首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Principal aim of this study was to examine fecal samples from pigs suffering from diarrhea for the presence of Lawsonia intracellularis, Brachyspira hyodysenteriae and Brachyspira pilosicoli. The molecular techniques such as PCR and nested PCR were employed to detect the presence of p78 fragment of genomic DNA specific for Lawsonia intracellularis as well as fragment of tlyA gene specific for Brachyspira hyodysenteriae and 16S rDNA gene of Brachyspira pilosicoli. We assumed that about 25% of pigs were infected with Lawsonia intracellularis, about 10% with Brachyspira hyodysenteriae and only 0,8% with Brachyspira pilosicoli. In about 3% mixed infection with L. intracellularis and B. hyodysenteriae was observed. Results were comparable in herds that differed in quantity, breeding technology, hygienic standards and preventive treatment with different chemotherapeutics.  相似文献   

2.
Pathogenic intestinal spirochaetes of pigs include Brachyspira (formerly Serpulina) hyodysenteriae, the cause of swine dysentery, and Brachyspira pilosicoli, the cause of porcine colonic spirochetosis (PCS). The purpose of this study was to assess the relative importance of Brachyspira species in diarrhoeal disease of growing pigs on farms in southern Brazil. The intensity and pattern of haemolysis, the production of indole and the hydrolysis of hippurate by reference and field porcine intestinal spirochaetes were compared with 16S-ribosomal RNA (mRNA)- and 23S-rRNA-based polymerase chain reaction assays for the identification of B hyodysenteriae and B pilosicoli. Between July and October 1998, 206 rectal swabs were taken from pigs on 17 farms with a history of diarrhoea developing within 30 days after they had been moved from nursery to growing facilities. Of 49 beta-haemolytic spirochaetes that were cultured, 29 (59.2 per cent) were grown in pure culture for phenotypic and genotypic characterisation, leaving 20 untyped. Of the 29 typed isolates, eight isolates obtained from six farms were identified as B hyodysenteriae, and 15 isolates obtained from seven other farms were identified as B pilosicoli; the remaining six isolates were identified as weakly beta-haemolytic commensal spirochaetes. There was complete agreement between the results of the phenotypic and genotypic analyses.  相似文献   

3.
Feral pigs are recognized as being a potential reservoir of pathogenic microorganisms that can infect domestic pigs and other species. The aim of this study was to investigate whether feral pigs in Western Australia were colonized by the pathogenic enteric bacteria Lawsonia intracellularis, Brachyspira hyodysenteriae and/or Brachyspira pilosicoli. A total of 222 feral pigs from three study-populations were sampled. DNA was extracted from faeces or colonic contents and subjected to a previously described multiplex PCR for the three pathogenic bacterial species. A subset of 61 samples was cultured for Brachyspira species. A total of 42 (18.9%) of the 222 samples were PCR positive for L. intracellularis, 18 (8.1%) for B. hyodysenteriae and 1 (0.45%) for B. pilosicoli. Four samples were positive for both L. intracellularis and B. hyodysenteriae. Samples positive for the latter two pathogens were found in pigs from all three study-sites. A strongly haemolytic B. hyodysenteriae isolate was recovered from one of the 61 cultured samples. Comparison of a 1250-base pair region of the 16S rRNA gene amplified from DNA extracted from the isolate and five of the B. hyodysenteriae PCR positive faecal samples helped confirm these as being from B. hyodysenteriae. This is the first time that B. hyodysenteriae has been detected in feral pigs. As these animals range over considerable distances, they present a potential source of B. hyodysenteriae for any domesticated pigs with which they may come into contact.  相似文献   

