首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
选用我国的22份普通小麦,7份西藏半野生小麦及来自国外的17份斯卑尔脱小麦等共46从材料,利用RAPD标记进行小麦品种,亚种及种间分子标记遗传差异研究,分析扩大杂交小麦育种亲本遗传基础和构建小麦杂种优势群的途径。26个引物在46份材料间共扩增出279条带,其中182条带具有多态性,每个引物可扩增2-18条多态性带,平均为7条带。种间RAPD多态性表现为斯卑尔脱小麦〉西藏半野生小麦〉普通小麦。利用8  相似文献   

2.
选用我国的38个冬小麦品种(系)和2个加拿大春小麦品种(系),利用RAPD标记进行小麦基因型之间分子标记遗传差异研究,探讨分子标记在建立小麦杂种优势种中的应用。利用59个随机引物对40个小麦基因型PCR扩增结果表明,其中29个引物(占49%)扩增产物经琼脂糖凝胶电泳分离表现多态性,这29个引物共扩增出168条带,其中78条带(占46.6%)具有多态性,每个引物可扩增1 ̄6条多态性带,平均2.7条带  相似文献   

3.
为研究广东省惠州市种植的常规水稻品种的遗传多样性,本实验利用ISSR标记对47份水稻品种资源进行遗传多样性检测。从49条引物中筛选出5条重复性好,条带清晰的引物进行PCR扩增,共扩增出53条带,每个引物可以扩增出9~13条带,平均为10.6条,其中47条具有多态性,比率为88.7%。不同水稻品种间遗传相似系数变幅为0.319~0.936,平均达0.691,说明ISSR标记能够揭示材料间较高的遗传多样性。通过聚类,从分子水平对水稻品种资源的遗传关系进行分析,并对47份水稻品种资源进行分类,ISSR标记能将47份水稻品种完全区分开,为水稻品种资源的研究利用提供参考。  相似文献   

4.
利用小麦SSR标记分析鸭茅种质资源的遗传多样性   总被引:2,自引:1,他引:1  
使用小麦(Triticum aestivum)SSR引物和扩增程序,以中国春小麦(T. aestivum)品种为对照,利用SSR标记对来自国内外的45份鸭茅(Dactylis glomerata L.)种质资源进行遗传多样性研究.结果表明,20对引物扩增出295个条带,多态性条带为187条,多态性条带比率为61.15%,鸭茅种质资源的遗传相似系数范围为0.7848~0.9513.聚类分析和主成分分析将供试材料分为6大类,聚类结果不仅能反映鸭茅生态适应性特征与其生长发育状况及生产性能相关,还显示出国产鸭茅品种遗传基础较为狭窄.研究表明将小麦SSR引物用于检测鸭茅遗传多样性行之有效.  相似文献   

5.
摘要:本文针对来源于荷兰的4个引进甜菜品种和国内的6个甜菜品系(其中2个为一年生野生甜菜)进行了ISSR指纹图谱构建和聚类分析研究。筛选出稳定性高且多态性好的6个引物用于试验。利用筛选的6条引物ISSR-PCR 共扩增出51个条带, 其中多态性条带百分率为86.3%. 利用该6条引物ISSR-PCR建立的指纹图谱能将试验中的全部甜菜品种都鉴定区分开。只利用2条引物L1和UBC846 扩增的8个多态性条带构建了10个甜菜品种(系)的数字指纹识别码,该数字指纹图谱能完全区分10个甜菜品种(系),结果显示ISSR 指纹图谱能非常有效的鉴定不同的甜菜品种。利用生物软件NTSYS-pc针对10个试验甜菜品种(系)的ISSR 扩增条带进行遗传相似性聚类分析,结果显示10个甜菜品种(系)的相似系数为0.43与0.83之间,平均为0.62。利用非加权组平均法(UPGMA)进行聚类分析,结果显示10个甜菜品种(系)聚类为2个组和3个亚组。UPGMA 聚类分析能清楚的显示10个甜菜群体间的遗传关系并且聚类结果与10个甜菜群体的特性一致, 说明ISSR标记能用于甜菜不同群体间遗传距离的评估。  相似文献   

