首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The minimal anesthetic concentration (MAC) for isoflurane was determined during spontaneous ventilation in nine male Peking ducks (7 to 12 weeks of age; 3.0 +/- 0.4 kg). While each bird was awake, arterial blood was collected for analysis of pH, PaCO2, and PaO2. After anesthesia was induced with isoflurane in oxygen, MAC was determined for isoflurane in each bird during spontaneous ventilation in a manner similar to MAC determinations in mammals. Pulmonary dose-response data were collected at 1 MAC and 1.5 MAC. Anesthetic index (Al; an index of anesthetic-induced apnea) was calculated from ducks that became apneic. The MAC for isoflurane was 1.30 +/- 0.23% (mean +/- SD). There was a dose-dependent decrease in ventilation as evidenced by a statistically significant increase in PaCO2. Apnea or unacceptable hypercarbia (PaCO2 greater than 110 mm Hg), or both, were common occurrences at end-tidal isoflurane concentrations greater than 1.5 MAC. Anesthetic index calculated from four ducks was 1.65 +/- 0.13 (mean +/- SEM). There was no significant difference between the means of either heart rate or mean arterial blood pressure in birds at 1.0 and 1.5 MAC.  相似文献   

2.
The anesthetic potency and cardiopulmonary effects of sevoflurane were compared with those of isoflurane and halothane in goats. The (mean +/- SD) minimal alveolar concentration (MAC) was 0.96 +/- 0.12% for halothane, 1.29 +/- 0.11% for isoflurane, and 2.33 +/- 0.15% for sevoflurane. Cardiopulmonary effects of sevoflurane, halothane and isoflurane were examined at end-tidal concentrations equivalent to 1, 1.5 and 2 MAC during either spontaneous or controlled ventilation (SV or CV). During SV, there were no significant differences in respiration rate, tidal volume and minute ventilation between anesthetics. Dose-dependent decreases in both tidal volume and minute ventilation induced by halothane were greater than those by either sevoflurane or isoflurane. Hypercapnia and acidosis induced by sevoflurane were not significantly different from those by either isoflurane or halothane at 1 and 1.5 MAC, but were less than those by halothane at 2 MAC. There was no significant difference in heart rate between anesthetics during SV and CV. During SV, all anesthetics induced dose-dependent decreases in arterial pressure, rate pressure product, systemic vascular resistance, left ventricular minute work index and left ventricular stroke work index. Systemic vascular resistance with isoflurane at 2 MAC was lower than that with sevoflurane. During CV, sevoflurane induced dose-dependent circulatory depression (decreases in arterial pressure, cardiac index, rate pressure product, systemic vascular resistance, left ventricular minute work index and right ventricular minute work index), similar to isoflurane. Halothane did not significantly alter systemic vascular resistance from 1 to 2 MAC.  相似文献   

