首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Root system parameters determining water uptake of field crops   总被引:2,自引:0,他引:2  
Summary The distribution of a crop rooting system can be defined by root length density (RD), root length (RL) per soil layer of depth z, sum of root length (SRL) in the soil profile (total root length) or rooting depth (z r . The combined influence of these root system parameters on water uptake is not well understood. In the present study, field data are evaluated and an attempt is made to relate a daily maximum water uptake rate (WUmax) per unit soil volume as measured in different soil layers of the profile to relevant parameters of the root system. We hypothesize that local uptake rate is at its maximum when neither soil nor root characteristics limit water flow to, and uptake by, roots. Leaf area index and the potential evapotranspiration rate (ET p ) are also important in determining WUmax, since these quantities influence transpiration and hence total crop water uptake rate. Field studies in Germany and in Western Australia showed that WUmax depends on RD. In general, there was a strong correlation between the maximum water uptake rate of a soil layer (LWUmax) normalized by ET p and RL normalized by SRL. The quantity LWUmax · ET p -1 was linearly related to (RL/SRL)1/2. The data show that the single root model will not predict the influence of RD on WUmax correctly under field conditions when water-extracting neighboring roots may cause non-steady-state conditions within the time span of sequential observations. Since the rooting depth z r was linearly related to (SRL)1/2, the relation: LWUmax · ET p -1 = f (RL1/2/z r ) holds. Furthermore it was found that the maximum specific uptake rate per cm root length URmax was inversely related to RD1/2 and to SRL1/2 or z r of the profile. Observed high specific uptake rates of shallow rooted crops might be explained not only by their lower RD-values but also by the additional effect of a low z r . The relations found in this paper are helpful for realistically describing the sink term of dynamic water uptake models.Growing plants extract water from the soil to meet transpiration needs. Rates of transpiration and of water uptake are set by evaporative demand and by plant and soil factors which influence capacity to meet that demand. These factors include crop canopy size and leaf characteristics, root system characteristics and hydraulic properties of the soil and the soil-root interface. Soil and root system properties vary with depth and all factors vary in time, so that parameters related to them require constant updating over a crop season.Dynamic simulation models describe water uptake by root systems under field conditions as a function of soil depth and time. Many of these simulation approaches are based on Gardner's (1960) single root model (Feddes 1981). These simulation procedures follow the assumption that water uptake is proportional to a difference in water potential between the bulk soil and the root surface or the plant interior, to the hydraulic conductivity of the soil-plant system and to the effectiveness of competing roots in water uptake. The effectiveness factor accounts more or less empirically for the influence of various root system parameters on water uptake such as percentage of active roots absorbing water, root surface permeability, root length density determining the distance between neighbouring roots, or total root length and depth of the root system. Such models however, will not always reflect correctly the influence of root system characteristics on water uptake since these assumptions have rarely been tested under field conditions. In many instances, there is better agreement between simulated and measured total water use of plants than between predicted and observed water depletion by roots within individual layers of the soil profile (Alaerts et al. 1985).Water uptake by an expanding root system as a function of depth and time has been studied under field conditions for several crops (listed in Herkelrath et al. 1977a; Feddes 1981; Hamblin 1985). They show that the dynamics of water uptake depend on root length density and the availability of soil water. However, the combined influence of root length density, total root length and rooting depth on the water uptake pattern has not been assessed. An evaluation of root system parameters with respect to soil water extraction should aid our understanding of how roots perform under field conditions and may assist our efforts to formulate the water uptake function of roots in dynamic simulation studies more realistically.The aim of the present investigation is to develop an approach that relates measured water uptake rates to relevant parameters of the root systems. This approach will be confined to situations where water uptake in a soil layer is not restricted by unfavorable soil conditions, such as in wet soil, by insufficient aeration and, in dry soil, by reduced water flow towards roots or by increased contact resistance (Herkelrath et al. 1977b). We will define a maximum water uptake rate WUmax that is neither soil-limited nor appreciably limited by the decreasing permeability of aging roots. This WUmax will be related to relevant root system parameters as they exist when WUmax is observed. Hence, water uptake by roots in a very wet, as well as in a dry soil, has been excluded from consideration.  相似文献   

