首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Field Crops Research》2001,69(3):259-266
Water-use efficiency (WUEDM) is directly related to radiation-use efficiency (RUE) and inversely related to crop conductance (gc). We propose that reduced WUEDM caused by shortage of nitrogen results from a reduction in RUE proportionally greater than the fall in conductance. This hypothesis was tested in irrigated wheat crops grown with contrasting nitrogen supply; treatments were 0, 80 and 120 kg N ha−1 in 1998 and 0, 80, 120 and 160 kg N ha−1 in 1999. We measured shoot dry matter, yield, intercepted solar radiation and soil water balance components. From these measurements, we derived actual evapotranspiration (ET), soil evaporation and transpiration, WUEDM (slope of the regression between dry matter and ET), WUEY (ratio between grain yield and ET), RUE (slope of the regression between dry matter and intercepted radiation), and gc (slope of the regression between transpiration and intercepted radiation). Yield increased from 2.3 in unfertilised to an average 4.7 t ha−1 in fertilised crops, seasonal ET from 311 to 387 mm, WUEDM from 23 to 37 kg ha−1 mm−1, WUEY from 7.6 to 12.4 kg ha−1 mm−1, RUE from 0.85 to 1.07 g MJ−1, while the fraction of ET accounted for soil evaporation decreased from 0.20 to 0.11. In agreement with our hypothesis, RUE accounted for 60% of the variation in WUEDM, whereas crop conductance was largely unaffected by nitrogen supply. A greater fraction of evapotranspiration lost as soil evaporation also contributed to the lower WUEDM of unfertilised crops.  相似文献   

2.
《Field Crops Research》2001,69(1):27-40
An experiment was conducted on two soils in a semiarid area in the Spain’s Ebro valley. Soil A was a Fluventic Xerochrept of 120 cm depth and Soil B was a Lithic Xeric Torriorthent of 30 cm depth. Three tillage systems were compared in Soil A: subsoiler tillage, minimum tillage and no-tillage, and two (minimum tillage and no-tillage) in Soil B. The experiment was repeated for 5 years on Soil A and 3 years on Soil B. Root length density, volumetric water content and dry matter were measured at important developmental stages. Yield was determined at harvest. In Soil A, root length density and volumetric water content were significantly greater for no-tillage than for subsoiler or minimum tillage (up to 1.4 cm cm−3 and 5%, respectively), mainly in the upper part of the soil profile. At lower depths, differences as great as 0.8 cm cm−3 and 6% were also found. Mean yield (4 years) was similar between no-tillage (3608 kg ha−1) and minimum tillage (3508 kg ha−1), and significantly smaller for subsoiler tillage (3371 kg ha−1). In Soil B, no differences were observed between tillage systems for volumetric water content. Significant interactions between tillage and year were found for root length density, dry matter and yield. Mean yield (3 years) was not significantly different for minimum tillage (1806 kg ha−1) and no-tillage (1867 kg ha−1). The results in Soil A showed that surface conditions are of major importance in the water content of the soil and determined the differences among tillage systems. No-tillage favoured greater and deeper water accumulation in the soil profile and greater root growth. This makes this system potentially better for years of low rainfall. In Soil B no tillage system proved to be better because of the low water-holding capacity of this soil (56 mm).  相似文献   

3.
《Field Crops Research》2005,91(2-3):307-318
A 3-year field experiment examined the effects of non-flooded mulching cultivation and traditional flooding and four fertilizer N application rates (0, 75, 150 and 225 kg ha−1 for rice and 0, 60,120, and 180 kg N ha−1 for wheat) on grain yield, N uptake, residual soil Nmin and the net N balance in a rice–wheat rotation on Chengdu flood plain, southwest China. There were significant grain yield responses to N fertilizer. Nitrogen applications of >150 kg ha−1 for rice and >120 kg ha−1 for wheat gave no increase in crop yield but increased crop N uptake and N balance surplus in both water regimes. Average rice grain yield increased by 14% with plastic film mulching and decreased by 16% with wheat straw mulching at lower N inputs compared with traditional flooding. Rice grain yields under SM were comparable to those under PM and TF at higher N inputs. Plastic film mulching of preceding rice did not affect the yield of succeeding wheat but straw mulching had a residual effect on succeeding wheat. As a result, there was 17–18% higher wheat yield under N0 in SM than those in PM and TF. Combined rice and wheat grain yields under plastic mulching was similar to that of flooding and higher than that of straw mulching across N treatments. Soil mineral N (top 60 cm) after the rice harvest ranged from 50 to 65 kg ha−1 and was unaffected by non-flooded mulching cultivation and N rate. After the wheat harvest, soil Nmin ranged from 66 to 88 kg N ha−1 and increased with increasing fertilizer N rate. High N inputs led to a positive N balance (160–621 kg ha−1), but low N inputs resulted in a negative balance (−85 to −360 kg ha−1). Across N treatments, the net N balances of SM were highest among the three cultivations systems, resulting from additional applied wheat straw (79 kg ha−1) as mulching materials. There was not clear trend found in net N balance between PM and TF. Results from this study indicate non-flooded mulching cultivation may be utilized as an alternative option for saving water, using efficiently straw and maintaining or improving crop yield in rice–wheat rotation systems. There is the need to evaluate the long-term environmental risks of non-flooded mulching cultivation and improve system productivity (especially with straw mulching) by integrated resource management.  相似文献   