3.
Blood flow to the brain, kidneys, adrenal glands, pancreas, and small intestine was studied in 8 healthy ponies while awake (control) and during 1.0, 1.5, and 2.0 minimal alveolar concentrations (MAC) of anesthesia produced, using halothane vaporized in oxygen. During the anesthesia steps, intermittent positive-pressure ventilation was used to ensure isocapnia. Organ blood flow was determined with 15-micron (diameter) radionuclide-labeled microspheres, after allowing 30 minutes of equilibration at each of the 3 preestablished end-tidal halothane concentrations. The sequence of 1.0, 1.5, and 2.0 MAC levels of anesthesia (0.90, 1.35, and 1.80% end-tidal halothane) was randomized for every animal. In the awake ponies, cerebral blood flow in the cortical (106 +/- 15 ml/min/100 g) and deep gray (103 +/- 12 ml/min/100 g) matter was approximately 5-fold of that in the white matter (22 +/- 3 ml/min/100 g). In the brain stem, there was a decreasing gradient of blood flow from the cranial (thalamohypothalamus: 65 +/- 8 ml/min/100 g) to caudal regions (medulla: 34 +/- 5 ml/min/100 g). Vasodilatation occurred in all regions of the brain with halothane-O2 anesthesia; the decrease in vascular resistance reached its nadir at 1.5 MAC. In the medulla and pons, blood flow increased above control values, with each of the 3 concentrations of halothane, but in the midbrain and thalamohypothalamus, it remained similar to the control value. In the cerebral white matter and cerebellum, blood flow increased with 1.0 and 1.5 MAC of halothane anesthesia, whereas mean aortic pressure decreased to 91% and 74% of the control value. Blood flow in the cerebral cortex was not different from the control value, even at 2.0 MAC of halothane, despite a 49% reduction in perfusion pressure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
This study aimed to determine the minimum anesthetic concentration (MAC) and dose-related cardiovascular effects of isoflurane during controlled ventilation in cinereous vultures (Aegypius monachus). The MAC was determined for 10 cinereous vultures as the midpoint between the end-tidal isoflurane concentration that allows gross purposeful movement and that which prevents the movement in response to clamping a pedal digit. Immediately after the MAC was determined, the cardiovascular effects of isoflurane at 1.0, 1.5, and 2.0 times the MAC were investigated in seven of the 10 birds. The MAC of isoflurane for 10 cinereous vultures during controlled ventilation was 1.06 +/- 0.07% (mean +/- SD). When the isoflurane concentration was increased to 1.5 and 2.0 times the MAC, there was significant dose-dependent decrease in the arterial blood pressure. However, the heart rate did not change over a range of 1.0 to 2.0 times the MAC.  相似文献   

5.
OBJECTIVE: To characterize halothane and sevoflurane anesthesia in spontaneously breathing rats. ANIMALS: 16 healthy male Sprague-Dawley rats. PROCEDURE: 8 rats were anesthetized with halothane and 8 with sevoflurane. Minimum alveolar concentration (MAC) was determined. Variables were recorded at anesthetic concentrations of 0.8, 1.0, 1.25, and 1.5 times the MAC of halothane and 1.0, 1.25, 1.5, and 1.75 times the MAC of sevoflurane. RESULTS: Mean (+/- SEM) MAC for halothane was 1.02 +/- 0.02% and for sevoflurane was 2.99 +/- 0.19%. As sevoflurane dose increased from 1.0 to 1.75 MAC, mean arterial pressure (MAP) decreased from 103.1 +/- 5.3 to 67.9 +/- 4.6 mm Hg, and PaCO2 increased from 58.8 +/- 3.1 to 92.2 +/- 9.2 mm Hg. As halothane dose increased from 0.8 to 1.5 MAC, MAP decreased from 99 +/- 6.2 to 69.8 +/- 4.5 mm Hg, and PaCO2 increased from 59.1 +/- 2.1 to 75.9 +/- 5.2 mm Hg. Respiratory rate decreased in a dose-dependent fashion from 88.5 +/- 4.5 to 58.5 +/- 2.7 breaths/min during halothane anesthesia and from 42.3 +/- 1.8 to 30.5 +/- 4.5 breaths/min during sevoflurane anesthesia. Both groups of rats had an increase in eyelid and pupillary aperture with an increase in anesthetic dose. CONCLUSIONS AND CLINICAL RELEVANCE: An increase in PaCO2 and a decrease in MAP are clinical indicators of an increasing halothane and sevoflurane dose in unstimulated spontaneously breathing rats. Increases in eyelid aperture and pupil diameter are reliable signs of increasing depth of halothane and sevoflurane anesthesia. Decreasing respiratory rate is a clinical indicator of an increasing dose of halothane.  相似文献   