2.
Summary Experiments were conducted in lysimeters (1985) and field plots (1986) to evaluate changes in soil moisture and salinity status following irrigations with different blends of a saline water, SW (ECiw = 6.4 dS/m) and non-saline water, NSW (0.3 dS/m) and their effects on the growth and yield of Mungbean (Vigna radiata L. Wilczek). Normalised to the yield of the treatment receiving NSW (100%), relative seed yields (RY) declined to 73, 11 and 3%, respectively, for the treatments receiving SWNSW blends of 12 (2.5 dS/m), 21 (4.7 dS/m) and SW as such. RY increased to 64 and 74% when NSW was substituted for presowing irrigation and 21 SWNSW blend and SW, respectively were used for postsowing irrigations. Due to moderating effect of rainfall (9.8 cm) during the growing season of 1986, valus of RY obtained with 12 and 21 SWNSW blends were 81 and 42% and increased to 96 and 82% when these waters were applied after presowing irrigation with NSW. Irrigation at presowing with non-saline water leached the salts of shallow depths leading to better germination and initial growth. In addition, plants were able to extract greater amounts of water even from deeper soil layers. The RY of Mungbean was related to the weighted time averaged salinity of the 0–120 cm soil depth (ECe) by RY = 100-20.7 (ECe-1.8). The study indicated that applying NSW for presowing irrigation to Mungbean is more beneficial than using it after blending with saline water.  相似文献   

3.
Summary Recent studies have shown that the grain yields of corn (Zea mays L.) and wheat (Triticum aestivum L.) are related to the degree of water stress they undergo. The purpose of the study reported here was to establish relationships between crop temperature and the grain yields, phenological development, evapotranspiration rates (ET) and leaf water potential ( l ) of two hybrids of grain sorghum (Sorghum bicolor L. Moench) subjected to varying levels of plant water stress. The study was conducted at the University of Nebraska Sandhills Agricultural Laboratory in 1978 on a Typic Ustipsamment (Valentine fine sand) soil. The sorghum hybrids used were RS 626 and NB 505. Four irrigation treatments were applied in order to subject the crops to varying levels of water stress during each of three major growth stages. Soil moisture was monitored with a neutron probe. ET was estimated with the water balance technique. Crop temperature was measured with an IR thermometer and leaf water potential was measured with a Scholander pressure bomb. Grain yields were reduced by water stress occuring at anytime during the growing season. Yield reductions were largest when stress occurred during only the grainfill period and were least when stress occurred during the entire growing season. The percentage reduction in sorghum grain yield can be described by an index involving the seasonal accumulation of the daily mid-day temperature differences between well-watered and stressed crops ( TSD). As TSD values increased, ET decreased. However, the correlation of ET with TSD was relatively low (R2 = 0.60) probably due to the limited amount of data available for analysis and inaccuracies in the soil water balance method used to estimate ET. The mid-day temperature of well-watered rows ranged between 18.0 and 32.8 °C with a mid-day temperature range of about 0.5 °C between the well-watered rows in various plots for several days following an irrigation. However, in certain instances, the mid-day temperature range increased to 1–2 °C for a few days before irrigation. This suggests that certain of the rows experienced water stress and should have been irrigated earlier. Yield data support that conclusion. Range in crop temperature within a field appeared to be a sensitive indicator of crop water stress in sorghum. No significant difference in the phenological development of sorghum resulted from water stress except in one NB 505 plot in which plants were stressed throughout the entire season. In that plot, the stressed plants lagged in development behind non-stressed plants by approximately ten days. The differences in mid-day leaf water potentials ( l ) and crop temperatures (T) between stressed and non-stressed vegetation were examined. As T increased up to about 4 °C, l , also increased. Beyond that point, l decreased while T continued to increase. This behavior was attributed to stomatal closure which permitted an increase in l of the stressed plants (hence reducing l ) even as T continued to increase.Published as Paper No. 6551, Journal Series, Nebraska Agricultural Experiment Station. The work reported was conducted under Regional Research Project 11–33 and Nebraska Agricultural Experiment Station Project 11–50. The work upon which this publication is based was supported in part by funds provided by the Office of Water Research and Technology B-044-NEB, US Department of the Interior, Washington, DC, as authorized by the Water Research and Development Act of 1978. This article was sponsored in part by the Nebraska Water Resources Center, Institute of Agriculture and Natural Resources, University of Nebraska-LincolnResearch Assistant, Associate Professor, Research Assistant, and Associate Professor, University of Nebraska, Lincoln. Contents of this puplication do not necessarily reflect the views and policies of the Office of Water Research and Technology, US Dept. of the Interior, nor does mention of trade names or commercial products constitute their endorsement or recommendation for use by the United States Government  相似文献   