4.
A 20-year field experiment was employed with the aim of evaluating the effect of tillage systems on biological, chemical and physical aspects of the soil, and to establish whether there was a correlation of these parameters with the incidence of charcoal rot (Macrophomina phaseolina) of soybean and crop yield. The tillage systems evaluated were direct seeding (DS), DS + scarifier (DS + S), minimum tillage (MT) and conventional tillage (CT). DS presented higher values than CT in culturable total fungi (26.33 × 105 vs. 2.33 × 105 CFU g−1 dry soil), total bacteria (182 × 107 vs. 64 × 107 CFU g−1 dry soil), microbial respiration (0.77 mg CO2 g−1 week−1 vs. 0.45 mg CO2 g−1 week−1) and fluorescein diacetate (FDA) hydrolysis (4.17 ug fluorescein g−1 h−1 vs. 1.70 ug fluorescein g−1 h−1 in CT. Fungal and bacterial community fingerprints, by terminal restriction fragment length polymorphism (T-RFLP) analysis, of Intergenic spacer regions of rRNA and 16S rRNA genes, respectively, were influenced by the tillage system. Also FAME (fatty acid methyl ester) profiles showed that microbial community structure in DS and CT was clearly different. DS samples contained significantly higher total microbial biomass than the other tillage treatments, but there were no significant differences in fungal biomass or any consistent trend with respect to stress index. Our results showed that microbial communities were more abundant and active in DS than in CT in response to high nutrient content in soil. Indeed, DS systems presented higher soil OM, total N, K and Ca than CT. Electrical conductivity and aggregate stability (AS) were also improved by DS. Soybean grown in high-quality soil was not affected by charcoal rot, however, under CT, disease incidence in soybean was 54%. These differences were correlated to the higher microbial abundance and activity under DS, the biological component being a key factor determining soil capacity to suppress the soilborne pathogen.  相似文献   

5.
《Field Crops Research》2004,86(1):53-65
Deceleration in rice (Oryza sativa L.) yield over time under fixed management conditions is a concern for countries like Bangladesh, where rice is the primary source of calories for the human population. Field experiments were conducted from 1990 to 1999 on a Chhiata clay loam soil (Hyperthermic Vertic Endoaquept) in Bangladesh, to determine the effect of different doses of chemical fertilizers alone or in combination with cow dung (CD) and rice husk ash (ash) on yield of lowland rice. Two rice crops—dry season rice (December–May) and wet season rice (July–November) were grown in each year. Six treatments—absolute control (T1), one-third of recommended fertilizer doses (T2), two-thirds of recommended fertilizer doses (T3), full doses of recommended fertilizers (T4), T2+5 t CD and 2.5 t ash ha−1 (T5) and T3+5 t CD and 2.5 t ash ha−1 (T6) were compared. The CD and ash were applied on dry season rice only. The 10-year mean grain yield of rice with T1 was 5.33 t ha−1 per year, while the yield with T2 was 6.86 t ha−1 per year. Increased fertilizer doses with T3 increased the grain yield to 8.07 t ha−1 per year, while the application of recommended chemical fertilizer doses (T4) gave 8.87 t ha−1 per year. The application of CD and ash (T5 and T6) increased rice yield by about 1 t ha−1 per year over that obtained with chemical fertilizer alone (T2 and T3, respectively). Over 10 years, the grain yield trend with the control plots was negative, but not significantly, both in the dry and wet seasons. Under T3 through T6, the yield trend was significantly positive in the dry season, but no significant trend was observed in the wet season. The treatments, which showed positive yield trend, also showed positive total P uptake trend. Positive yield trends were attributed to the increasing P supplying power of the soil.  相似文献   