6.
本研究利用ISSR技术对37份龙眼种质资源进行遗传多样性检测。研究结果表明,从100条ISSR引物中筛选出7条重复性好,条带清晰的引物对37份龙眼品种基因组DNA进行扩增,共扩增出54条带,其中43条具有多态性,比率为79.6%。不同龙眼品种间遗传相似系数变幅为0.69~0.97,平均达0.83,说明ISSR标记能够揭示材料间较高的遗传多样性。UPGMA聚类结果表明,ISSR标记能将37份龙眼品种完全区分开,并能将来源于中国、越南和泰国的37份龙眼品种分别聚类到中国、越南和泰国三大品种群,说明龙眼品种资源的亲缘关系与地理因素有关,三个国家的龙眼品种之间存在较大的遗传差异。本研究结果将为为龙眼品种资源的研究利用提供参考。  相似文献   

7.
利用102对微卫星引物对5份黑麦(Secale)、4份普通小麦(Triticum aestivum)和1份分枝小黑麦(Triticale)进行SSR分析,引物Xgwm614能在分枝小黑麦中扩增出一个387bp的特异DNA片段(记为FZ387,GenBank登录号为EF179137),而黑麦未能扩增出。序列比对结果显示该片段与一粒小麦(T. monococcum)(AY485644)和栽培二粒小麦(T. turgidum)(AY494981)A基因组中Gypsy Ty3-LTR反转座子fatima的一部分分别有94%和95%同源性。根据序列同源性比对结果,在FZ387内部设计1对特异引物FaF和FaR。引物Xgwm614F和FaR能在含有A基因组的物种中扩增出约350bp的条带(记为A350),而其不含A基因组的物种都未扩增出该条带。利用小麦二体和端体代换系材料对其进行定位,结果显示该片段分布在所有A染色体的长臂和断臂上。此外,引物FaF和Xgwm614R能在含有A、B或AB基因组的物种中扩增出约350bp的条带(记为AB350),而不含AB基因组的材料未扩增出目标条带。利用这两对特异引物对小麦属近缘物种进行PCR扩增,发现只有中国春能够扩增出A350和AB350。序列比对结果和FZ387两侧SSR引物结合区的规律性变化表明该反转座子在进化上可能存在属间多样性和属内相似性。A350和AB350也可以分别作为分子标记检测A染色体和AB染色体。  相似文献   

8.
为了能在分子水平上有效鉴定具有粘果山羊草(Aegilops kotschyi)、偏凸山羊草(A.ventricosa)、普通小麦变种斯卑尔脱(Triticum spelta)细胞质雄性不育系及其保持系90-110和8222,提高其在杂交小麦(Triticum aestivum L.)研究与应用中的定向遗传改良,本研究对其线粒体DNA进行了扩增片段长度多态性(amplified fragment length polymorphism,AFLP)标记和序列特征性片段扩增区域(sequence characterized amplified region,SCAR)标记。通过AFLP标记方法,应用64对引物组合EcoRⅠ-NNN/MseⅠ-NNN对小麦同核异质雄性不育系和保持系进行扩增,共扩增出682条带,其中113条为多态性条带。引物E-AGG/M-CTA组合在粘果山羊草细胞质雄性不育系中扩增出一条大小约300 bp的特异性条带,对该特异条带进行回收、测序,利用Primer Premier 5.0软件重新设计SCAR引物,并对这3种类型同核异质小麦细胞质雄性不育系和保持系进行扩增,其中引物YW1在3种细胞质雄性不育系和保持系中都扩增出条带,而引物YW2仅在粘果山羊草细胞质雄性不育系扩增出一条198 bp的特异性片段,结果表明,已成功地将AFLP标记转化为操作简便、表现稳定的SCAR标记。此片段与小麦线粒体基因组有很高的同源性(同源性为99%),为烟酰胺腺嘌呤二核苷酸(NADH)脱氢酶基因(GenBank登录号:EU534409.1)上的序列,该酶是线粒体中氧化磷酸化的入口酶,与小麦细胞质雄性不育密切相关。本研究可以用于粘类小麦细胞质雄性不育系分子标记辅助育种,也为小麦细胞质种性鉴定提供了技术支撑和理论依据。  相似文献   

