首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
大豆种粒斑驳抗性的遗传分析及基因定位   总被引:1,自引:0,他引:1  
运用SSR标记技术及分离群体组群分析法(BSA法), 对大豆品系3C624×东农8143的F2、F3代群体接种SMV1号株系鉴定种粒斑驳抗性, 并进行抗种粒斑驳基因的分子定位。结果表明, 东农8143对SMV1号株系的种粒斑驳抗性受1对显性基因控制。用Mapmaker/Exp 3.0b进行连锁分析, 抗种粒斑驳基因位于大豆染色体组的F连锁群上, 并获得了与抗种粒斑驳基因紧密连锁的5个SSR标记Sat_297、Sat_229、Sat_317、Satt335和Sct_188, 标记与抗病基因间的排列顺序和连锁距离为Sat_297–12.4 cM–Sat_229–3.6 cM–SRSMV1–1.7 cM–Sat_317–2.4 cM– Satt335–13.8 cM–Sct_188。其中近距离标记Sat_229(3.6 cM)、Sat_317(1.7 cM)和Satt335(4.1 cM)可用于标记辅助选择育种和抗源筛选。  相似文献   

2.
中品95-5117抗大豆花叶病毒基因源分析   总被引:1,自引:0,他引:1  
中品95-5117和中品95-5383是以中品661为亲本选育的抗东北花叶病毒病3号株系(SMV3)的大豆新品系。中品95-5383抗病基因的SCAR标记已被定位于大豆F连锁群(Chr.13),与抗病基因Rsv1紧密连锁。利用大豆F连锁群的34个对SSR标记引物及与抗病基因紧密连锁的SCAR标记SCN11及Rsv1候选基因标记Rsv1-f/r,对中品95-5117系谱亲本进行检测,结合对SMV3的抗性鉴定结果进行分析,旨在明确抗SMV3基因在系谱中的传递规律,为利用分子标记辅助选择培育抗SMV3新品种提供依据。通过SSR标记分析发现,中品95-5117和中品95-5383与亲本中品661的相似性最高,而与另外一个亲本鲁豆4号关系较远。SCAR标记SCN11检测表明,只有1份材料Mangnolid(F-53)B为感病基因型。系谱的Rsv1-f/r标记分析表明,Williams82是中品95-5117中Rsv1基因的供体亲本。抗病性鉴定发现鲁豆4号高抗SMV3,但它并不携带Rsv1基因。据上述结果推测中品95-5117中不仅含有Rsv1,还具有来自鲁豆4号的抗病基因,证明该品系比其亲本中品661具有对SMV3更强的抗性。  相似文献   

3.
本文旨在鉴定大豆品种Hartwing中与大豆孢囊线虫抗性基因连锁的小随体标记。本试验应用了源于Hartwig(抗)与巴西大豆品系Y23(感)杂交组合的一个BC1F2图谱群体。在混合分离体分析中检测了约200个小随体或者SSR引物对。对具有明显多态性的进行扩增。其检测3个SSR标记己与大豆孢囊抗性基因连锁。其中的Satt038和Satt163两个标记位于一个显性抗性基因的邻侧,  相似文献   

4.
大豆灰斑病1号生理小种抗性基因的SSR标记   总被引:1,自引:0,他引:1  
针对中国大豆灰斑病1号生理小种,以抗所有生理小种的品系东农40566为母本,以感所有生理小种的品种东农410为父本配制杂交组合,杂交得到F2代后连续自交3代得到F5代群体。该群体经人工接种灰斑病1号生理小种后,利用BSA法对500个SSR标记进行筛选,其中3个标记Satt565、SOYGPATR和Satt396在抗、感池间表现出稳定的多态性,并且在F2代个体中表现出抗性与多态性协同分离的趋势。3个标记与抗性基因的连锁顺序为Satt565—SOYGPATR—Hrcs1—Satt396,它们与抗性基因的连锁距离分别为12.7cM、6.5cM、14.7cM。推测抗大豆灰斑病1号生理小种的基因可能位于C1连锁群上。  相似文献   