4.
The aim of the present study was to survey the prevalences of the enteric pathogens Brachyspira hyodysenteriae, Brachyspira pilosicoli and Lawsonia intracellularis in Swedish growing pigs and in the Swedish wild boar population and to relate these findings to clinical signs. The study included 105 randomly selected herds, constituting approximately one third of Swedish herds with a herd size of >100 sows. The herds were located all over the country. In these herds, growth promoters were not used and pigs sampled were not subjected to any medication. From each herd, samples were taken from 10 growing pigs aged 8-12 weeks, corresponding to approximately 2.5% of all growing pigs present in the herd at the sampling occasion. If possible, the samples were taken from pigs with diarrhoea. Forty-eight faecal samples and 71 rectal swabs were also taken from free-living wild boars (31 piglets, 19 growers and 21 adult animals) at shooting. The samples were analysed by culture and biochemical tests for the presence of Brachyspira spp. and by nested PCR for the presence of L. intracellularis. Brachyspira hyodysenteriae was not demonstrated in any sample. Brachyspira intermedia was detected in 22 samples originating from 15 herds, Brachyspira innocens/Brachyspira murdochii was detected in 370 samples from 82 herds and B. pilosicoli was detected in 134 samples originating from 34 herds. In 21 herds and in 534 samples, no Brachyspira spp. were detected. Lawsonia intracellularis was demonstrated in 285 samples from 50 herds. Further, 418 samples from conventional herds were negative with respect to L. intracellularis and in 345 samples the PCR had been inhibited. All samples from the wild boars were negative for Brachyspira spp., 12 of 48 samples were negative for L. intracellularis, and in 36 wild boar samples, the PCR was inhibited.  相似文献   

5.
Faeces samples were taken three times at two-week intervals, from the farrowing units of four herds of known Brachyspira (formerly Serpulina) status and one of unknown Brachyspira status. Brachyspira hyodysenteriae, Brachyspira pilosicoli, Brachyspira intermedia and Brachyspira group III were isolated from the faecal samples from the weaners in the herds using either a maximum of 50 ppm of olaquindox or no feed additives. The detection rates were relatively consistent. However, B hyodysenteriae was not detected at one sampling in a known positive herd. The prevalence of Brachyspira species was also studied in feeder pigs originating from LSO 2000 health class farrowing units, comparable with specific pathogen-free herds. These farms were free from swine dysentery, sarcoptic mange, swine enzootic pneumonia and progressive atrophic rhinitis. Fifty of 428 herds were sampled once. B hyodysenteriae was not isolated from any of them, but B intermedia, B pilosicoli and Brachyspira group III were isolated from five, 14 and 37 of the herds, respectively. The detection of Brachyspira species did not relate to the prevalence of diarrhoea in the herds, as judged by the farmers. The herds using carbadox (40 to 50 ppm) had a lower prevalence of Brachyspira species than those using olaquindox (40 to 50 ppm).  相似文献   

6.
The Brachyspira (formerly Serpulina) species rrl gene encoding 23S ribosomal RNA (rRNA) was used as a target for amplification of a 517bp DNA fragment by polymerase chain reaction (PCR). The primers for PCR amplification had sequences that were conserved among Brachyspira 23S rRNA gene and were designed from nucleotide sequences of Brachyspira hyodysenteriae, Serpulina intermedia, Brachyspira innocens and Brachyspira pilosicoli available from the GenBank database. Digestion of PCR-generated products from reference and field isolates of swine intestinal spirochetes with restriction enzymes Taq I and Alu I revealed five restriction fragment length polymorphism (RFLP) patterns. Each RFLP pattern corresponded to previously established genetic groups including B. hyodysenteriae (I), S. intermedia/B. innocens (II), Brachyspira murdochii (III), B. pilosicoli (IV) and B. alvinipulli (V). The 23S rRNA PCR/RFLP provided a relatively simple genotypic method for identification of porcine pathogenic B. hyodysenteriae and B. pilosicoli.  相似文献   

7.
Brachyspira infections are significant causes of enterocolitis in pigs. In order to differentiate pathogenic species (Brachyspira (Br.) hyodysenteriae, Brachyspira pilosicoli) from less pathogenic or non-pathogenic species (Brachyspira intermedia, Brachyspira innocens, Brachyspira murdochii) in paraffin-embedded tissue samples a polymerase chain reaction (PCR) protocol allowing identification of Brachyspira at species level in archival material was developed. This approach was complemented by sequencing of the PCR amplification products. All seven cases presented with clinical and morphological Brachyspira-associated enterocolitis. Br. hyodysenteriae was not identified in any of the cases, while Br. pilosicoli was identified in a single case in conjunction with Br. murdochii. One case each was found positive for Br. innocens and Br. intermedia. Interestingly, the majority of cases presented as single or double infections with Br. murdochii. In some of the pigs other pathogens, like porcine circovirus-2 or Lawsonia intracellularis were present. These observations point at the possibility that under certain conditions even Brachyspira species of low pathogenicity can multiplicate extensively and lead to Brachyspira-associated enterocolitis.  相似文献   