6.
《Field Crops Research》2005,93(1):94-107
Bangladesh is currently self sufficient in rice (Oryza sativa L.), which accounts for approximately 80% of the total cropped area, and 70% of the cost of crop production. However, farmers are increasingly concerned about the perceived decline in productivity, expressed as the return on fertiliser inputs. Agronomic efficiency is a measure of the increase in grain yield achieved per unit of fertiliser input that can provide a way to quantify the observation of farmers. This study indicates that the yields achieved where only P and K fertiliser were applied ranged from 3–5 t ha−1, indicating good soil fertility, particular in terms of soil N supply (37–112 kg N ha−1). However, at recommended rates and at rates used by farmers, the yield response to application of fertiliser N was low. Data shows that grain yields were significantly correlated in both years (R2 = 0.77 and R2 = 0.67) with plant uptake in nitrogen. The internal nitrogen use efficiency seems to confirm that sink formation was limited by factors other than nitrogen. Low agronomic efficiency (5–19 kg grain kg−1 N) was caused by poor internal efficiency (45–73 kg grain kg−1 N), rather than low supply of soil N or loss of fertiliser N. Thus, often the applications of large amounts of N fertiliser (39–175 kg N ha−1) by farmers to increase yields of high yielding variety Boro rice were not justified agronomically and ecologically. A rate of 39 kg N ha−1 is very low, hardly an environmental threat. No one single factor could be identified to explain the low internal efficiency. Therefore, it is concluded that the data presented tend to confirm the indication that yields are limited by a factor other than nitrogen, which could be crop establishment, plant density, water or pest management, micro-nutrients deficiency, poor seed and transplanted seedling quality, varieties and low radiation.  相似文献   

7.
《Field Crops Research》1999,63(3):237-246
Using data from large, grower-managed fields we investigated the variation in yield of dryland soybean in an area with low and variable summer rainfall, and soils that are variable in depth and poor in phosphorus (P). First, using data from unfertilised, wide-row (0.7 m) crops grown under standard management between 1989 and 1992 (Series 1), we quantified the relationship between yield and W, a rainfall-based estimate of water availability during the period of pod and grain set. Separate functions were established for deep (depth  1 m) and shallow soils (0.75 m  depth  0.5 m). Second, we partially tested these functions using two independent data sets (Series 2 and 3). Third, we evaluated the effects on yield of large (18 kg P ha−1, Series 4) or moderate doses of P fertiliser (8–12 kg P ha−1) in narrow-row crops (0.35 m, Series 5). To investigate water × management interaction we (i) calculated ΔY, the difference between actual yield in Series 4 and 5 and yield calculated with the functions derived from Series 1, and (ii) tested the association between ΔY and actual W. In a set of 24 crops (Series 1), yield varied between 2.1 and 3.1 t ha−1 in deep soils and between 1.3 and 2.6 t ha−1 in shallow soils; non-linear functions described fairly well, the response of yield to W. Fertilisation with 18 kg P ha−1 increased yield by 0.6 t ha−1 irrespective of water availability. The combination of narrow rows and a moderate dose of fertiliser increased yield in 73% of crops in deep soil but only in 53% of crops in shallow soil. There was a positive association between ΔY and W in deep soil but no relationship between these variables in shallow soil. Yield responses to management were thus differentially affected by rainfall in deep and shallow soils.  相似文献   