5.
大豆胞囊线虫病是严重危害大豆生产的重要病害之一,根据抗病候选基因开发标记可为分子标记辅助选择抗病材料提供标记资源.本研究通过对大豆胞囊线虫抗性候选基因rhg1的序列比对分析,发现4个插入/删除位点,针对其中3个多碱基插入/缺失位点开发了InDel标记.应用开发的3个InDel标记对33份栽培大豆进行基因型鉴定,共检测到等位变异11个,平均每个位点3.67个.其中rhg1-I1位点有等位变异5个,rhg1-I2位点有等位变异2个;rhg1-I4位点有等位变异4个.各等位变异发生频率范围为0.8%~77.3%.InDel标记与大豆胞囊线虫抗性间的关联分析表明,rhg1-14为抗性相关标记,对抗病资源的检出效率为88.2%,对感病资源的检出效率为100%.该标记的288 bp等位变异和294 bp等位变异为抗病相关等位变异,269 bp等位变异和272 bp等位变异为感病相关等位变异.此标记与常用于标记辅助选择的Satt309配合鉴定可以提高SCN抗病资源的检测效率.  相似文献   

6.
大豆胞囊线虫病是严重危害大豆生产的重要病害之一,根据抗病候选基因发掘标记可以为分子标记辅助选择抗病材料提供标记资源。本研究通过对大豆胞囊线虫抗病候选基因rhg1的序列比对分析,发现4个插入/删除位点,针对其中3个多碱基插入/缺失位点开发了InDel标记。应用开发的3个InDel标记对33份栽培大豆进行基因型鉴定,共检测到等位变异11个,平均每个位点3.67个。其中rhg1-I1位点有等位变异5个,rhg1-I2位点有等位变异2个;rhg1-I4位点有等位变异4个。各等位变异发生频率范围为0.8%~77.3%。InDel标记与大豆胞囊线虫抗性间的关联分析表明,rhg1-I4为抗性相关标记,对抗病资源的检出效率为88.2%,对感病资源的检出效率为100%。该标记的288 bp等位变异和294 bp等位变异为抗病相关等位变异,269 bp等位变异和272 bp等位变异为感病相关等位变异。此标记与常用于标记辅助选择的Satt309配合鉴定可以提高SCN抗病资源的检测效率。  相似文献   

7.
选用来源于中国黄淮和美国的熟期组II~IV的8个大豆品种, 按Griffing方法II设计, 配成28个双列杂交组合, 包括8个亲本共计36份材料。选用300个SSR标记, 对8个大豆亲本进行全基因组扫描, 利用基于回归的单标记分析法, 对大豆杂种产量和分子标记进行相关性分析, 估计等位变异的效应和位点的基因型值, 剖析杂种组合的等位变异。结果表明, 300个SSR标记中有38个与杂种产量显著相关, 分布于17个连锁群上, 其中D1a和M等连锁群上较多, 有8个位于连锁定位的QTL区段内(±5 cM)。单个位点可分别解释杂种产量表型变异的11.95%~30.20%。杂种的位点构成中包括有增效显性杂合位点、增效加性纯合位点、减效加性纯合位点和减效显性杂合位点4部分, 其相对重要性依次递减。从38个显著相关的SSR标记位点中, 遴选出Satt449、Satt233和Satt631等9个优异标记基因位点, Satt449~A311、Satt233~A217和Satt631~A152等9个优异等位变异, 以及Satt449~A291/311、Satt233~A202/207和Satt631~A152/180等9个优异杂合基因型位点。这些结果为理解杂种优势的遗传构成和大豆杂种产量聚合育种提供了依据。  相似文献   

8.
以抗TMV品种Coker176和感TMV品种K326为亲本,经杂交、自交获得F2作图群体.通过SRAP、SSR、N基因特异引物等分子标记分析结合田间TMV抗性鉴定,将TMV抗性基因定位于LG1连锁群上.TMV抗性基因位点位于标记N2和XSRP1x26之间,遗传距离分别是4.3 cM和9.6 cM.利用N2标记对84份烤...  相似文献   