6.
OBJECTIVE: To determine the effect of inhalation of isoflurane at end-tidal concentrations greater than, equal to, and less than the minimum anesthetic concentration (MAC) on bispectral index (BIS) in chickens. Animals-10 chickens. PROCEDURES: For each chicken, the individual MAC of isoflurane was determined by use of the toe-pinch method. After a 1-week interval, chickens were anesthetized with isoflurane at concentrations 1.75, 1.50, 1.25, 1.00, and 0.75 times their individual MAC (administered from higher to lower concentrations). At each MAC multiple, a toe pinch was performed and BIS was assessed and correlated with heart rate, blood pressure, and an awareness score (derived by use of a visual analogue scale). RESULTS: Among the chickens, mean +/- SD MAC of isoflurane was 1.15 +/- 0.20%. Burst suppression was detected at every MAC multiple. The BIS and awareness score were correlated directly with each other and changed inversely with increasing isoflurane concentration. Median (range) BIS values during anesthesia at 1.75, 1.50, 1.25, 1.00, and 0.75 MAC of isoflurane were 25 (15 to 35), 35 (25 to 45), 35 (20 to 50), 40 (25 to 55), and 50 (35 to 65), respectively. Median BIS value at extubation was 70 +/- 9. Values of BIS correlated with blood pressure, but not with heart rate. Blood pressure changed with end-tidal isoflurane concentrations, whereas heart rate did not. CONCLUSIONS AND CLINICAL RELEVANCE: Assessment of BIS can be used to monitor the electrical activity of the brain and the degree of unconsciousness in chickens during isoflurane anesthesia.  相似文献   

7.
OBJECTIVE: To compare 3 types of noxious stimuli applied to various anatomic areas of anesthetized dogs and rabbits for determination of the minimum alveolar concentration (MAC). ANIMALS: 10 dogs and 10 rabbits. PROCEDURE: Dogs were anesthetized with isoflurane and halothane in a randomized order. Rabbits were anesthetized with isoflurane. The MAC was determined by skin incision on the lateral aspect of the chest; clamping of the tail, paw of the forelimb, and paw of the hind limb; and application of electrical current to the oral mucosa (dogs only), forelimb, and hind limb. The MAC was the end-tidal concentration midway between the value permitting and preventing purposeful movement in response to noxious stimuli. RESULTS: In dogs, mean +/- SEM MAC for isoflurane was 1.27 +/- 0.05% for clamping stimuli, 1.36 +/- 0.04% for oral electrical stimulation, 1.35 +/- 0.04% for electrical stimulation to the limbs, and 1.01 +/- 0.07% for surgical incision. The MAC for halothane was 0.97 +/- 0.03% for tail clamping, 0.96 +/- 0.03% for clamping of the limbs, 1.04 +/- 0.03% for electrical stimulation, and 0.75 +/- 0.06% for surgical incision. In rabbits, MAC for isoflurane was 2.08 +/- 0.02% for clamping stimuli, 2.04 +/- 0.02% for electrical stimulation, and 0.90 +/- 0.02% for surgical incision. The MAC for surgical incision was significantly lower than values for the other methods in both species. CONCLUSIONS AND CLINICAL RELEVANCE: Use of electrical current and clamping techniques resulted in similar MAC values. Surgical incision underestimated MAC values in dogs and rabbits.  相似文献   

8.
Potency of enflurane in dogs: comparison with halothane and isoflurane   总被引:2,自引:0,他引:2  
Circulatory and respiratory responses to graded increases in alveolar concentrations of enflurane were investigated in unpremedicated healthy dogs during conditions of spontaneous and controlled ventilation. The minimal alveolar concentration (MAC) of enflurane that prevented movement in response to a standard painful stimulus was determined for each dog and averaged 2.06 vol%. In these studies, enflurane produced cardiopulmonary depression in proportion to the alveolar dose. The average end-tidal enflurane concentration that produced at least 60 s of apnea was 5.29 vol% (ie, MAC 2.57). A comparison of these data with previous studies in dogs indicates that equipotent concentrations of enflurane are at least as depressant to the cardiopulmonary system as halothane and isoflurane.  相似文献   

9.
Cardiovascular effects of halothane in the horse   总被引:3,自引:0,他引:3  
Cardiovascular effects of venous alveolar concentrations of halothane in oxygen were studied in 8 young, healthy horses under conditions of constant arterial carbon dioxide tension. The alveolar concentration of halothane was expressed as a multiple of the minimal alveolar concentration (MAC) which was known for each animal. Increasing alveolar halothane concentrations to MAC 2.0 resulted in a progressive and significant (P less than 0.05) decline in systemic arterial pressure and left ventricular work. Cardiac output decreased between MAC 1.0 and MAC 2.0 as a result of a significant (P less than 0.05) decrease in stroke volume. Heart rate, total peripheral resistance, pulmonary artery pressure, hematocrit, plasma protein concentration, arterial oxygen tension, and arterial pH remained constant over the same range of anesthetic dosages. Continuation of anesthesia, spontaneous ventilation, and the accompanying rise in arterial carbon dioxide tension and electrical stimulation of the horse's oral mucous membranes produced varying degrees of stimulation of cardiovascular function at MAC 1.5.  相似文献   