4.
Summary Water application pattern, WAP, is one of the most important factors that determine the instantaneous and the cumulative application rates of moving irrigation machines. The mathematical background of a procedure to predict and design the WAP of moving irrigation machines is introduced. It includes a mathematical analysis of the effect of pressure head, height and spacing between emitters on the WAP, and a nomograph that presents this analysis graphically and illustrates the design procedure of the application pattern of irrigation machines.Abbreviations P()a water application rate at a normalized radial distance from the emitter [m/s] - ka number of linear segments needed to represent the pattern - s/Ra normalized radial distance from the emitter - Ra wetted radius [m] - sa radial distance from the emitter [m] - n j n i/ha normalized water application rate at point - j, ha maximum water application rate [m/s] n j water application rate at point j [m/s] - j =m j/Ra normalized radial distance of point j from emitter - m ja radial distance of point - ja from emitter [m], CWAP - (x)a Cumulative Water Application Pattern: amount of water per unit area applied at a distance - xa from the travel path of the emitter [m3/m2] - xa distance from the travel path of the emitter [m] - T xa time of application at a distance - xa from the travel path of the emitter [s] - va velocity of propagation of the machine [m/s] - k 1a the outmost linear segment that its radial distance from the emitter - m k1a is smaller than the distance of the travel path from the emitter - x, T ja time at which the - j tha linear segment (ring) stops influencing the point located at a distance - xa from the emitter - 1, 2, 3a dimensionless numbers derived by dimensional analysis - ua water jet velocity [m/s] - ga gravity acceleration [m/s2] - da nozzle diameter [m], v kinematic viscosity [m2/s] - Ha emitters height [m] - , a regression analysis coefficients - Paa Pattern fit coefficient for water application - F(r)a normalized desired water application pattern [1/m] - f(r)a normalized actual water application pattern [1/m] - La common distance on which - F(r) and f(r)a are defined [m], SP spacing interval between emitters [m] - DSa dimensionless spacing interval between emitters - DSa variation of dimensionless spacing interval - Paa variation of Pa coefficient - Pa pressure head [kPa]  相似文献   

5.
Summary Measurement of leaf water potential ( l ) with a pressure chamber is usually regarded as a reliable and practical field technique. However, recent evidence indicates that results depend on the measurement techniques employed. Field experiments were conducted to identify the magnitude and sources of error affecting pressure chamber measurements of l in cotton (Gossypium hirsutum L.) and to develop an accurate and operationally flexible procedure. Water potential of bare cotton leaves was about 0.2 MPa less than aluminum foil wrapped leaves when the elapsed time between excision to chamber pressurization was less than 30 s. The water potential of intact leaves increased 0.3 MPa after 15 s of enclosure in aluminum foil. 5 to 30 min of enclosure were sufficient to reach equilibrium between l and water potential within the plant stem. Aluminum foil wrapped leaves maintained their l for 2 h stored in a humid, dark box at 21–28 °C while wet wrapped (cheesecloth) or bare leaf l increased after one hour because of hydration. An accurate and operationally flexible l measurement procedure, suitable for large scale sampling, was defined.Contribution from the USDA-ARS, Water Management Research Laboratory, 2021 S. Peach, Fresno, CA 93727 and the Dept. of Land, Air and Water Resources, University of California, Davis, CA 95616, USA  相似文献   