9.
利用大豆分子连锁图定位大豆孢囊线虫4号生理小种抗性QTL   总被引:28,自引:0,他引:28  
大豆孢囊线虫 (SCN ,HeteroderaglycinesIchinohe)是一种土传的定居性内寄生线虫 ,是引起大豆黄萎病的病原 ,是大豆生产上危害最大的病害之一。SCN的生理小种多达十几种 ,在我国大豆孢囊线虫病原主要为 4号生理小种 ,它是现有生理小种中致病力最强的小种。经典遗传学研究已经确定大豆孢囊线虫抗性基因由 1- 4对核基因控制 ,估计有 10个以上的抗性座位。近年来分子标记技术及QTL定位方法的发展为深入研究该病害的抗性遗传规律提供了有效的手段 ,这对加速我国抗大豆抗孢囊线虫新品种培育具有重要意义。本研究以晋豆 2 3×ZDD2 315组合F2 群体 (2 5 3个单株 )为试验材料 ,其中灰布支黑豆 (ZDD2 315 )是我国山西省农家品种 ,对大豆孢囊线虫 4号生理小种表现为高抗。利用塑料钵柱法进行SCN抗性鉴定 ,构建大豆孢囊线虫抗性主座位所在区域的分子图谱 ,并进行SCN的QTL定位及遗传效应分析。根据已发表的大豆A和G连锁群的分子遗传图谱 ,应用BSA法 ,获得了 8个与SCN4号生理小种抗性基因相关的SSR标记 ,它们是Satt0 38(176bp/ 182bp) ,Satt30 9(130bp/ 135bp) ,Satt6 10 (2 4 0bp/ 2 2 2bp) ,Sat_14 1(189bp/ 184bp) ,Satt187(30 0bp/ 2 5 0bp) ,Satt315 (2 5 3bp/ 2 4 8bp) ,Satt6 32 (2 86bp/ 2 90bp)和Sat_16 2(2  相似文献   

10.
发掘水稻黑条矮缩病的抗性基因有助于抗病品种的选育,减少黑条矮缩病对水稻生产的危害。本研究构建了包含222个家系的L5494/IR36重组自交系群体。对该群体进行黑条矮缩病的田间诱发鉴定,抗性亲本IR36发病率为28.70%,感病亲本L5494发病率为84.26%,群体发病率范围为11.21%~89.81%。利用134对分子标记构建覆盖12条染色体的遗传连锁图谱,总遗传距离为1475.97 cM,平均标记间距为11.1 cM。利用QTL IciMapping 4.0对抗黑条矮缩病QTL进行分析,共检测到4个QTL,其中第1、第2、第9染色体上QTL的表型贡献率分别为12.64%、16.00%和8.43%,抗病等位基因来自抗病亲本IR36;第6染色体上QTL的表型贡献率为10.82%,抗病等位基因来自感病亲本L5494。在此基础上,利用93-11为供体、日本晴为背景的近等基因系材料,在qRBSDV-1定位区间内检测到来自93-11的抗性QTL。本研究结果为水稻黑条矮缩病抗性基因定位及分子标记辅助选择育种提供借鉴。  相似文献   

11.
大豆品种豫豆25抗疫霉根腐病基因的鉴定   总被引:6,自引:1,他引:5  
大豆疫霉根腐病是大豆破坏性病害之一。防治该病的最有效方法是利用抗病品种。迄今,已在大豆基因组的9个座位鉴定了15个抗大豆疫霉根腐病基因,但是只有少数基因如Rps1c、Rps1k抗性在我国是有效的。因此,必需发掘新的抗疫霉根腐病基因,以满足抗病育种的需求。豫豆25具有对大豆疫霉菌的广谱抗性,是目前筛选出的最优异的抗源。以豫豆25为抗病亲本分别与豫豆21和早熟18杂交构建F2:3家系群体。两个群体的抗性遗传分析表明,豫豆25对疫霉根腐病的抗性由一个显性单基因控制,暂定名为RpsYD25。用SSR标记分析两个群体,RpsYD25均被定位于大豆分子遗传图谱N连锁群上。由于Rps1座位已作图在N连锁群,选择Rps1k基因中的一些SSR设计引物,检测RpsYD25与Rps1座位的遗传关系。结果表明,一个SSR标记Rps1k6与RpsYD25连锁,二者之间的遗传距离为19.4 cM。因此,推测RpsYD25可能是Rps1座位的一个新等位基因,也可能是一个新的抗病基因。  相似文献   