10.
OBJECTIVE: To determine the minimum alveolar concentration (MAC) of desflurane in llamas and alpacas. DESIGN: Prospective study. Animals Six healthy adult llamas and six healthy adult alpacas. PROCEDURE: Anesthesia was induced with desflurane delivered with oxygen through a mask. An endotracheal tube was inserted, and a port for continuous measurement of end-tidal and inspired desflurane concentrations was placed between the endotracheal tube and the breathing circuit. After equilibration at an end-tidal-to-inspired desflurane concentration ratio >0.90 for 15 minutes, a 50-Hz, 80-mA electrical stimulus was applied to the antebrachium until a response was obtained (i.e. gross purposeful movement) or for up to 1 minute. The vaporizer setting was increased or decreased to effect a 10-20% change in end-tidal desflurane concentration, and equilibration and stimulus were repeated. The MAC was defined as the average of the lowest end-tidal desflurane concentration that prevented a positive response and the highest concentration that allowed a positive response. RESULTS: Mean +/- SD MAC of desflurane was 7.99 +/- 0.58% in llamas and 7.83 +/- 0.51% in alpacas. CONCLUSIONS AND CLINICAL RELEVANCE: The MAC of desflurane in llamas and alpacas was in the range of that reported for other species.  相似文献   

11.
Cardiopulmonary effects were assessed in 12 yearling steers anesthetized with guaifenesin and thiamylal sodium, intubated, and allowed to breathe isoflurane or halothane in oxygen spontaneously. Light surgical anesthesia, determined using eye position as a clinical indication of anesthetic depth, was maintained during surgical placement of a rumen cannula. Heart rate and respiratory rate were measured while the steers were standing quietly (baseline). Atropine (0.06 mg/kg of body weight, IM) was given after baseline measurements were taken. Heart rate, respiratory rate, arterial blood pressures, pHa, PaCO2, PaO2, arterial [HCO3-], esophageal temperature, and end-tidal anesthetic concentration were measured every 15 minutes for 90 minutes after induction of anesthesia. Mean heart rate increased significantly (P less than 0.05) above baseline in the isoflurane group at 15 and 30 minutes. Mean respiratory rate increased significantly (P less than 0.05) above baseline in the halothane group at 45 minutes. At 45 minutes, mean respiratory rate was lower (P less than 0.05) in the isoflurane group, compared with that in the halothane group. Mean values for arterial blood pressures and arterial gases were similar for both agents at comparable times. Mean end-tidal isoflurane concentrations were less than mean end-tidal halothane concentrations at each comparable time during maintenance of similar anesthetic depth. Maintenance of anesthesia with isoflurane resulted in higher heart rates and lower respiratory rates, compared with maintenance of anesthesia with halothane in these steers.  相似文献   

12.
OBJECTIVE: To determine the minimum alveolar concentration (MAC) of sevoflurane in spontaneously breathing llamas and alpacas. DESIGN: Prospective study. ANIMALS: 6 healthy adult llamas and 6 healthy adult alpacas. PROCEDURE: Anesthesia was induced with sevoflurane delivered with oxygen through a mask. An endotracheal tube was inserted, and a port for continuous measurement of end-tidal and inspired sevoflurane concentrations was placed between the endotracheal tube and the breathing circuit. After equilibration at an end-tidal-to-inspired sevoflurane concentration ratio > 0.90 for 15 minutes, a 50-Hz, 80-mA electrical stimulus was applied to the antebrachium until a response was obtained (ie, gross purposeful movement) or for up to 1 minute. The vaporizer setting was increased or decreased to effect a 10 to 20% change in end-tidal sevoflurane concentration, and equilibration and stimulus were repeated. The MAC was defined as the mean of the lowest end-tidal sevoflurane concentration that prevented a positive response and the highest concentration that allowed a positive response. RESULTS: Mean +/- SD MAC of sevoflurane was 2.29 +/- 0.14% in llamas and 2.33 +/- 0.09% in alpacas. CONCLUSIONS AND CLINICAL RELEVANCE: The MAC of sevoflurane in llamas and alpacas was similar to that reported for other species.  相似文献   

