首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated light acclimation in seedlings of the temperate oak Quercus petraea (Matt.) Liebl. and the co-occurring sub-Mediterranean oak Quercus pyrenaica Willd. Seedlings were raised in a greenhouse for 1 year in either 70 (HL) or 5.3% (LL) of ambient irradiance of full sunlight, and, in the following year, subsets of the LL-grown seedlings were transferred to HL either before leaf flushing (LL-HLBF plants) or after full leaf expansion (LL-HLAF plants). Gas exchange, chlorophyll a fluorescence, nitrogen fractions in photosynthetic components and leaf anatomy were examined in leaves of all seedlings 5 months after plants were moved from LL to HL. Differences between species in the acclimation of LL-grown plants to HL were minor. For LL-grown plants in HL, area-based photosynthetic capacity, maximum rate of carboxylation, maximum rate of electron transport and the effective photochemical quantum yield of photosystem II were comparable to those for plants grown solely in HL. A rapid change in nitrogen distribution among photosynthetic components was observed in LL-HLAF plants, which had the highest photosynthetic nitrogen-use efficiency. Increases in mesophyll thickness and dry mass per unit area governed leaf acclimation in LL-HLBF plants, which tended to have less nitrogen in photosynthetic components and a lower assimilation potential per unit of leaf mass or nitrogen than LL-HLAF plants. The data indicate that the phenological state of seedlings modified the acclimatory response of leaf attributes to increased irradiance. Morphological adaptation of leaves of LL-HLBF plants enhanced photosynthetic capacity per unit leaf area, but not per unit leaf dry mass, whereas substantial redistribution of nitrogen among photosynthetic components in leaves of LL-HLAF plants enhanced both mass- and area-based photosynthetic capacity.  相似文献   

2.
Beech seedlings (Fagus sylvatica L.) were grown in various combinations of three photosynthetic photon flux densities (PPFD, 0.7, 7.3 or 14.5 mol m(-2) day(-1)) for two years in a controlled environmental chamber. Dry mass of leaves, stem and roots, leaf area and number of leaves, and unit leaf rate were affected by both previous-year and current-year PPFD. Number of shoots and length of the main shoot were affected by previous-year PPFD but not by current-year PPFD. Number of leaves per shoot did not change with PPFD, whereas leaf dry mass/leaf area ratio was mainly affected by current-year PPFD. During the first 10 days that newly emerged seedlings were grown at a PPFD of 0.7 or 14.5 mol m(-2) day(-1), transpiration rate per unit leaf area declined. Thereafter, transpiration increased to a constant new rate. Transpiration rate per seedling was closely related to leaf area but the relationship changed with time. In two-year-old seedlings grown at various PPFD combinations of 0.7, 7.3 and 14.5 mol m(-2) day(-1) during Years 1 and 2, leaf area and transpiration rate per seedling were closely correlated at Weeks 7 and 11 after bud burst. Weak correlations were found between root dry mass and transpiration rate per seedling. During Year 2, transpiration rate per leaf area was higher at a particular PPFD in seedlings grown at a previous-year PPFD of 0.7 mol m(-2) day(-1) than in seedlings grown at a previous-year PPFD of 14.5 mol m(-2) day(-1). After transfer of two-year-old seedlings at the end of the experiment to a new PPFD (7.3 or 14.5 mol m(-2) day(-1)) for one day, transpiration rates per leaf area, measured at the new PPFD, were correlated with leaf area and root dry mass, irrespective of former PPFD treatment.  相似文献   