8.
Frequent incidence of Serpulina strains showing all cultural and biochemical characteristics of Serpulina (S.) hyodysenteriae except of being indole negative, and alpha-galactosidase positive isolates showing strong haemolysis on Columbia agar with 5% sheep blood and trypticase soy agar with 5% ox blood, respectively, was the cause to evaluate common biochemical and cultural methods in Serpulina routine diagnostics. To this purpose ten type and reference strains as well as 47 field strains were examined for their ability to produce indole, haemolysis, hippurate cleavage, alpha-galactosidase, alpha- and beta-glucosidase activity. Two four-hour identification-systems were used, RapID ANA II and Rosco diagnostic tablets. The ability to produce indole was determined by different methods. All investigations were carried out at least two times. For the investigation of haemolytic patterns trypticase soy agar with 10% ox blood proved to be most effective. Results received using this agar could always be confirmed by the ring phenomenon. Determining the ability to produce indole by adding p-dimethylaminocinnamaldehyde to bacterial growth collected on a cotton swab was confirmed to be more sensitive than other methods. Both four-hour-systems were shown to be useful in Serpulina diagnostics, though in the RapID ANA II only four of 18 available reactions could be used and the hippurate cleavage reaction has to be carried out additionally. Using cultural and biochemical methods, it was possible to assign the type and reference strains to the correct species, as well as 46 of 47 field isolates could be identified including all five known intestinal Serpulina species from swine. 27 strains were determined as S. hyodysenteriae, nine of these isolates atypically being indole negative. In contrast one canine S. pilosicoli strain was atypical showing indole production. Therefore incidence of indole negative variants of S. hyodysenteriae as well as indole positive S. pilosicoli isolates must be taken into consideration.  相似文献   

9.
The distribution of many genes encoding virulence and virulence life-style (VL-S) factors in Brachyspira (B.) hyodysenteriae and other Brachyspira species are largely unknown. Their knowledge is essential e.g. for the improvement of diagnostic methods targeting the detection and differentiation of the species. Thus 121 German Brachyspira field isolates from diarrhoeic pigs were characterized down to the species level by restriction fragment length polymorphism analysis of the nox gene and subsequently subjected to polymerase chain reaction detecting VL-S genes for inner (clpX) and outer membrane proteins (OMPs: bhlp16, bhlp17.6, bhlp29.7, bhmp39f, bhmp39h), hemolysins (hlyA/ACP, tlyA), iron metabolism (ftnA, bitC), and aerotolerance (nox). For comparison, B. hyodysenteriae reference strains from the USA (n=7) and Australia (2) were used. Of all genes tested only nox was detected in all isolates. The simultaneous presence of both the tlyA and hlyA/ACP was restricted to the species B. hyodysenteriae. The hlyA infrequently occurred also in weakly hemolytic Brachyspira. Similarly to tlyA and hlyA all B. hyodysenteriae strains contained the ferritin gene ftnA which was also found in two Brachyspira intermedia isolates. OMP encoding genes were present in B. hyodysenteriae field isolates in rates of 0% (bhlp17.6, bhmp39h), 58.1% (bhlp29.7), and 97.3% (bhmp39f). Since the study revealed a high genetic heterogeneity among German B. hyodysenteriae field isolates differentiating them from USA as well as Australian strains, targets for diagnostic PCR were limited to the nox gene (genus specific PCR) as well as to the species specific nox(hyo) gene and the combination of hlyA and tlyA which allow to specifically detect B. hyodysenteriae.  相似文献   