8.
《Field Crops Research》1999,63(3):187-198
Rice is subjected to excessive waterlogging and flash-flooding on large areas in south and south-east Asia. Besides cultivars, submergence tolerance of plants is influenced by various agronomic practices. A field experiment was conducted at Cuttack, India during 1994–1995 to study the effect of method of stand establishment (direct seeding and transplanting), vigour of seed (low and high-density) or seedlings (N-fertilized and unfertilized), plant population (normal and 50% more) and N fertilizer (single basal and split application) on yield performance of lowland rice under conditions of natural submergence and simulated flash-flooding (impounding up to 90 ± 3 cm depth for 10 days at vegetative stage). Flooding reached a maximum depth of 80 cm in 1994 and 52 cm in 1995 under natural submergence. The crop performance was better in 1994 due to timely sowing in dry soil and delayed accumulation of water (43 days after sowing) than in 1995 when sowing was done late in saturated soil followed by early water accumulation (28 days after sowing). Grain yield of rice decreased by 30.0–33.6% due to simulated flash-flooding compared with natural submergence, and by 21.4–33.1% due to transplanting in July compared with direct seeding in May-end/early June. The yield of direct-sown crop increased by using high-density seed of 22.9–23.0 mg weight (5.2–9.0%), higher seed rate of 600 m−2 (2.2–2.3%) and basal fertilization at 40 kg N ha−1 (19.4–25.7%) compared with low-density seed (19.4–20.1 mg), 400 seed m−2 and no N, respectively. The yield of transplanted crop increased by using N-fertilized seedlings of 0.49–1.65 g weight (29.5–38.5%), higher number of seedlings at 155 m−2 (3.5–16.7%) and basal fertilization at 40 kg N ha−1 (31.9–32.5%) compared with unfertilized seedlings (0.19–0.79 g), 115 seedlings m−2 and no N. Split application of 40 kg N ha−1 — 50% each at basal and top dressing (105–115 days of growth after flash-flooding) — improved yield significantly (10.1–13.1%) over single basal application under simulated flash-flooding, but not under natural submergence conditions. Regression analysis indicated that relative contribution of various factors in increasing grain yield was in order: N fertilizer > seed density > seed m−2 in direct-sown rice, and N fertilizer > seedlings m−2 > seedling dry weight in transplanted rice. It was concluded that grain yield of flood-prone lowland rice can be increased by establishing the crop early through direct seeding using high-density seed and basal N fertilization.  相似文献   

9.
Miscanthus × giganteus is one of the most promising biomass crops for non-food utilisation. Taking into account its area of origin (Far East), its temperature and rainfall requirements are not well satisfied in Mediterranean climate. For this purpose, a research was carried out with the aim of studying the adaptation of the species to the Mediterranean environment, and at analysing its ecophysiological and productive response to different soil water and nitrogen conditions. A split plot experimental design with three levels of irrigation (I1, I2 and I3 at 25%, 50% and 100% of maximum evapotranspiration (ETm), respectively) and three levels of nitrogen fertilisation (0 kg ha−1: N0, 60 kg ha−1: N1 and 120 kg ha−1: N2 of nitrogen) were studied. The crop showed a high yield potential under well-watered conditions (up to 27 t ha−1 of dry matter). M. × giganteus, in Mediterranean environment showed a high yield potential even in very limited water availability conditions (more than 14 t ha−1 with a 25% ETm restoration). A responsiveness to nitrogen supply, with great yield increases when water was not limiting, was exhibited. Water use efficiency (WUE) achieved the highest values in limited soil water availability (between 4.51 and 4.83 g l−1), whilst in non-limiting water conditions it decreased down to 2.56 and 3.49 g l−1 (in the second and third year of experiment, respectively). Nitrogen use efficiency (NUE) decreased with the increase of water distributed (from 190.5 g g−1 of I0 to 173.2 g g−1 of I2); in relation to N fertilisation it did not change between the N fertilised treatments (N1 and N2), being much higher in the unfertilised control (177.1 g g−1). Radiation use efficiency (NUE) progressively declined with the reduction of the N fertiliser level (1.05, 0.96 and 0.86 g d.m. MJ−1, in 1994, and 0.92, 0.91 and 0.69 g d.m. MJ−1, in 1995, for N2, N1 and N0, respectively).  相似文献   

10.
《Field Crops Research》2005,92(1):75-84
The effect of irrigation with saline water on quality of Burley tobacco (cv. C 104) was investigated in Southern Italy over four consecutive years. A rainfed control (RC) was compared with treatments irrigated with volumes equal to crop evapotranspiration of saline waters at 0.5 (NW), 2.5 (SW1), 5 (SW2) and 10 (SW3) dS m−1 electrical conductivity (ECw). In 2000 and 2001 an additional salinity treatment (15 dS m−1 ECw) was included (SW4). The amounts of Cl added to the soil by irrigation ranged from 36.3 kg ha−1 (good quality water in 1999) to 16.2 Mg ha−1 (saline water at 15 dS m−1 ECw in 2000). Saline irrigation did not affect yield and yield components of cured leaves. In 1998 and 1999 the filling power of Burley tobacco did not change significantly with increasing salinity of the irrigation water. In 2000 and 2001 the filling power of SW2, SW3 and SW4 treatments was significantly less than that of NW. The Cl content of tobacco grown with SW2 was significantly greater than that grown with NW and there were no differences between SW1 through SW4 treatments. The filling power and the leaf Cl content were inversely related to the amount of Cl applied in the range between 40.3 kg ha−1 and 5.1 Mg ha−1. The filling power decreased and Cl increased up to the SW2 treatment; beyond that level neither Cl nor filling power changed in response to increasing amounts of Cl applied. The leaf alkaloid content was unaffected by salinity. Total N was unaffected by either the growing season or the saline treatments. Cigarettes obtained from saline treatments did not burn during the smoking test in 1998. In 1999 cigarettes made from SW1 and SW2 did burn, but those from SW3 did not. In 2000 and 2001 the smoking test was performed only on commercial blends containing 10 or 30% of cut tobacco from saline treatments and both blends burned similarly to cigarettes made entirely from tobacco grown under non-saline conditions. In conclusion, quality of Burley tobacco was unaffected by irrigation with saline water at 2.5 dS m−1 and the inhibitory effect of salinity on burning properties could be overcome by appropriate mixture in commercial blends.  相似文献   

