs. The body clearance was 22.4 ± 4.8 and 20.2 ± 3.6 ml/hour. kg in the normal and febrile dogs, respectively. The investigation revealed that the dosage regimen of sulphadimidine did not differ significantly between normal and febrile dogs.  相似文献   

19.
The pharmacokinetics of two sulfonamide/trimethoprim combinations were investigated after intravenous administration to clinically healthy pigs and to the same pigs following a challenge with Actinobacillus pleuropneumoniae toxins. Endobronchial challenge with A.pleuropneumoniae toxins resulted in fever, increased white blood cell counts and decreased water and feed consumption. Healthy, as well as febrile, pigs were given sulfadimethoxine (SDM) or sulfamethoxazole (SMX) intravenously at a dose of 25 mg/kg b.w. in combination with 5 mg trimethoprim (TMP) per kg body weight. The pharmacokinetic parameters of the sulfonamides as well as their main metabolites (acetyl sulfonamides) were not significantly different in healthy and febrile pigs. In healthy and pneumonic pigs, the mean elimination half-lives of SDM were 12.9 h and 13.4 h, respectively, those of SMX 2.5 h and 2.7 h, respectively, and those of TMP 2.8 h and 2.6 h, respectively. Distribution volumes in healthy and febrile pigs of SDM and SMX varied between 0.2 and 0.4 L/kg, and those of TMP between 1.1 and 1.6 L/kg. The mean AUC of TMP was decreased and the volume of distribution and total body clearance of TMP were increased in febrile pigs. Protein binding of the drugs and metabolites studied were not significantly changed after toxin-induced fever. The extent of protein binding of SDM, SMX and TMP was in the range 94–99%, 45–56% and 40–50%, respectively. Based on knowledge of in vitro antimicrobial activity of the drug combinations against A.pleuropneumoniae it was concluded that after intravenous administration of the dose administered (30 mg/kg of the combination preparations) to healthy and pneumonic pigs, plasma concentrations of SMX and TMP were above the concentration required for growth inhibition of 50% of A., pleuropneumoniae strains for approximately 16 h, whereas bacteriostatic plasma concentrations of SDM were still present after TMP had been eliminated from plasma. Because of similar elimination half-lives of SMX and TMP in pigs this combination is preferred to the combination of SDM with TMP.  相似文献   

20.
The disposition kinetics and urinary excretion of pefloxacin after a single intravenous administration of 5 mg/kg were investigated in crossbred calves and an appropriate dosage regimen was calculated. At 1 min after injection, the concentration of pefloxacin in the plasma was 18.95±0.892 g/ml, which declined to 0.13±0.02 g/ml at 10 h. The pefloxacin was rapidly distributed from the blood to the tissue compartment as shown by the high values for the initial distribution coefficient, (12.1±1.21 h–1) and the constant for the rate of transfer of drug from the central to the peripheral compartment, K 12 (8.49±0.99 h–1). The elimination half-life and volume of distribution were 2.21±0.111 h and 1.44±0.084 L/kg, respectively. The total body clearance (ClB) and the ratio of the drug present in the peripheral to that in the central compartment (P/C ratio) were 0.454±0.026 L/kg h) and 5.52±0.519, respectively. On the basis of the pharmacokinetic parameters obtained in the present study, an appropriate intravenous dosage regimen for pefloxacin in cattle for most of the bacteria sensitive to it would be 6.4 mg/kg repeated at 12 h intervals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号