10.
This study aimed to obtain information about the types of spirochaetes colonising urban dogs in Thailand, and to investigate their pathogenic potential in a day-old chick model of intestinal spirochaetosis. Spirochaetes were isolated from the faeces of six of 47 (12.8%) healthy dogs and 11 of 104 (10.6%) dogs with diarrhoea. Their biochemical properties and 16S ribosomal DNA sequences were analysed. Four isolates were identified as Brachyspira pilosicoli, three resembled "Brachyspira pulli", nine clustered with "Brachyspira canis" and one was similar to Brachyspira intermedia. Canine isolates of B. pilosicoli, "B. canis" and "B. pulli", and control strains of Brachyspira hyodysenteriae, B. pilosicoli and Brachyspira innocens colonised experimentally infected day-old chicks. The chicks did not develop diarrhoea, but were significantly lighter than the non-infected group and those infected with B. innocens after 21 days (P<0.05). Using immunohistochemistry, spirochaetes were observed covering the surface epithelium and in the crypts of chicks in all three groups challenged with the canine isolates. Variable histopathological changes were seen, with the greatest inflammatory cell infiltration into the lamina propria occurring in the group infected with "B. pulli". Canine "B. canis", "B. pulli" and B. pilosicoli isolates may have pathogenic potential.  相似文献   

11.
Lawsonia (L.) intracellularis, Brachyspira (B.) hyodysenteriae and B. pilosicoli are important pathogens in domestic pig production world-wide, responsible for porcine intestinal adenomatosis, swine dysentery, and porcine intestinal spirochetosis, respectively. Conventional PCR is the major diagnostic tool in the detection of the three pathogens, but the sole detection of bacterial DNA might lead to misinterpretations of results with respect to their clinical relevance, especially with mixed infections. Thus, the present study targeted the detection and quantification of the three pathogens in samples from herds with a case history of diarrhoea. Herds and samples were selected by the practitioners on a voluntary basis. Results were based on 1176 individual samples from 95 herds from Southern Germany. The pathogens were detected simultaneously by multiplex real-time PCR. The overall prevalence for L. intracellularis, B. hyodysenteriae and B. pilosicoli was 12.6%, 8.4% and 3.2% in faecal samples and 48.4%, 24.2% and 31.6% in herds, respectively. Sixty one percent, 82.6%, and 73.4% of herds positive for L. intracellularis, B. hyodysenteriae, and B. pilosicoli, respectively, had mixed infections. Median log values of DNA equivalents/g of faeces for L. intracellularis, B. hyodysenteriae and B. pilosicoli were 3.3, 5.9 and 3.2, with maxima of 8.3, 8.0 and 6.3, respectively. Within herd prevalence of B. hyodysenteriae and B. pilosicoli as well as the load of B. hyodysenteriae were significantly associated with the severity of diarrhoea.  相似文献   

12.
Sixty-nine intestinal spirochetes isolated from pigs and poultry in eastern Australia were selected to evaluate the effectiveness of a species-specific PCR-based restriction fragment length polymorphism (RFLP) analysis of the Brachyspira nox gene. For comparative purposes, all isolates were subjected to species-specific PCRs for the pathogenic species Brachyspira hyodysenteriae and Brachyspira pilosicoli, and selected isolates were examined further by sequence analysis of the nox and 16S ribosomal RNA genes. Modifications to the original nox-RFLP method included direct inoculation of bacterial cells into the amplification mixture and purification of the PCR product, which further optimized the nox-RFLP for use in a veterinary diagnostic laboratory, producing sufficient product for both species identification and future comparisons. Although some novel profiles that prevented definitive identification were observed, the nox-RFLP method successfully classified 45 of 51 (88%) porcine and 15 of 18 (83%) avian isolates into 5 of the 6 recognized species of Brachyspira. This protocol represents a significant improvement over conventional methods currently used in veterinary diagnostic laboratories for rapid specific identification of Brachyspira spp. isolated from both pigs and poultry.  相似文献   

13.
Brachyspira (Serpulina) hyodysenteriae was isolated from 10 of 11 pigs with clinically suspected swine dysentery in six herds in northern Italy. All strains were successfully isolated in the selective blood agar modified medium with spectinomycin and rifampin (BAM-SR) currently used in our laboratory to isolate B. (S.) pilosicoli of human origin, after pre-treatment of intestinal material with spectinomycin and rifampin in foetal calf serum. Isolates had phenotypic characteristics typical of B. (S.) hyodysenteriae.  相似文献   

14.
Two of four weak beta-hemolytic isolates of intestinal spirochetes isolated from pigs in Japan possessed a unique base alignment of TTTTTT on the 16S ribosomal DNA of Brachyspira pilosicoli and were identified as B. pilosicoli. The other two isolates were not identified by this technique. The identified isolates were 4.2 to 11 microm in length and 0.2 to 0.3 microm in diameter, 4 periplasmic flagella at each end were observed dominantly. The isolates were hippurate positive but indole negative. This is the first report on the isolation of B. pilosicoli from pigs in Japan.  相似文献   