11.
Integrated use of organic and inorganic fertilizers can improve crop productivity and sustain soil health and fertility. The present research was conducted to study the effects of application of green manures [sesbania (Sesbania aculeate Poiret) and crotalaria (Crotalaria juncea L.)] and farmyard manure on productivity of rice (Oryza sativa L.) and its residual effects on subsequent groundnut (Arachis hypogaea L.) crop. Rice and groundnut crops were grown in sequence during rainy and post-rainy seasons with and without green manure in combination with different fertilizer and spacing treatments under irrigated conditions. The results showed that application of green manures sesbania and crotalaria at 10 t ha−1 to rice compared to no green manure application significantly increased grain yield of rice by 1.6 and 1.1 t ha−1, and pod yields of groundnut crop succeeding rice by 0.25 and 0.16 t ha−1, respectively. There was no significant difference between the application of crotalaria or farmyard manure at 10 t ha−1 on grain yields of rice, but pod yields of subsequent groundnut crop were greater with application of green manure. There was no significant effect of different spacing 20×15,15×15,15×10 cm2 (333 000; 444 000; 666 000 plant ha−1, respectively) on grain yield of rice. Pod yields of groundnut were significantly greater with closer spacing 15×15 cm2 (444 000 plants ha−1) as compared to spacing of 30×10 cm2 (333 000 plants ha−1). Maximum grain of rice was obtained by application of 120:26:37 kg NPK ha−1 in combination with green manures, whereas maximum pod yield of groundnut was obtained by residual effect of green manure applied to rice and application of 30:26:33 kg NPK ha−1 in combination with gypsum applied to groundnut crop.  相似文献   

12.
Applications of ultrahigh CO2 treatments accelerated cuphea (Cuphea viscosissima × C. lanceolata ‘PSR23’) growth and development and aided in seedling establishment. The growth (fresh weight) and morphogenesis (number of leaves and roots and seedling length) were determined in cuphea seedlings exposed to 350, 1500, 3000, 10,000, or 30,000 μmol mol−1 CO2 for 30 days under greenhouse conditions. Greater CO2 levels, especially the ultrahigh levels (i.e. ≥3000 μmol mol−1 CO2) resulted in significantly higher (P  0.05) fresh weights, leaf numbers, root numbers, and seedling lengths compared to seedlings grown under ambient air (350 μmol mol−1 CO2). For example, cuphea ‘PSR23’ Morris heavy seedlings showed the greatest seedling fresh weight, leaf number, root number, and seedling length when supplemented with 10,000 μmol mol−1 CO2 increasing 607%, 184%, 784%, and 175%, respectively, when compared to seedlings grown without CO2 enrichment.  相似文献   

13.
《Field Crops Research》2001,70(2):127-137
Shallow saline water tables, naturally saline soils and variations in climatic conditions over the two growing seasons, create a harsh environment for irrigated rice production in the Senegal River Delta. At the onset of the growing season, salts accumulated by capillary rise in the topsoil are released into the soil solution and floodwater. Rice fields often lack drainage facilities, or drain from one field to the other, thus building up salt levels during the season. Salt stress may, therefore, occur throughout the growing season and may coincide with susceptible growth stages of the rice crop. The objectives of the present study were to (i) determine varietal responses to seasonal salinity in both the hot dry season (HDS) and the wet season (WS) and (ii) derive guidelines for surface water drainage at critical growth stages. We evaluated responses of three rice cultivars grown in the region to floodwater salinity (0–2, 4, 6, 8 mS cm−1), applied either at germination, during 2 weeks at crop establishment, during 2 weeks around panicle initiation (PI), or during 2 weeks around flowering. Floodwater electrical conductivity (EC) reduced germination rate for the most susceptible cultivar by as much as 50% and yield by 80% for the highest salinity level imposed. Salinity strongly reduced spikelet number per panicle, 1000 grain weight and increased sterility, regardless of season and development stage. The strongest salinity effects on yield were observed around PI, whereas plants recovered best from stress at seedling stage. Floodwater EC <2 mS cm−1 hardly affected rice yield. For floodwater EC levels >2 mS cm−1, a yield loss of up to 1 t ha−1 per unit EC (mS cm−1) was observed for salinity stress around PI (at fresh water yields of about 8 t ha−1). Use of a salinity tolerant cultivar reduced maximum yield losses to about 0.6 t ha−1 per unit EC. It is concluded that use of salinity tolerant cultivars, drainage if floodwater EC >2 mS cm−1 at critical growth stages, and early sowing in the WS to avoid periods of low air humidity during the crop cycle, are ways to increase rice productivity in the Senegal River Delta.  相似文献   