9.
EMS诱导小麦品种烟农15突变体的鉴定和EST-SSR分析   总被引:4,自引:2,他引:2  
用EMS对小麦品种烟农15进行诱变处理,以构建突变体库、创造小麦新种质,为小麦功能基因研究和小麦遗传改良提供基础材料。经过M2代筛选和M3代鉴定,得到11个农艺性状发生明显变异的突变系,其中籽粒大小和株高2个性状的变异幅度最大。11个突变系均有复合性状突变出现,将其分为3类突变表型:8个大粒、高秆突变系;2个半矮秆突变系;1个高秆、多蘖突变系。用715个EST-SSR引物对受体烟农15和4个M3突变系进行了分析,共有14个引物对在受体和突变系间能扩增出差异条带。其中12个引物对扩增结果的差异表现为条带的有无;2个引物对表现为扩增出长度不同的差异条带。  相似文献   

10.
SSR和SRAP标记研究油菜杂交种骨干亲本的遗传多样性   总被引:9,自引:2,他引:7  
用SSR和SRAP两种分子标记方法研究51份甘蓝型油菜杂交种亲本系的遗传多样性,并对两种分子标记研究结果进行比较。结果发现,在51份材料中,45对SSR引物共扩增出194条多态性条带,平均每对引物为4.3条,25对SRAP引物共扩增出197条多态性条带,平均每对引物为7.9条。UPGMA聚类分析表明,SSR和SRAP标记都可将51份亲本材料划分为五大类群,本所选育的玻里马细胞质雄性不育系(Polima CMS)的主要保持系和恢复系都聚在同一类群的不同亚群中。根据系谱资料分析发现,SRAP标记划分的类群与系谱资料更为接近,SRAP标记更适用于遗传关系较近材料的遗传多样性分析。SRAP标记揭示的亲本间遗传距离要大于SSR标记揭示的遗传距离。两种不同标记方法揭示出油菜亲本遗传多样性的差异主要是由不同的标记方法揭示的标记位点等位基因变异数不同造成的。  相似文献   

11.
The effects of B and Ca treatments on root growth, nutrient localization and cell wall properties in wheat ( Triticum aestivum L.) plants with and without Al stress were investigated. Seedlings were grown hydroponically in a complete nutrient solution for 7 d and then treated with B (0, 40 μM), Ca (0, 2,500 μM), and Al (0, 100 μM) in a 500 μM CaCl2 solution for 8 d. The cell wall materials (CWM) were extracted with a phenol: acetic acid: water (2:1:1 w/v/v) solution and used for subsequent pectin extraction with trans -1,2-diami-nocyclohexane- N,N,N,N -tetraacetic acid (CDTA) and Na2CO3 solutions. Boron, Ca, and B + Ca treatments enhanced root growth by 19.5, 15.2, and 27.2%, respectively, compared to the control (pH 4.5). Calcium and B+Ca treatments enhanced root growth with Al stress by 43 and 54%, respectively, while B did not exert any effect. The amounts of CWM and pectin per unit of root fresh weight increased by Al treatment, whereas the Ca and B+Ca treatments slightly reduced the contents of these components. Seventy-four percent of total B, 69% of total Ca, and 85% of total Al were located in the cell wall in the B, Ca, and Al treatments, respectively and 32% of total B, 33% of total Ca, and 33% of total Al were located in the CDTA-soluble and Na2CO3-soluble pectin fractions. A more conspicuous localization of B was observed in the presence of Al. Aluminum treatment markedly decreased the Ca content in the cell wall as well as pectin fractions, mainly in the case of the CDTA-soluble pectin fraction. Boron + Ca treatment decreased the Al content in the cell wall and pectin fractions compared to the Ca treatment alone in the presence of Al. It is concluded that the B+Ca treatment enhanced root growth and, B and Ca uptake, and helped to maintain a normal B and Ca metabolism in the cell walls even in the presence of Al.  相似文献   

12.
The hypothesis was that arbuscular mycorrhizal (AM) fungi are able to alleviate salt stress on plant growth by enhancing and adjusting mineral uptake. The objectives were to determine (1) the effects of soil salinity on mineral uptake by different wheat genotypes and (2) the effectiveness of different mycorrhizal treatments on the mineral uptake of different wheat (Triticum aestivum L.) genotypes under salinity. Wheat seeds of Chamran and Line 9 genotypes were inoculated with different species of AM fungi including Glomus mosseae, G. intraradices, and G. etunicatum and their mixture at planting using 100 g inoculum. Pots were treated with the salinity levels of 4, 8, and 12 dS/m before stemming. Different arbuscular mycorrhizal treatments, especially the mixture treatment, increased wheat mineral uptake for both genotypes. Although Line 9 genotype resulted in greater nutrient uptake under salinity stress, Chamran was more effective on adjusting sodium (Na+) and chloride (Cl?) uptake under salt stress.  相似文献   