3.
Despite its recent expansion in eastern US forests, red maple (Acer rubrum L.) generally exhibits a low leaf photosynthetic rate, leaf mass per unit area (LMA) and leaf nitrogen concentration ([N]) relative to co-occurring oaks (Quercus spp.). To evaluate these differences from the perspective of leaf energy investment, we compared leaf construction cost (CC) and leaf maintenance cost (MC) with leaf photosynthetic rate at saturating photon flux density and ambient CO2 partial pressure (Amax) in red maple and co-occurring red oak (Quercus rubra L.) and chestnut oak (Quercus prinus L.). We also examined relationships among leaf physiological, biochemical and structural characteristics of upper-canopy leaves of these three species at lower (wetter) and upper (drier) elevation sites of a watershed in the Black Rock Forest, Cornwall, NY, USA. Although A(max), leaf [N], leaf carbon concentration ([C]) and LMA were significantly less in red maple than in either oak species at both sites, CC per unit leaf area of red maple was 28.2 and 35.4% less than that of red oak at the lower and upper site, respectively, and 38.8 and 32% less than that of chestnut oak at the lower and upper site, respectively. Leaf MC per unit leaf area, which was positively associated with leaf CC (r2 = 0.95), was also significantly lower in red maple than in either oak species at both sites. When expressed per unit leaf area, A(max) was positively correlated with both CC (r2 = 0.65) and MC (r2 = 0.59). The cost/benefit ratio of CC/Amax of red maple was significantly less than that of chestnut oak at the lower site, however, CC/A(max) did not exhibit any significant interspecific differences at the upper site. Expressed per unit leaf area, CC was correlated positively with LMA (r2 = 0.90), leaf [N] (r2 = 0.97), and leaf [C] (r2 = 0.89), and negatively correlated with leaf molar carbon to nitrogen ratio (r2 = 0.92). Combined with red maple's general success in many oak-dominated forests, our findings suggest that reduced leaf-level photosynthetic capacity and related leaf characteristics in red maple are partially balanced by lower energy and resource requirements for leaf biomass construction and maintenance, which could enhance the competitive success of this species.  相似文献   

4.
Henderson DE  Jose S 《Tree physiology》2005,25(12):1487-1494
We determined how specific leaf area (SLA), specific leaf nitrogen (SLN), leaf area index (LAI), light-saturated photosynthesis (Amax) and aboveground net primary productivity (ANPP) of three commercially important hardwood species, eastern cottonwood (Populus deltoides Bartr.), American sycamore (Platanus occidentalis L.) and cherrybark oak (Quercus falcata var.pagodafolia Ell.), vary across a soil resource gradient. Five treatments were applied in a randomized block design (control, irrigation only (IRR), and irrigation plus fertilization with 56, 112 or 224 kg N ha-1 year-1 (N56, N112 and N224)) with four replications per species. When trees were 6 years old, Amax, SLA, SLN, LAI and ANPP were quantified during peak leaf production within a single growing season. In all species, Amax for sun leaves was significantly higher than for shade leaves (34, 32 and 29 micromol m2 s-1 versus 27, 23 and 23 micromol m2 s-1 for cottonwood, cherrybark oak and sycamore sun and shade leaves, respectively) and tended to plateau in the N112 treatment. The SLA was significantly lower in sun than in shade leaves and reached a plateau in IRR-treated cottonwood and sycamore, and in N56-treated oak. Values of SLN peaked in the N122 treatment for cottonwood sun leaves (1.73 g N m2) and in the N56 treatment for sycamore and oak (1.54 and 1.90 g N m2, respectively). In sun and shade leaves of all species, Amax increased with increasing SLN. Cherrybark oak LAI reached a plateau across the resource gradient in the N56 treatment, whereas cottonwood and sycamore LAI reached a plateau in the IRR treatment. All species exhibited significant curvilinear relationships between canopy Amax and ANPP. These findings indicate that nutrients and water regulate leaf-level traits such as SLA and SLN, which in turn influence LAI and canopy photosynthesis, thereby affecting ANPP at the tree and stand levels.  相似文献   