15.
Genotypic differentiation by means of macrorestriction fragment profile analysis using Mlul restriction enzyme was carried out differentiating 41 Serpulina field strains from swine (38), dog (2) and a rat as well as ten type and reference strains into 40 electrophoretic types. A dendrogram was created using the average linkage between groups method. At a level of 50% similarity the patterns could be divided into six groups that roughly corresponded to the results yielded by cultural and biochemical methods formerly (FELTRUP et al. 1999). Five of these clusters corresponded to the five known porcine Serpulina species, one cluster contained the S. pilosicoli isolates from dog and rat included in this study. Interestingly all nine investigated indole negative, strongly haemolytic isolates were clustered together in one group with the S. hyodysenteriae strains, so that incidence of indole negative variants of S. hyodysenteriae was confirmed. Because of being grouped together with two S. intermedia isolates, the suitability of B 256 as S. innocens type strain is--in accord to investigations carried out by PETTERSSON et al (1996)--called in question.  相似文献   

16.
The survival of Brachyspira hyodysenteriae and Brachyspira pilosicoli was investigated at 10 degrees C in laboratory microcosms consisting of soil, porcine faeces, and in soil mixed with 10% porcine faeces, respectively. By plate spreading, survival of B. hyodysenteriae was found to be 10, 78 and 112 days in soil, soil mixed with 10% faeces, and in porcine faeces, respectively. The identities of the colonies on the plates were confirmed using PCR targeting 23S rDNA for specific detection of B. hyodysenteriae. A positive PCR signal could be obtained up to 112 days in all microcosms by direct extraction of DNA from microcosms followed by PCR.The survival time for B. pilosicoli was 119 days in pure soil and 210 days in soil mixed with 10% porcine faeces and in pure faeces, respectively, as determined by plate spreading followed by PCR. On the other hand, by direct extraction of DNA followed by specific detection by PCR. B. pilosicoli could be detected up to 330 days in all microcosms.Dot blot hybridisation with digoxigenin-labelled specific oligonucleotide probe targeting rDNA could not be used for direct detection of Brachyspira spp. from microcosms due to low sensitivity. However, it was used for confirmation of the identity of colonies and proved to be a useful technique.These results show that the two Brachyspira species may survive in outdoor environment for the times shown in these investigations using laboratory microcosms.  相似文献   

17.
A hippurate-negative biovariant of Brachyspira pilosicoli (B. pilosicolihipp-) is occasionally isolated in diarrhoeic pigs in Finland, often concomitantly with hippurate-positive B. pilosicoli or Lawsonia intracellularis. We studied pathogenicity of B. pilosicolihipp- with special attention paid to avoiding co-infection with other enteric pathogens. Pigs were weaned and moved to barrier facilities at the age of 11 days. At 46 days, 8 pigs were inoculated with B. pilosicolihipp- strain Br1622, 8 pigs were inoculated with B. pilosicoli type strain P43/6/78 and 7 pigs were sham-inoculated. No signs of spirochaetal diarrhoea were detected; only one pig, inoculated with P43/6/78, had soft faeces from day 9 to 10 post inoculation. The pigs were necropsied between days 7 and 23 after inoculation. Live pigs were culture-negative for Brachyspira spp., but B. pilosicolihipp- was reisolated from necropsy samples of two pigs. The lesions on large colons were minor and did not significantly differ between the three trial groups. In silver-stained sections, invasive spirochaetes were detected in colonic mucosae of several pigs in all groups. Fluorescent in situ hybridisation for genus Brachyspira, B. pilosicoli and strain Br1622 was negative. However, in situ detection for members of the genus Leptospira was positive for spirochaete-like bacteria in the colonic epithelium of several pigs in both infected groups as well as in the control group. L. intracellularis, Salmonella spp., Yersinia spp. and intestinal parasites were not detected. The failure of B. pilosicoli strains to cause diarrhoea is discussed with respect to infectivity of the challenge strains, absence of certain intestinal pathogens and feed and management factors.  相似文献   