13.
With the aid of genealogical analysis the genetic diversity of Russian winter Triticum aestivum L. wheat cultivars was studied. The change of diversity in time from 1929 to 2002 shows an increase in diversity of Russian cultivars due to the use of foreign material in the breeding programs. At the same time, the genetic erosion of the released diversity occurred. In the 1950s and the 1960s about 50% of the Russian local and old varieties had dropped out of the pool of landrace ancestors. The set of the modern cultivars included in the Russian Official List 2002 has a cluster structure. The overwhelming majority (96%) are the descendants of cultivars Bezostaya 1 and/or Mironovskaya 808. The low diversity of cultivars recommended for cultivation in the Central and Volga-Vyatka regions is apparent. This situation can result in losses of a yield due to a uniform susceptibility to pathogens.  相似文献   

14.
Wheat (Triticum aestivum L.) grain hardness affects many end‐product quality traits and is controlled primarily by the Hardness (Ha) locus that contains the Puroindoline a and b genes (Pina and Pinb, respectively). All soft hexaploid wheats carry the same Pin alleles, and hard wheats carry a mutation in Pina or Pinb. Here we test the heritability and milling and flour quality effects of increased Pin dosage in soft wheat. Previous experiments have suggested that grain softness can be enhanced by increasing Ha locus dosage through chromosome substitutions. Segregation data from a cross of cultivar Chinese Spring substitution lines with six doses of the Ha locus to the locally adapted soft wheat cultivar Vanna indicate that the substituted B genome Ha locus was not transmitted and that the A genome Ha locus was transmitted normally. Genotypes with the added Pins on the A genome produced seeds that were 7.4 hardness units softer. These softer double Ha genotypes were lower in flour yields, but produced flour with lower ash content, reduced starch damage, and smaller mean particle size. Soft wheats with increased Ha dosage may be useful in improving soft wheat quality through its effects on particle size and starch damage.  相似文献   

15.
Efficient use of nitrogen (N) by wheat crop and hence prevention of possible contamination of ground and surface waters by nitrates has aroused environmental concerns. The present study was conducted in drainage lysimeters for three years (1998–2000) to identify whether spring wheat genotypes (Triticum aestivum L.) that differ in N-related traits differ in N leaching and to relate parameters of N use efficiency (NUE) with parameters of N leaching. For this reason two spring wheat cultivars (‘Albis’ and ‘Toronit’) and an experimental line (‘L94491’) were grown under low (20 kg N ha?1) and ample N supply (270 kg N ha?1). The genotypes varied in parameters of NUE but not in N leaching. Grain yield of the high-protein line (‘L94491’) was, on average, 11% lower than that of ‘Toronit’ but among genotypes had significantly higher N in the grain (%), grain N yield, and N harvest index. Nitrogen lost through leaching was considerably low (0.42–0.52 g m?2) mainly due to low volume of percolating water or the ability of the genotypes to efficiently exploit soil mineral N. There were no clear relationships between N-related genotype traits and N leaching, but across all treatments significantly negative correlations between volume of leachate and the amount of N in the total biomass and grain N yield existed.  相似文献   

16.
Root plasticity is a unique characteristic of root systems that may enhance the nutrient foraging capacity of plants. Here we investigated the effect of localized high nitrogen (N) concentration on plasticity of wheat and barley roots in soil. We conducted a series of experiments to maintain localized high concentration of N in soil and to evaluate any root morphological variation in the enriched N zone. Wheat and barley seedlings were grown in N responsive Red Ferrosol with an enriched subsurface N band for 12 days. Wheat and barley roots did not proliferate in N-enriched soil volumes. Rather, higher root length density (~1.6 times) was observed in low N surface soil. Shoot dry matter and shoot N uptake of banded N treatment was statistically similar between uniform and low N treatments. Results indicated the absence of plastic root response of the wheat and barley seedlings in subsurface N band.  相似文献   