6.
Summary The use of canopy and air temperature differences to compute a crop water stress index (CWSI) for assessing plant water status was investigated using cotton crop canopies that either fully or partially covered the ground. The complete ground cover canopy condition was studied in a well watered moisture regime in a rainout shelter with measurements made on six Texas cotton race stocks. The partial ground cover canopy situation was investigated in a well watered moisture regime of a commercial cotton variety Paymaster 266 grown in the field. The slope of the nonstressed baseline of the CWSI for a cotton canopy with about 50% ground cover was approximately one-half that reported for full canopies. Values of CWSI calculated with theoretical and empirical procedures agreed more closely under a complete canopy condition than under a partial canopy situation. Values of aerodynamic resistance (r a ) and canopy resistance for well watered soil moisture conditions (r ep )were estimated in order to use the theoretical procedure of computing CWSI. Values of r a ranged from 10 to 15 sm–1 and r cp from 50 to 60 sm–1. Both the theoretical and empirical procedures showed much promise, but more information is needed to develop techniques for evaluating r a and r cp under differing canopy and environmental conditions.  相似文献   

7.
Summary Seed-cotton yield, yield components and vegetative growth were determined under different irrigation frequencies and wetting depths with a self-propelled moving-irrigation-system (MSIS) in 1986 and 1987. Irrigation timing was determined in both years by pre-irrigation, mid-day plant water potential (w). The amount of water to be applied was determined by measuring the soil moisture deficit. In 1987, the effect of a change from one irrigation frequency and wetting depth to another at mid-flowering was also examined. Linear responses of relative seed-cotton yield to the amount of evapotranspiration (ET) were found for both years with similar slopes but different intercepts. Significant positive regressions were obtained between pre-irrigation plant w and relative seed-cotton yield, and vegetative growth during the linear growth stage. Seed-cotton yield was affected by both wetting depth and pre-irrigation plant w. The deeper the irrigation the higher was the seed-cotton yield for each pre-irrigation plant w. Irrigation frequencies which maintained plant w above -1.5 MPa during vegetative growth, flowering and boll-filling resulted in maximum production. The boll filling stage appeared to be a very sensitive one, as boll weight was found to be the main yield component responding to irrigation treatments. At a wetting depth of 120 cm, higher seed-cotton yields were obtained than at a more shallow wetting. Different irrigation managements resulted in different turgor potentials (t) mainly during mid-day. Both leaf water vapour conductance and net assimilation rate were sensitive to leaf w.Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagon, Israel, No. 2903-E, 1990 series. Research was supported by the U.S.-Israel Binational Agric. Res. and Develop. Fund.  相似文献   

8.
A relationship between crop yield and irrigation water salinity is developed. The relationship can be used as a production function to quantify the economic ramifications of practices which increase irrigation water salinity, such as disposal of surface and sub-surface saline drainage waters into the irrigation water supply system. Guidelines for the acceptable level of irrigation water salinity in a region can then be established. The model can also be used to determine crop suitability for an irrigation region, if irrigation water salinity is high. Where experimental work is required to determine crop yield response to irrigation water salinity, the model can be used as a first estimate of the response function. The most appropriate experimental treatments can then be allocated. The model adequately predicted crop response to water salinity, when compared with experimental data.Abbreviations A Crop threshold rootzone salinity in Equation of Maas and Hoffman (dS/m) - B Fractional yield reduction per unit rootzone salinity increase (dS/m)–1 - Ci Average salinity of applied water (dS/m) - Cr Average salinity of rainfall (dS/m) - Cs Linearly averaged soil solution salinity in the rootzone (dS/m) - Cse Linearly averaged soil saturation extract salinity in the rootzone (dS/m) - Cw Average salinity of irrigation supply water (dS/m) - Cz Soil solution salinity at the base of the crop rootzone (dS/m) - C Mean root water uptake weighted soil salinity in equation of Bernstein and François (1973) (dS/m) - Ep Depth of class A pan evaporation during the growing season (m) - ETa Actual crop evapotranspiration during the growing season (m) - ETm Maximum crop evapotranspiration during the growing season (m) - I The total depth of water applied during the growing season (including irrigation water and rainfall) (m) - K Empirical coefficient in leaching equation of Rhoades (1974) - Kc Crop coefficient for equation of Doorenbos and Pruit (1977) to estimate crop water use - Ky Yield response factor in equation of Doorenbos and Kassam (1974) - LF The leaching fraction - Ro Depth of rainfall runoff during the growing season (m) - R Depth of rainfall during the growing season (m) - W Depth of irrigation water applied during the growing season (m) - Y Relative crop yield - Ya Actual crop yield (kg) - Ym Maximum crop yield (kg) - /z Dimensionless depth for equation of Raats (1974), and empirical coefficient for the leaching equation of Hoffman and van Genutchen (1983)  相似文献   