14.
《Field Crops Research》2006,95(1):75-88
Long-term trends of crop yields have been used as a means to evaluate the sustainability of intensive agriculture. Previous studies have measured yield trends from long-term rice–rice and rice–wheat experiments in different sites from the slopes of individual site regressions of yield over time. The statistical significance of each site regression was determined but not that of the aggregate trend, which could give an indication of the magnitude and significance of global yield change.The random regression coefficient analysis (RRCA) and meta-analysis were used in this study to analyze the aggregate yield trend from several long-term experiments (LTE) across the Indo-Gangetic Plains (IGP) and outside the IGP. Both methods show that there has been a significant (p < 0.05) declining trend in rice yield in rice–wheat LTEs in South Asia including China with the recommended rates of nutrients, but that there has been no significant change in wheat and system (rice + wheat) yields. There was no significant year × region (IGP versus non-IGP) interaction in rice and wheat yields. However, RRCA showed that the average yield trend was significantly negative (−41.0 kg ha−1 yr−1) only in the IGP. In the rice–rice LTEs, there was a significant year × site (IRRI versus non-IRRI sites) interaction during the dry season but not the wet season. Rice yields declined throughout Asia in the wet season. The average system (dry + wet season rice) yield trends were significantly negative in both IRRI and non-IRRI sites (−170.1 and −52.8 kg ha−1 yr−1, respectively) but the magnitude of yield decline was significantly greater in the IRRI sites than in the non-IRRI sites.Rice in the rice–wheat LTEs showed a significantly positive yield trend with the addition of farmyard manure (FYM) but the initial yield was generally lower with FYM than without FYM. After 15 years, yield increase due to FYM was not evident in most of the LTE.  相似文献   

15.
The perennial C4 grass Miscanthus has been proposed as a biomass energy crop in Europe. Effects of crop age, irrigation and nitrogen fertilization on biomass and energy yields and N content of Miscanthus were investigated and the energy costs of production determined. After an establishment period of 1 year, cultivation of Miscanthus resulted in a dry matter production of over 37 t ha−1 year−1 over a period of 4 years. Irrigation and nitrogen level greatly affected Miscanthus biomass yield. In absence of N fertilization, irrigation did not modify biomass yield and the effect of irrigation increased with the increase in N level. The average N response ranged from 37 to 50 kg biomass kg−1 N applied. Because the calorific value of Miscanthus biomass (16.5 MJ kg−1) was not affected by irrigation and N fertilization, energy production depended exclusively on biomass yield. Maximum energy yield was 564 GJ ha−1 year−1. Without N supply and irrigation, energy yield was 291 GJ h−1. Net energy yield, calculated as the difference between energy output and input, but without inclusion of drying costs, was 543 GJ ha−1 with N fertilization and irrigation and 284 GJ ha−1 without; the ratios of energy output to input in crop production were 22 and 47, respectively.  相似文献   