12.
Worldwide, soybean cyst nematode (SCN, Heterodera glycines Ichinohe) is the most destructive pathogen of soybean [Glycine max (L.) Merr.]. Crop losses are primarily mitigated by the use of resistant cultivars. Nematode populations are variable and have adapted to reproduce on resistant cultivars over time because resistance primarily traces to two soybean accessions, Plant Introduction (PI) 88788 and Peking. Soybean cultivar Hartwig, derived primarily from PI437654, was released for its comprehensive resistance to most SCN populations. A synthetic nematode population (LY1) was recently selected for its reproduction on Hartwig. The LY1 nematode population currently infects known sources of resistance except soybean PI567516C; however, the resistance to LY1 has not been characterized. The objective of this study was to identify quantitative trait loci (QTLs) underlying resistance to the LY1 SCN population in PI567516C, identify diagnostic DNA markers for the LY1 resistance, and confirm their utility for marker-assisted selection (MAS). Resistant soybean line PI567516C was crossed to susceptible cultivar Hartwig to generate 105 recombinant inbred lines (F2-derived F5 families). QTLs were mapped using simple sequence repeats (SSRs) covering 20 Linkage Groups (LGs) and three diagnostic markers, Satt592, Satt331, and Sat_274, were identified on LG O. These markers have a combined efficacy of 90% in identifying resistant lines in a second cross that has been generated by crossing a susceptible cultivar 5601T with resistant PI567516C. F2-derived F4 segregating population was used in MAS to identify resistant lines.  相似文献   

13.
Asian soybean rust (ASR) caused by Phakopsora pachyrhizi severely reduces seed yield in soybean. Molecular tagging of ASR resistance can help in the process of resistance breeding. In this study, an F2 population of cross (susceptible cultivar ‘NRC 7’ × resistant exotic genotype EC 241780) was used for bulked segregant analysis (BSA) with 25 SSR (simple sequence repeat) primers linked with six Rpp genes. Among them, five polymorphic SSR markers, viz., Sct 187, SSR 1859, Satt 191 (Rpp1b like loci) and Satt 215, Sat_361 (Rpp2 loci) distinguished the ASR resistant and susceptible bulks and individuals. In combined marker analysis, the markers Satt 191 (Rpp1b like loci) and Satt 215 (Rpp2 loci) were linked with ASR severity score and were also confirmed in individual 110 F2 segregants. Hence, these markers could be utilized in the marker assisted rust resistance breeding of Rpp1b like and Rpp2 genes. In silico candidate gene analysis for hypersensitive response revealed that Satt 191 linked region was rich in genes encoding apoptotic ATPase having leucine‐rich repeat (LRR) domain.  相似文献   

14.
The purpose of this work was to identifymicrosatellite markers linked to a gene forresistance to Heterodera glycinesIchinohe (Soybean Cyst Nematode – SCN) insoybean cultivar Hartwig. ABC1F2 mapping population derivedfrom a cross between Hartwig (resistant)and the Brazilian soybean line Y23(susceptible) was used. About 200microsatellite or simple sequence repeat(SSR) primer pairs were tested in a bulkedsegregant analysis (BSA). Those thatshowed clear polymorphisms were amplifiedin the BC1F2 population, whichhad been previously inoculated andevaluated for resistance/susceptibility toSCN Race 3. Three SSR markers linked toSCN resistance were detected in thepopulation. Two of them, Satt 038 and Satt163, flanking a dominant resistant gene(d/a = –0.90), explained 37% of thephenotypic variance. This gene was mappedat the edge of molecular linkage group G. Broad and narrow sense heritabilities wereestimated to be 50.54% and 37.73%,respectively. A selection efficiency of91.18% was obtained with the simultaneoususe of the two markers. The identified SSRmarkers will be useful tools for assistingthe selection of homozygous genotypes andfor expediting the introgression of the SCNresistance locus from cv. Hartwig tosoybean elite cultivars.  相似文献   