17.
镉胁迫下小麦根系的生理生态变化   总被引:24,自引:0,他引:24  
本文通过水培和砂培两种方法 ,研究了镉胁迫下小麦 (TriticumaestivmL .)根系的生理生态变化。通过研究镉对小麦根系生长发育状况 ,根系活力 ,根系对矿质元素的吸收 ,探讨镉胁迫下植物根系的生理生态效应。研究结果表明 :镉影响根系的长度、生物量、体积和根系活力。Cd2 + 在低浓度 (处理浓度低于 5mg/L)作用下 ,随处理浓度的升高 ,刺激小麦根系的长度、生物量、体积相应地升高 ;当处理浓度高于相应浓度时 ,根长度、生物量、体积相应随浓度升高而降低。镉胁迫下根系活力受到抑制。水培和砂培中 ,镉对根系的影响趋势一致 ,但是影响幅度有差异。砂培好于水培。镉影响小麦根对矿质元素的吸收 ,Ca、Cu、Fe、K、Mg、Mn、Na、Zn吸收情况不太一致。Ca、Cu、Fe、Mg、Mn、Na的吸收量随Cd2 + 浓度升高而增加 ,K、Zn的吸收量随Cd2 + 浓度升高而减少  相似文献   

18.
A study was conducted under greenhouse conditions on wheat to investigate the utilization of dissolved organic nitrogen (N) in comparison with conventionally applied inorganic N sources (INS). Nitrogen was applied at a rate of 90 kg N ha?1 in an inorganic form, an organic high molecular weight (MW) form (casein, haemoglobin, albumin), and an organic low MW amino acid form (glycine, alanine, valine). Inorganic N sources recorded the maximum response (126% to 150%) in total dry matter (DM) production while dissolved organic nitrogen (DON) sources showed 61% to 116% increase in comparison to the control treatment. Glycine gave the maximum DM production, which was comparable with both INS treatments. In hydroponics, greater utilization occurred and the shoots had a higher N content in comparison to those grown in soil. The concentration of DON and NO3? in soil after wheat harvest was similar in all the treatments.  相似文献   

19.
Grain hardness variation has large effects on many different end‐use properties of wheat (Triticum aestivum). The Hardness (Ha) locus consisting of the Puroindoline a and b genes (Pina and Pinb) controls the majority of grain hardness variation. Starch production is a growing end‐use of wheat. The objective of this study was to estimate the differences in starch yield due to natural and transgenically conditioned grain hardness differences. To accomplish this goal, a small‐scale wet‐milling protocol was used to characterize the wet‐milling properties of two independent groups of isogenic materials varying in grain hardness and in Pin expression level. The first group of lines consisted of hard/soft near‐isogenic lines created in cultivars Falcon or Gamenya in which lines carried either the Pina‐D1a (functional) or the Pina‐D1b (null) alleles of Pina. The second group of lines consisted of Pina, Pinb, or Pina and Pinb overexpressing lines created in Hi‐Line, a hard red spring wheat. Soft near‐isogenic lines had higher starch extractability than the hard Pina null counterparts. This difference in starch extractability was more pronounced between Hi‐Line and its transgenic isolines, with highest levels of extractable starch observed in the transgenic isoline with intermediate grain texture. The results demonstrate that the Ha locus and puroindoline expression are both linked to wet‐milling starch yield and that selection for increased Ha function increases starch yield through the enhanced separation of starch granules and the protein matrix during wet milling.  相似文献   

20.
The kernel characteristics and composition, milling performance, protein quality, and alveograph parameters of five spelt cultivars grown in European countries were determined in relation of their utilization in pasta products. Long pasta was manufactured and chemically characterized, and its quality was assessed by sensory and chemical tests. Protein and fat contents were high in the grains (15.7 and 4.4% db, mean value, respectively). Total fiber varied from 10.5 to 14.9% db. The average β-glucan content was 1.2% db. The milling performance as determined by yield, damaged starch, ash, and particle-size distribution in the flour was uniform among the five cultivars. The results of the SDS sedimentation and gluten index tests indicated that spelt gluten strength was low, and this was confirmed by the alveograph test. Sensory and chemical evaluations of the pastas, however, indicated that spelt is suitable for obtaining good-quality pasta. The combination of the high protein content and the high-temperature drying cycle adopted in pasta production could be responsible for these good results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号