13.
Eight adult horses were used in a study to determine ketamine's ability to reduce halothane requirement. To obtain steady-state plasma concentrations of 0.5, 1.0, 2.0, 4.0, and 8.0 micrograms/ml, loading doses and constant infusions for ketamine were calculated for each horse on the basis of data from other studies in which the pharmacokinetic properties of ketamine were investigated. Blood samples for determination of plasma ketamine concentrations were collected periodically during each experiment. Plasma ketamine concentrations were determined by capillary gas chromatography/mass spectrometry under electron-impact ionization conditions, using lidocaine as the internal standard. Halothane minimal alveolar concentration (MAC; concentration at which half the horses moved in response to an electrical stimulus) and plasma ketamine concentration were determined after steady-state concentrations of each ketamine infusion had been reached. Plasma ketamine concentrations > 1.0 microgram/ml decreased halothane MAC. The degree of MAC reduction was correlated directly with the square root of the plasma ketamine concentration, reaching a maximum of 37% reduction at a plasma ketamine concentration of 10.8 +/- 2.7 micrograms/ml. Heart rate, mean arterial blood pressure, and the rate of increase of right ventricular pressure did not change with increasing plasma ketamine concentration and halothane MAC reduction. Cardiac output increased significantly during ketamine infusions and halothane MAC reduction. Our findings suggest that plasma ketamine concentrations > 1.0 micron/ml reduce halothane MAC and produce beneficial hemodynamic effects.  相似文献   

14.
OBJECTIVE: To determine minimum alveolar concentration (MAC) of isoflurane in mechanically ventilated Dumeril monitors (Varanus dumerili). DESIGN: Prospective study. ANIMALS: 10 healthy adult Dumeril monitors. PROCEDURE: Anesthesia was induced with isoflurane in oxygen delivered through a face mask. Monitors were endotracheally intubated, and end-tidal and inspired isoflurane concentrations were continuously measured. After equilibration at an end-tidal-to-inspired isoflurane concentration ratio of >0.9 for 20 minutes, an electrical stimulus (50 Hz, 50 V) was delivered to the ventral aspect of the tail for up to 1 minute and the monitor was observed for purposeful movement. End-tidal isoflurane concentration was then decreased by 10%, and equilibration and stimulation were repeated. The MAC was calculated as the mean of the lowest end-tidal isoflurane concentration that prevented positive response and the highest concentration that allowed response. A blood sample for blood gas analysis was collected from the tail vein at the beginning and end of the anesthetic period. RESULTS: Mean +/- SD MAC of isoflurane was 1.54 +/- 0.17%. Mean heart rates at the upper and lower MAC values were 32.4 +/- 3 beats/min and 34 +/- 4.5 beats/min, respectively. During the experiment, PaCo2 decreased significantly from 43.1 mm Hg to 279 mm Hg and blood pH and HCO3 concentration increased significantly from 7.33 to 7.64 and from 25.3 to 32.9 mmol/L, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: The MAC of isoflurane in Dumeril monitors was similar to that reported in mammals but lower than values reported in other reptiles. This difference may be reflective of the more advanced cardiovascular physiologic features of monitor lizards.  相似文献   