9.
Summary Cowpea (Vigna unguiculata L.), grown widely under both irrigated and dryland conditions, is well adapted to drought and high temperature and is moderately salt tolerant. Data on photosynthetic response and regulation of water relations in cowpea under salinity stress is lacking. Therefore, in conjunction with a field plot experiment to establish the leaching requirement of cowpea, measurements were made of carbon dioxide assimilation rates (A) by 14CO2 uptake, leaf conductances to H2O (g1) by tritum uptake, and to CO2 (g), and leaf total water potential (t 1) and osmotic potential ( 1).Cowpeas, grown in field plots containing Pachappa fine sandy loam (mixed, thermic, Mollic Haploxeraff), were irrigated daily with saline water (1,350 mg 1–1 total salt concentration) to achieve leaching fractions of 0.17, 0.13, 0.09, 0.07, and 0.02. Cowpea maintained high leaf water potentials, high rates of CO2 assimilation and high leaf conductances under moderately saline conditions (high leaching). Values of t 1 and 1 for high leaching were consistently 50 to 200 J kg–1 higher than for low leaching throughout the day. Calculating 1 at full leaf turgor eliminated diurnal variation in 1. As leaching decreased, however, A, g1, and g, decreased significantly. About 45% of the 1°C assimilated by the leaf was incorporated rapidly into ethanol insoluble compounds. The relationship between A and g1 for cowpea was similar to that reported for other crops.Contribution from the US Salinity Laboratory, USDA-ARS, 4500 Glenwood Dr., Riverside, CA. 92501, USA  相似文献   

10.
Summary The influence of water stress at various growth stages on yield and yield structure of spring wheat (Triticum aestivum, L., cv. Sappo) was investigated using lysimeters in the field, automatically protected from rain by a mobile glass roof. Each drought treatment consisted of a single period without irrigation. Irrigation was resumed when all available soil water (100 mm between field capacity and permanent wilting to a depth of 100 cm) had been used. The drought periods were defined as beginning when relative evapotranspiration decreased below one and ending at reirrigation. The first drought occurred during tillering and jointing and the final one during grain formation.  相似文献   

11.
Summary The paper reports an experimental study of miscible displacement of soluble salts during infiltration and redistribution of water in vertical, homogeneous columns of sandy, sandy loam and clay soils with initially uniform salt and moisture contents. Calcium chloride, mixed uniformly in initially dry and moist soils, was leached with water under transient and steady infiltration conditions. The salt and water profiles were determined immediately following infiltration and after matching total infiltration and redistribution times. Irrespective of different flow conditions and soil types, the centre of mass of salt front coincided with the piston front that would exist given perfect displacement of water initially present in the soil by the water being infiltrated (piston-flow model). Furthermore the advance of centre of mass of salt front was independent of the water application rate and initial soil water content in all soils following both infiltration and redistribution.  相似文献   

12.
Summary Barley plants (Hordeum distichum, L., cv. Zita) grown in a sandy soil in pots were adjusted during a pretreatment period of 5 days to three levels of soil water osmotic potential by percolating 61 of a nutrient solution with additional 0, 22.3 and 44.6 mM KCl. A drying cycle was then started and the plants were harvested when the soil water matric potential had decreased to –1.4 MPa, respectively 6, 7 and 8 days later.No significant differences in dry matter yields, transpiration coefficients and wilting percentages were found between treatments.During the drying cycle leaf water potential ( l ) decreased concomitantly with decrease in soil water potential ( s ) with almost constant and similar differences ( l s ) for all treatments despite differences in levels of potentials. The concomitant decrease in leaf osmotic potential () was due partly to dehydration (58%) and partly to increase in leaf solute content (42%) independent of treatment. The part of total osmotic solutes due to K decreased relatively during the drying cycle.Close relationships were found between and l as functions of relative water content (RWC). Identical curves for the two levels of salt treatment agree with similar concentrations of K, Cl, and ash found for salt treated plants indicating that maximum uptake of macro nutrients may have been reached.During the main part of the drying cycle the turgor potential as function of RWC was higher and decreased less steeply with decreasing RWC in the salt treated than in the non-salt treated plants.In the beginning of the drying cycle additions of KCI lowered the transpiration rates of the salt treated plants resulting in a slower desiccation of the soil and hence an increased growth period. A delay in uptake from a limited soil water supply may be advantageous during intermittent periods of drought.  相似文献   