16.
《Field Crops Research》2005,92(1):61-74
One of the main sources of considerable amounts of chloride to soils is irrigation water. The responses of tobacco (Nicotiana tabacum L.) to chloride are varied and inconsistent depending on the tobacco type, variety and methods of fertilization, cultivation and harvesting used. In this work, the impact of the interaction between four chloride levels (10, 20, 40, 80 mg L−1) in irrigation water and three nitrogen fertilizer forms (NO3–N 100%, NH4–N 100% and NO3–N 50%:NH4–N 50%) on growth, agronomic and chemical characteristics of Virginia tobacco was evaluated over 2 years (1999, 2000) in an outdoor pot experiment. The results showed that the adverse influence of chloride in irrigation water on plant height and number of leaves per plant was already substantial above 40 mg L−1, within 30 days after transplanting. In this period, visual toxicity symptoms of chloride appeared on the lower leaves of plants treated with ammonium nitrogen. In addition, the effect of chloride on flowering time, chlorophyll content of leaves, aboveground fresh weight of plant, total cured product yield and chemical characteristics, depended on the form of nitrogen, with nitrate nitrogen restricting the detrimental effects of chloride in irrigation water up to 40 mg L−1. The reduced yield of cured product at 80 mg L−1 was the result of the adverse effects of chloride on the leaves of the middle and upper stalk position. Leaf chloride concentration was highest in the upper leaves and increased linearly with the increase of chloride level in irrigation water at each leaf position on the stalk and this increase was more rapid as ammonium nitrogen percentage was increased. Chloride increased the concentration of reducing sugars in cured leaves at each leaf position, in all nitrogen forms and nicotine mainly in plants treated with nitrate nitrogen. The changes in total nitrogen and ash content are considered as minimal. We conclude that the optimum chloride level in irrigation water is below 20 mg L−1, whereas the level of 40 mg L−1 in combination with nitrate nitrogen fertilizers can be considered as the upper threshold to avoid adverse effects on Virginia tobacco.  相似文献   

17.
《Field Crops Research》2002,74(1):81-91
Despite the economic importance of tobacco, there is limited field study on the quantitative response of growth and yield to increasing soil salinity. The effects of irrigation with saline water on yield components of field-grown tobacco (Nicotiana tabacum L.) “Burley” type plants were studied over two growing seasons. Growth, dry matter partitioning and gas exchange were measured either in rainfed or fully irrigated plants growing in a clayey–sandy–loam soil. The four fully irrigated treatments received amounts of saline waters at 0.54, 2.5, 5.0 or 10 dS m−1 electrical conductivity (ECw) equal to crop evapotranspiration. In both years, the electrical conductivity of the saturation phase (ECe) across the 0.6 m topsoil profile increased with increasing salinity of the irrigation water. Soil moisture was markedly lower in the rainfed treatment than in fully irrigated treatments. Different saline concentrations of irrigation water had virtually no effect on soil moisture. Carbon assimilation rate, stomatal conductance and water use efficiency of the saline treatments were lower than the fully irrigated plants at 0.54 dS m−1 (NW treatment) in 1996, but not in 1997. Transpiration rates were unaffected by salinity in both years. The highest yield was produced by plants irrigated with good quality water. The number of leaves per unit land area was greater for the NW plants, whereas there were no differences between the other four treatments. Salinity decreased plant dry matter and height at harvest, increased dry matter partitioning into leaves and decreased that into stems in both years. Dry matter partitioning to leaves was also greater for the rainfed plants than for the NW plants. Tobacco plants grown under field conditions showed a maximum reduction of relative yield at the highest salinity level of only 31%. The threshold values (0.56 and 0.96 dS m−1) and the ECe at which a 10% yield reduction was obtained (3.12 and 2.55 dS m−1) calculated from the linear model of response of relative yield to increasing ECe were typical of moderately sensitive crops. The ECe values at which 50% yield was reduced (13.34 and 8.91 dS m−1) were indicative of moderate tolerance to salinity.  相似文献   

18.
《Field Crops Research》1999,61(2):125-145
Yield, input use, productivity and profitability of irrigated rice systems were analyzed based on surveys in Senegal (Thiagar and Guédé), Mali (Office du Niger) and Burkina Faso (Kou Valley). The objective was to determine agronomic factors contributing to farmers' fertilizer-use efficiency and productivity, given current farmer practices. (A second paper addresses profitability and risk issues). Grain yields were highly variable, within and across sites. Minimum grain yield was 0.2 t ha−1 (Thiagar), maximum recorded grain yield was 8.7 t ha−1 (Office du Niger). The yield gap between actual farmers' yield and simulated potential or maximum attainable farmers' yield ranged from 0.6 to 5.7 t ha−1 (Kou), 1.8 to 8.2 t ha−1 (Thiagar), 0.3 to 6.3 t ha−1 (Office du Niger), 0.8 to 5.7 t ha−1 (Guédé), indicating considerable scope for improved yield. Physiological nitrogen efficiency (δ grain yield/δ N uptake) was mostly between 40 and 80 kg grain kg−1 plant N. Apparent recovery of fertilizer N was highly variable (average: 30–40% of applied N). Timing of N fertilizer application by farmers was extremely variable and often did not coincide with critical growth stages of the rice plant. Other agronomic constraints included: use of relatively old (>40 days) seedlings at transplanting (Kou, Office du Niger), P and/or K deficiency (Office du Niger), unreliable irrigation water supply (Kou, dry season), delayed start of the wet growing season resulting in yield losses of up to 20% due to cold-induced spikelet sterility (Kou, Guédé, Office du Niger), weed problems (Thiagar), and late harvesting (Thiagar). Discussions during meetings with farmers at the survey sites revealed that farmers lacked knowledge on (i) optimal timing, dosage and mode of fertilizer application, (ii) optimal sowing dates to avoid yield loss due to cold- or heat-induced sterility, and (iii) the importance of N as the main limiting factor to yield. Possibilities to achieve a sustainable increase in rice productivity and profitability in West African irrigation systems are discussed.  相似文献   