15.
Baroreflex sensitivity (BS) was used to quantitatively assess the effects of halothane and isoflurane on the heart rate/arterial pressure relationship during steady-state (10 minutes) and dynamic pressure changes in adult horses. Arterial pressure was decreased in response to nitroglycerin or sodium nitroprusside and increased in response to phenylephrine HCl. Mean (+/- SEM) BS in awake horses was 28.9 +/- 2.6 and 13.2 +/- 2.0 ms/mm of Hg during steady-state decreases and increases in systolic arterial pressure (SAP), respectively. Halothane and isoflurane either significantly (P less than 0.05) decreased or eliminated BS during steady-state decreases in SAP, with no significant differences detected between anesthetic agents. During steady-state decreases in SAP, significant (P less than 0.05) correlation between R-R interval and arterial pressure was not observed for 6 of 10 and 4 of 11 halothane and isoflurane anesthesia periods, respectively. Halothane significantly (P less than 0.05) decreased BS during steady-state increases in SAP to 7.9 +/- 0.6 and 6.5 +/- 1.1 ms/mm of Hg during low and high minimal alveolar concentration (MAC) multiples, respectively. Isoflurane decreased BS during steady-state increases in SAP to 9.6 +/- 1.5 and 6.6 +/- 1.1 ms/mm of Hg during low and high MAC anesthesia, respectively, with high MAC of isoflurane decreasing BS significantly (P less than 0.05), compared with awake and low MAC values. Plasma catecholamine (epinephrine and norepinephrine) concentrations increased significantly (P less than 0.05), compared with baseline values during steady-state vasodilator infusions in halothane- and isoflurane-anesthetized horses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Fourteen adult beavers (Castor canadensis) weighing 16.5 +/- 4.14 kg (mean +/- SD) were anesthetized for surgical implantation of radio telemetry devices. Beavers were anesthetized with diazepam (0.1 mg/kg) and ketamine (25 mg/kg) administered IM, which provided smooth anesthetic induction and facilitated tracheal intubation. Anesthesia was maintained with halothane in oxygen via a semiclosed circle anesthetic circuit. Values for heart rate, respiratory rate, esophageal temperature, direct arterial blood pressure, end-tidal halothane concentration, and end-tidal CO2 tension were recorded every 15 minutes during the surgical procedure. Arterial blood samples were collected every 30 minutes to determine pH, PaO2, and PaCO2. Values for plasma bicarbonate, total CO2, and base excess were calculated. Ventilation was spontaneous in 7 beavers and controlled to maintain normocapnia (PaCO2 approx 40 mm of Hg) in 7 others. Vaporizer settings were adjusted to maintain a light surgical plane of anesthesia. Throughout the surgical procedure, all beavers had mean arterial pressure less than 60 mm of Hg and esophageal temperature less than 35 C. Mean values for arterial pH, end-tidal CO2, PaO2, and PaCO2 were significantly (P less than 0.05) different in spontaneously ventilating beavers, compared with those in which ventilation was controlled. Respiratory acidosis during halothane anesthesia was observed in spontaneously ventilating beavers, but not in beavers maintained with controlled ventilation. All beavers recovered unremarkably from anesthesia.  相似文献   

17.
The hemodynamic effects of 1.5 minimal alveolar concentration of halothane alone (1.6% end-tidal) and 1.5 minimal alveolar concentration of halothane (1.1% end-tidal concentration) combined with epidurally administered morphine were compared during controlled ventilation in 10 dogs used on 2 occasions and randomly allocated to 2 groups. Arterial blood pressure, cardiac index, stroke volume, left ventricular work, and pulmonary arterial pressure were significantly (P less than 0.05) higher in dogs of the morphine-treated group before administration of morphine. After epidural administration of morphine (0.1 mg/kg of body weight diluted in 0.26 ml of saline solution/kg), hemodynamic changes were not observed, and the aforementioned variables remained significantly (P less than 0.05) higher than values in dogs of the halothane only group. Compared with halothane (1.6%) alone, the reduction in halothane end-tidal concentration (1.1%) associated with epidurally administered morphine is beneficial in maintaining hemodynamic function.  相似文献   