13.
Summary The growth response of kenaf (Hibiscus cannabinus L.) to four irrigation schedules based on leaf water potential l was evaluated in a semi-arid tropical environment. Total dry matter production was unaffected by regimes in which the mean value of leaf water potential l (mean of solar noon and dawn value) did not fall below –1.26 MPa. Stem elongation was more sensitive than dry matter accumulation to plant water stress. — The economic yield for paper pulp production (i. e. total plant dry matter production minus that of the foliage and upper 60 cm of stem) increased with the frequency of irrigation. — Growth recovery by kenaf following a period of water stress was examined. Alleviation of water stress 10 weeks after irrigation, when l was –1.60 MPa, produced stem elongation rates that were greater than those of plants previously receiving irrigation. This ability to withstand water stress and partially compensate in growth following alleviation of the stress indicates that the kenaf crop has stress response features suitable for rainfall only production under semi-arid tropical conditions. — Irrigation schedules based on l resulted in water applications tailored to crop requirements in that water use increased, and the time interval between irrigation decreased, with increasing canopy development as well as with increasing evaporative demand. However, erratic fluctuations in l between irrigations make scheduling by this method difficult and the use of daily mean, dawn or noon values of l for scheduling irrigation of kenaf cannot be recommended in environments of high evaporative demand. The factors contributing to these fluctuations in (l) are discussed.  相似文献   

14.
Summary The onset of water stress within a crop is defined as the time at which the rate of water loss declines below that of a well watered crop in the same locality. The relation to the onset of water stress and soil water status of several readily measured plant parameters was investigated in crops of wheat and soybeans over three years. Evapotranspiration ET was monitored with weighing lysimeters. A noticeable decline in the rate of ET for both wheat and soybeans was detected once 20% to 30% of the total plant available water PAW remained in the 1 m deep lysimeter soil profile. Extension growth of wheat declined when PAW was 33% and 34% in two years of measurement. In soybeans, the decline in the rate of leaf extension coincided with the decline in the rate of ET. Midmorning measurement of exposed leaf water potential L, covered leaf water potential CL and covered plant leaf water potential CP yielded similar results for both wheat and soybeans. Day-to-day variability was least in CP and most in L. Values of CP, L and CL decreased rapidly with PAW < 30%. Daily values of leaf diffusive conductance were variable but there was a general decline in conductance with PAW < 30%. It is suggested that CL may be the easiest and most reliable parameter to monitor as a means of detecting the onset of stress. The results indicated that PAW levels in the root zone of 50% for wheat and 30% for soybean probably do not affect extension growth or plant water status parameters and can thus be used as criteria for irrigation scheduling.Seconded from the Water Research Commission, Pretoria; present address: CSIRO, Division of Irrigation Research, Griffith, N SW 2680, Australia  相似文献   

15.
Summary Changes in infiltration and runoff caused by pitting and mulching under sprinkler irrigation were studied on two soil types. Pitting or diking was done with an implement called a dammer-diker. Five soil treatments were applied: shallow and deep dammer-diker, shallow dammer-diker with mulch, bare, and a mulched soil, combined with two water application rates. Total water infiltration and runoff varied during the experiment. Runoff decreased with area of water storage provided by the pits and the less water was applied. Mulch treatments also reduced runoff. Surface water storage decreased during the season. Changes in soil physical properties due to pitting were more important in controlling runoff than surface water storage.The effective saturated hydraulic conductivity of the soil progressively decreased through the season for all soil treatments and water application rates.A model was developed to simulate the effect of pits on runoff. On a silt loam soil, simulated percent runoff and accumulated runoff over time for the bare and pitted treatments agreed closely to measured values. The agreement of simulated to measured runoff for a silty clay loam soil was not as good probably because of cracking which the simulation model did not take into account.  相似文献   