18.
The aim of this study was to obtain prevalence estimates about the most important enteropathogenic bacteria: Lawsonia intracellularis, Brachyspira hyodysenteriae, Brachyspira pilosicoli, Salmonella enterica and Clostridium perfringens A and C in Hungarian farrow-to-finish pig herds. A total of 31 herds were selected, from where six pooled faecal samples, each containing three individual rectal faecal samples were collected from fattening pigs of 5-6 months of age. All 186 samples were examined by polymerase chain reaction (PCR) for the presence of the pathogens mentioned above. Lawsonia intracellularis was found in 29 herds (93.55%) and in 108 samples (58.06%); B. hyodysenteriae in 14 herds (45.16%) and in 23 samples (12.37%); B. pilosicoli in 19 herds (61.29%) and in 53 samples (28.49%); S. enterica in 17 herds (54.83%) and in 40 samples (21.50%). We detected the presence of C. perfringens A in 19 herds (61.29%) and in 46 samples (24.73%), while C. perfringens C was found in 8 herds (25.81%) and in 11 samples (5.91%). All examined herds were infected with one or more of these agents. Herds with diarrhoea in the mid- to late finishing phase had almost 10 times higher prevalence of B. hyodysenteriae than herds without such a history.  相似文献   

19.
VSH-1 is an unusual prophage-like gene transfer agent (GTA) that has been described in the intestinal spirochaete Brachyspira hyodysenteriae. The GTA does not self-propagate, but it assembles into a virus-like particle and transfers random 7.5kb fragments of host DNA to other B. hyodysenteriae cells. To date the GTA VSH-1 has only been analysed in B. hyodysenteriae strain B204, in which 11 late function genes encoding prophage capsid, tail and lysis elements have been described. The aim of the current study was to look for these 11 genes in the near-complete genomes of B. hyodysenteriae WA1, B. pilosicoli 95/1000 and B. intermedia HB60. All 11 genes were found in the three new strains. The GTA genes in WA1 and 95/1000 were contiguous, whilst some of those in HB60 were not-although in all three strains some gene rearrangements were present. A new predicted open reading frame with potential functional importance was found in a consistent position associated with all four GTAs, located between the genes for head protein Hvp24 and tail protein Hvp53, overlapping with the hvp24 sequence. Differences in the nucleotide and predicted amino acid sequences of the GTA genes in the spirochaete strains were consistent with the overall genetic distances between the strains. Hence the GTAs in the two B. hyodysenteriae strains were considered to be strain specific variants, and were designated GTA/Bh-B204 and GTA/Bh-WA1 respectively. The GTAs in the strains of B. intermedia and B. pilosicoli were designated GTA/Bint-HB60 and GTA/Bp-95/1000 respectively. Further work is required to determine the extent to which these GTAs can transfer host genes between different Brachyspira species and strains.  相似文献   

20.
There is no ring test for quality assessment available in Europe for diagnostics and antimicrobial susceptibility testing of the fastidious, anaerobic bacteria of the genus Brachyspira. Therefore, an international ring test for Brachyspira spp. was performed once a year during 2002-2004. Two sets of coded samples were prepared and distributed on each occasion. One set comprised six swabs dipped in pig faeces spiked with Brachyspira spp. intended for diagnostics. The other set comprised two pure strains intended only for susceptibility testing. All methods used were in-house methods. The species used were Brachyspira hyodysenteriae, Brachyspira pilosicoli, Brachyspira innocens, Brachyspira murdochii and Brachyspira intermedia. In most cases, the correct Brachyspira spp. were detected. However, the results showed that Brachyspira spp. could be difficult to identify, especially if two Brachyspira spp. were mixed or if the concentration of Brachyspira in faeces was low. Additionally, some laboratories reported Brachyspira growth in control samples that were not seeded with any spirochaetes. The lowest detection level was 10(2) bacteria/ml faeces for both B. hyodysenteriae and B. pilosicoli. The susceptibility tests performed showed that disc diffusion was not recommendable for Brachyspira spp. Extended antimicrobial dilution series gave most congruent results. The diversity of the results highlights the importance of ring tests for a high quality of diagnostics and antimicrobial susceptibility tests for Brachyspira spp. This is the first ring test described for Brachyspira spp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号