19.
《Field Crops Research》2005,94(1):33-42
Subtropical highlands of the world have been densely populated and intensively cropped. Agricultural sustainability problems resulting from soil erosion and fertility decline have arisen throughout this agro-ecological zone. This article considers practices that would sustain higher and stable yields for wheat and maize in such region. A long-term field experiment under rainfed conditions was started at El Batán, Mexico (2240 m a.s.l.; 19.31°N, 98.50°W; fine, mixed, thermic, Cumulic Haplustoll) in 1991. It included treatments varying in: (1) rotation (continuous maize (Zea mays) or wheat (Triticum aestivum) and the rotation of both); (2) tillage (conventional, zero and permanent beds); (3) crop residue management (full, partial or no retention). Small-scale maize and wheat farmers may expect yield improvements through zero tillage, appropriate rotations and retention of sufficient residues (average maize and wheat yield of 5285 and 5591 kg ha−1), compared to the common practices of heavy tillage before seeding, monocropping and crop residue removal (average maize and wheat yield of 3570 and 4414 kg ha−1). Leaving residue on the field is critical for zero tillage practices. However, it can take some time—roughly 5 years—before the benefits are evident. After that, zero tillage with residue retention resulted in higher and more stable yields than alternative management. Conventional tillage with or without residue incorporation resulted in intermediate yields. Zero tillage without residue drastically reduced yields, except in the case of continuous wheat which, although not high yielding, still performed better than the other treatments with zero tillage and residue removal. Zero tillage treatments with partial residue removal gave yields equivalent to treatments with full residue retention (average maize and wheat yield of 5868 and 5250 kg ha−1). There may be scope to remove part of the residues for fodder and still retain adequate amounts to provide the necessary ground cover. This could make the adoption of zero tillage more acceptable for the small-scale, subsistence farmer whose livelihood strategies include livestock as a key component. Raised-bed cultivation systems allow both dramatic reductions in tillage and opportunities to retain crop residues on the soil surface. Permanent bed treatments combined with rotation and residue retention yielded the same as the zero tillage treatments, with the advantage that more varied weeding and fertilizer application practices are possible. It is important small-scale farmers have access to, and are trained in the use of these technologies.  相似文献   

20.
《Field Crops Research》2005,91(1):71-81
Wheat (Triticum aestivum L.) cultivation in no-till soil of a postrice harvest field utilizes residual soil moisture and reduces the time period from rice harvest to wheat seeding in intensive rice-wheat cropping systems. Some of the major constraints in no-till wheat production are high weed infestation, poor stand establishment due to rapid drying of topsoil and low nitrogen use efficiency (NUE). A field experiment was conducted at the research farm of the Wheat Research Centre, Dinajpur, Bangladesh, for two consecutive years to overcome those constraints, to evaluate rice straw as mulch, and to determine the optimum application rate of nitrogen (N) for no-till wheat. The treatments included 12 factorial combinations of three levels of mulching: no mulch (M0), surface application of rice straw mulch at 4.0 Mg ha−1 that was withdrawn at 20 days after sowing (M1), the same level of mulch as M1 but allowed to be retained on the soil surface (M2), and four nitrogen levels (control 80, 120 and 160 kg ha−1). Rice straw mulching had a significant effect on conserving initial soil moisture and reducing weed growth. Root length density and root weight density of wheat were positively influenced both by straw mulching and N levels. N uptake and apparent nitrogen recovery of applied N fertilizer were higher in mulch treatments M1 and M2 as compared to M0. Also mulch treatment of M1 and M2 were equally effective at conserving soil moisture, suppressing growth of weed flora, promoting root development and thereby improved grain yield of no-till wheat. N application of 120 kg ha−1 with straw mulch was found to be suitable for no-till wheat in experimental field condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号