16.
Summary The interaction of different K status of barley plants (Hordeum vulgare, L.) and water stress on yield and water relations was studied. The plants which were cultivated outdoor in pots and supplied with 0.8, 5.0, 8.5 or 12.0 g K per pot, as KCl, were subjected to increased soil water stress during the early grain filling stage.The water content of the flag leaf tissue was significantly increased from 3.1 to 4.1 g H2O/g D.M. (dry matter) by K application resulting in maintenance of similar leaf osmotic potentials (–1.5 MPa) at all K levels prior to onset of water stress (Table 2). At the lowest K level Ca contributed essentially to maintenance of the cell osmotic potential (Fig. 2).In fully watered plants grain yield at the lowest K level was reduced 20% (Fig. 5 a) due to a decrease in the number of tillers with ears per plant (Fig. 5 b) and to early commencement of maturity processes (Table 3).Water stress caused grain yield reductions between 15 and 50%. However, by increase of K application yield was maintained to the greatest degree in high K plants (Fig. 5 a) due to improved water status in these plants during the drying cycle (Fig. 4). The production of above ground dry matter (top D.M.) during the grain filling period and the grain yield were highly correlated with the leaf water content at the end of the drying cycles (Fig. 6). The greater yield in high K plants was associated with prolongation of the grain filling period by up to 7 days (Table 3) and with an increase in grain weight by up to 20% (Fig. 5 b) as compared with low K plants. Preanthesis reserves contributed up to 52% of grain yield at low K levels (Fig. 5 c) reducing differences in grain yield between the K levels.Abbreviations RWC predawn relative water content - predawn leaf osmotic potential - WUE water use efficiency - R preanthesis reserves - ear D.M. increase in ear D.M. during the grain filling period - top D.M. increase in top D.M. during the grain filling period - SD standard deviation - LSD least significant difference  相似文献   

17.
Summary In order to study the drought sensitivity of pea (Pisum sativum L. cv. Bodil) during different growth phases, a field experiment was conducted in 1985 and 1986 on coarse textured sandy soil with low water-holding capacity. Drought occurred naturally or was imposed by shelters during the vegetative, the flowering and the pod filling growth phase, respectively. Drought sensitivities were assessed as the ratio between relative yield decrease (1 – Ya/Ym) and relative evapotranspiration deficit (1 – ETa/ETm) of the individual growth phases, where Ya and ETa are the actual yield and evapotranspiration, respectively, of a drought stressed plot and Ym and ETm are the maximum yield and evapotranspiration of the fully irrigated treatment. Root growth was followed by measuring root density (L v ) in 10 cm soil layers to a depth of 50 cm. The leaf osmotic potential at full hydration ( s 100 ) was measured in the last fully developed leaf during the growing season.The available water capacity was estimated to be 42–50 mm on the basis of a plot of ETa/ETm versus soil water deficit measured by the neutron moderation method or direct measurement of the root depth. The root zone with L v >0.1 cm–2 only reached a depth of 35 cm at the end of the flowering phase and a depth of 45–50 cm at maturity. Root growth continued during the drought periods. The drought sensitivity of pea was high during the flowering phase, especially in 1986 when water stress developed rapidly, and considerably lower during the pod filling phase. The yield reduction caused by drought in the flowering phase was mainly the result of a lower number of pods per stalk. Severe drought did not occur during the vegetative phase. The leaf osmotic potential ( s 100 ) declined from c. -0.75 MPa to c. -1.30 MPa during the growing season. Osmotic adjustment was largest during drought in the early growth phases; in 1985 s 100 decreased 0.5 MPa under relatively slow drought development during the flowering phase while in 1986, when drought stress developed rapidly, s 100 only decreased 0.2 MPa. Osmotic adjustment may have caused the lower drought sensitivity in 1985 than in 1986 and mediated the continued root growth during drought.  相似文献   