18.
Atrial fibrillation in halothane- and isoflurane-anesthetized dogs   总被引:1,自引:0,他引:1  
Programmed electrical stimulation techniques were used to evaluate the effects of halothane and isoflurane on induction of atrial fibrillation in anesthetized dogs. Experiments were performed in 16 dogs anesthetized with alpha-chloralose. Critically timed premature stimuli were applied to the right atrial appendage and Bachmann bundle to determine the atrial fibrillation threshold, defined as the minimal current required to induce rapid, irregular atrial electrical activity of at least 8 seconds' duration. Atrial fibrillation thresholds were determined at baseline (0.0% inhalational anesthetic), 0.5 minimal alveolar concentration (MAC), and 1.0 MAC of halothane (n = 8) and isoflurane (n = 8). In the absence of inhalation anesthetic, it was significantly (P less than 0.01) easier to induce atrial fibrillation at the Bachmann bundle vs the right atrial appendage. Atrial fibrillation threshold at the Bachmann bundle was not affected by increasing concentrations of halothane, but was increased by 1.0 MAC of isoflurane (P less than 0.05). It was concluded that at 1.0 MAC isoflurane, but not halothane, has antifibrillatory effects in atrial tissue.  相似文献   

19.
OBJECTIVE: To determine the relationship between bispectral index (BIS) and minimum alveolar concentration (MAC) multiples of sevoflurane in cats. ANIMALS: 8 domestic cats. PROCEDURE: Each cat was anesthetized twice with sevoflurane. First, the MAC of sevoflurane for each cat was determined by use of the tail clamp method. Second, cats were anesthetized with sevoflurane at each of 5 MAC multiples administered in random order. Ventilation was controlled, and after a 15-minute equilibration period at each MAC multiple of sevoflurane, BIS data were collected for 5 minutes and the median value of BIS calculated. RESULTS: The mean (+/- SD) MAC of sevoflurane was 3.3 +/- 0.2%. The BIS values at 0.5 MAC could not be recorded as a result of spontaneous movement in all 8 cats. The BIS values at 2.0 MAC were confounded by burst suppression in all 8 cats. Over the range of 0.8 to 1.5 MAC, BIS values decreased significantly with increasing end-tidal sevoflurane concentrations. Mean (+/- SD) BIS measurements were 30 +/- 3, 21 +/- 3, and 5 +/- 2 at 0.8, 1.0, and 1.5 MAC, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: Values of BIS are inversely and linearly related to end-tidal sevoflurane concentrations in anesthetized cats, and BIS may be a useful predictor of CNS depression in this species. The consistently low BIS values recorded in this study suggest that clinical BIS end points used to titrate anesthetic agents in humans may not be applicable to cats.  相似文献   

20.
OBJECTIVE: To quantitate the dose and time-related effects of morphine sulfate on the anesthetic sparing effect of xylazine hydrochloride in halothane-anesthetized horses and determine the associated plasma xylazine and morphine concentration-time profiles. ANIMALS: 6 healthy adult horses. PROCEDURE: Horses were anesthetized 3 times to determine the minimum alveolar concentration (MAC) of halothane in O2 and characterize the anesthetic sparing effect (ie, decrease in MAC of halothane) by xylazine (0.5 mg/kg, i.v.) administration followed immediately by i.v. administration of saline (0.9% NaCI) solution, low-dose morphine (0.1 mg/kg), or high-dose morphine (0.2 mg/kg). Selected parameters of cardiopulmonary function were also determined over time to verify consistency of conditions. RESULTS: Mean (+/- SEM) MAC of halothane was 1.05 +/- 0.02% and was decreased by 20.1 +/- 6.6% at 49 +/- 2 minutes following xylazine administration. The amount of MAC reduction in response to xylazine was time dependent. Addition of morphine to xylazine administration did not contribute further to the xylazine-induced decrease in MAC (reductions of 21.9 +/- 1.2 and 20.7 +/- 1.5% at 43 +/- 4 and 40 +/- 4 minutes following xylazine-morphine treatments for low- and high-dose morphine, respectively). Overall, cardiovascular and respiratory values varied little among treatments. Kinetic parameters describing plasma concentration-time curves for xylazine were not altered by the concurrent administration of morphine. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of xylazine decreases the anesthetic requirement for halothane in horses. Concurrent morphine administration to anesthetized horses does not alter the anesthetic sparing effect of xylazine or its plasma concentration-time profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号