15.
黑龙江部分大豆品种分子ID的构建   总被引:18,自引:4,他引:14  
以黑龙江13个育种单位6个积温带的83份大豆品种为材料, 选择分布在大豆基因组19个连锁群的43对SSR引物进行检测, 共检测出等位变异157个, 每个引物检测到的等位变异数变化范围为2~7个, 平均为3.65个。将聚丙烯酰胺凝胶电泳得到的谱带统计结果根据等位变异的片段大小数字化, 用自行编制的ID Analysis 1.0软件进行数据分析。结果表明, 仅需9对引物(Satt100、Sat_218、Satt514、Satt551、Satt380、Satt193、Satt191、Satt442、Sat_084)可将83份参试大豆品种完全区分开。构建了一套黑龙江省大豆品种的分子ID。  相似文献   

16.
以黑龙江省29个大豆育种单位的103份已鉴定大豆灰斑病3个生理小种抗性的大豆品种(系)为材料,选择与大豆灰斑病抗病基因连锁的19个SSR标记检测,获得等位变异数86个,每个标记检测到的等位变异数分布在2~6个之间,平均为4.42个。应用遗传统计软件(genetics statistics 3.0)分析表明, 标记的多样性指数介于0.198~0.751之间,平均多样性指数为0.606。品种(系)特异指数差异较大,介于46.592~481.541之间,平均为87.415。根据标记的等位基因数,使用ID Analysis 1.0软件分析表明,利用与大豆抗灰斑病基因连锁的7个SSR标记(Satt565、Satt547、Satt431、Sct_186、SOYGPATR、Satt244、Sat_151)就能有效区分各品种(系),因此利用这7个标记构建了供试品种(系)的分子身份证。  相似文献   

17.
Microsatellite or SSR marker is an efficient tool for plant genotype identification, molecular mapping and marker-assisted selection. Objective of this study is to analyze the mutagenized microsatellite variations in soybean genome and reveal nature of these mutations. In the present study, mutations at fifteen microsatellite loci were detected in genomic DNAs of soybean mutant E182 induced by EMS (ethyne metyl sulfate) using PCR amplification of 485 pairs of SSR primers. These fifteen mutagenized microsatellite loci with repeat number variation were Satt005, Sattll7, Satt185, Satt282, Satt290, Satt420, Satt452, Satt483, Satt569, Satt579, Satt600, Satt602, Sat-086, Sat-107 and Sat-135, respectively. Sequencing results of these fifteen loci indicated that microsatellite sequences at Satt282, Satt483, Satt579, Satt600 and Satt602 loci were respectively deleted 1 -, 3 -, 8-, 20 - and 1 - trinucleotide (all [ATT]1-20 except for [CAA]8 [TAA]12 at Satt600 locus) repeats, which made allele sizes at these five loci decrease 3, 9, 24, 60 and 3 bp, respectively. And while microsatellite sequences at the other ten mutated loci, Satt005, Sattll7, Satt185, Satt290, Satt420, Satt452, Satt569 and Sat-086, Sat-107, Sat-135, were respectively inserted 1-, 6-, 6-, 3-, 4-, 3-, 8- trinu-cleotide repeats (ATT)1-8 and 12-, 6-, 16- dinucleotide repeats (AT)6-16, making allele sizes at these ten loci increase 3, 18, 18, 9, 12, 9, 24, 24, 12, 32 bp, respectively. On the other hand, eleven events of base mutations were detected in flanking regions at seven (Sat- 107, Satt185, Satt282, Satt420, Satt569, Satt579 and Satt600) of fifteen mutated microsatellite loci. These base mutations consisted of 6 transitions (4T→C and 2 A→G), 2 transvertions (A→T and T→A), 1 insertion (T) and 2 deletions (A and T). The experimental results proved that EMS mutagenesis could cause different types of mutations at microsatellite multilocus in soybean genome, including repeat number variations in microsatellite regions and random base mutations in flanking regions. We found three mutational biases, which were frequent insertion mutations of repeat units, initiating positions of microsatellite sequences of repeat unit insertions/deletions and both flanking-base T ↓ A of these insertion/deletion positions. In addition, the resolution capacity of high-quality agarose gels was sufficient to distinguish differences of only three base pairs in this experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号