18.
Summary The effect of N and K nutrition on the salt tolerance of lettuce (Lactuca saliva L. cv. Saunas) and Chinese cabbage (Brassica campestris L., Pekinensis cv. Kazumi) was evaluated in three greenhouse experiments under a controlled aero-hydroponic system of cultivation. Three levels of KNO3 (1, 5 and 10 mM) were tested in all the experiments with rapidly circulated saline and nonsaline nutrient solutions. Two experiments, carried out between January and March 1989, with lettuce (Exp. I) and Chinese cabbage plants (Exp. III), consisted of two salinity levels, EC = 1.75 and 6.0 dS m–1, the former representing a nonsaline nutrient solution. In the third experiment with lettuce (Exp. II., conducted between March and May 1989), three saline nutrient solutions having EC levels of 4.7, 7.75 and 10.75 dS m–1 were compared to the nonsaline solution. The nutrient solutions were salinized with NaCl and CaCl2, in a 4:1 molar ratio. The highest yields of fresh weight of both crops were obtained from the 5 mM KNO3 under both saline and non-saline conditions. The 10 mM treatment caused yield reduction in Chinese cabbage, probably due to a severe tipburn disorder. The relatively high fresh weight yield obtained at the lowest (1 mM) KNO3 level can be explained by the positive effect of circulation velocity on nutrient uptake. The threshold salinity damage value for the vegetative yield of lettuce plants fed by 5 or 10 mM KNO3 was approximately 5 dSm–1 and the yield decreased by 6.5% per unit dS m–1 above the threshold. No yield improvement due to the addition of KNO3 occurred under highly saline conditions (Exp. II). The fresh weight of Chinese cabbage obtained from the saline 1 and 5 mM KNO3 treatments was approximately 15% lower than the non-saline-treatment (Exp. III). Salinity increased tipburn and the effect was not altered by the addition of KNO3. No significant interaction between nutrition (KNO3 level) and salinity was found. The application of salts increased the concentration of Na and Cl in plant tissue and reduced the levels of N and K; the opposite occurred in plants fed by the medium and high levels of KNO3.Contribution from Institute of Soils and Water, ARO, Volcani Center, PO Box 6, Bet Dagan 50250, Israel. No. 3092-E 1990 series  相似文献   

19.
The usefulness of continuous measurement of soil and plant water status for automated irrigation scheduling was studied in a drip-irrigation experiment on plum (Prunus salicina Black Gold). Two levels of water restriction were imposed at different phenological periods (from pit-hardening to harvest, post-harvest) and compared with a well irrigated control treatment. Soil matrix water potential (soil) was measured with granular matrix sensors (Watermark); and short-period trunk diameter variation (TDV) was measured with linear variable displacement transformers. The Watermark sensor readings were in reasonable agreement with the irrigation regime and showed a good indication of plant water status across the season (r2=0.62), although they were a better predictor of stem water potential (stem) in the dry range of soil. Nonetheless, the most important drawback in their use was the high variability of readings (typical CV of 35–50%). From TDV measurements, maximum daily shrinkage (MDS) and trunk growth rate (TGR) were calculated. Their performance was also compared with stem, which had the lowest variability (CV of 7%). During most of the fruit growth period, when TGR was minimum, MDS was higher in the less-irrigated treatment than in the control and correlated well (r2=0.89) with stem. However, after harvest, when TGR was higher, this correlation decreased as the season progressed (r2=0.73–0.52), as did the slope between MDS and stem, suggesting tissue elasticity changes. Later in the season, TGR was better related to plant water status. These observations indicate some of the difficulties in obtaining reference values useful for irrigation scheduling based exclusively on plant water status measurements.  相似文献   

20.
A new approach for the estimation and control of the quantity of water applied in an irrigation is presented in which irrigation is stopped when the wetting front reaches a critical depth, Z L. An expression for calculating the critical depth Z L was developed. A major parameter in this expression is the velocity of advance of the wetting front, V, which was shown to be directly related to the application rate, IR, and inversely related to the initial soil water content, i. A depth probe (patent pending) was designed, constructed and tested for the purpose of monitoring the position of the wetting front during infiltration and redistribution and for computing the value of V. Equations developed for relating the velocity of advance of the wetting front to i as well as for estimating the value of the critical depth Z L were successfully tested under conditions of uniform distribution of the initial soil water content. An iterative learning process which utilizes the real time output from the depth probe during each irrigation and is therefore capable of handling realistic field conditions where nonuniformity is the rule is presented. The acquired information is used to estimate a critical depth of the wetting front, Z L, for a planned final wetted depth, Z F, during each irrigation. This process is incorporated in the depth probe and is used to stop irrigation and thus control the quantity of water applied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号