5.
To investigate whether sun and shade leaves respond differently to CO2 enrichment, we examined photosynthetic light response of sun and shade leaves in canopy sweetgum (Liquidambar styraciflua L.) trees growing at ambient and elevated (ambient + 200 microliters per liter) atmospheric CO2 in the Brookhaven National Laboratory/Duke University Free Air CO2 Enrichment (FACE) experiment. The sweetgum trees were naturally established in a 15-year-old forest dominated by loblolly pine (Pinus taeda L.). Measurements were made in early June and late August 1997 during the first full year of CO2 fumigation in the Duke Forest FACE experiment. Sun leaves had a 68% greater leaf mass per unit area, 63% more leaf N per unit leaf area, 27% more chlorophyll per unit leaf area and 77% greater light-saturated photosynthetic rates than shade leaves. Elevated CO2 strongly stimulated light-saturated photosynthetic rates of sun and shade leaves in June and August; however, the relative photosynthetic enhancement by elevated CO2 for sun leaves was more than double the relative enhancement of shade leaves. Elevated CO2 stimulated apparent quantum yield by 30%, but there was no interaction between CO2 and leaf position. Daytime leaf-level carbon gain extrapolated from photosynthetic light response curves indicated that sun leaves were enhanced 98% by elevated CO2, whereas shade leaves were enhanced 41%. Elevated CO2 did not significantly affect leaf N per unit area in sun or shade leaves during either measurement period. Thus, the greater CO2 enhancement of light-saturated photosynthesis in sun leaves than in shade leaves was probably a result of a greater amount of nitrogen per unit leaf area in sun leaves. A full understanding of the effects of increasing atmospheric CO2 concentrations on forest ecosystems must take account of the complex nature of the light environment through the canopy and how light interacts with CO2 to affect photosynthesis.  相似文献   

6.
  • ? The combined effect of water stress and light on seedlings of forest species is a key factor to determine the best silvicultural and afforestation practices in the Mediterranean area.
  • ? The aims of this work was (1) to determine the optimal light level for the early development of cork oak seedlings under mild water stress and (2) to test if the combined effect of water stress and light followed the trade-off, the facilitation or the orthogonal hypothesis.
  • ? Shade reduced instantaneous photosynthetic rates and water use efficiency in cork oak. However, seedlings grown under moderate shade (15% of full sunlight) were capable to accumulate similar amount of biomass than those grown under more illuminated environments by increasing their specific leaf area. Absolute differences in net photosynthesis between light treatments were higher in well watered than in water stressed seedlings. However, the impact of both factors on overall growth was orthogonal.
  • ? We concluded that cork oak development is impaired under deep shade (5% of full sunlight) but it can be optimal under moderate shade (15% of full sunlight) even under moderate water stress. Implications of these patterns on regeneration, cultivation and afforestation of cork oak are discussed.
  •   相似文献   

    7.
    • ? Continued problems in regenerating oak forests has led to a need for more basic information on oak seedling biology.
    • ? In the present study, carbon allocation and morphology were compared between cherrybark oak (Quercus pagoda Raf.) seedlings and sprouts at 1-Lag grown in full, 47%, and 20% sunlight.
    • ? Results indicated that cherrybark oak seedling carbon allocation and morphology responded plastically to light availability. In full light, roots were sinks for 14C, while shoots were sinks for 14C under reduced light availability. Cherrybark oak sprouts exhibited similar carbon allocation patterns in response to light availability, but displayed stronger shoot sinks than seedlings when grown underreduced light availability. We also showed that young oak sprout roots are a sink for 14C-photosynthates.
    • ? Results from this study point to the need for a morphological index for oak sprout development so more precise comparisons in sprout development and physiology can be made with seedlings.
      相似文献   

    8.
    A quantitative analysis was applied to the stomatal and biochemical limitations to light-saturated net photosynthesis under optimal field conditions in mature trees and seedlings of the co-occurring evergreen oak, Quercus ilex L., and the deciduous oak, Q. faginea Lam. Stomatal limitation to photosynthesis, maximal Rubisco activity and electron transport rate were determined from assimilation versus intercellular leaf carbon dioxide concentration response curves of leaves that were subsequently analyzed for nitrogen (N) concentration, mass per unit area, thickness and percent internal air space. In both species, seedlings had a lower leaf mass per unit area, thickness and leaf N concentration than mature trees. The root system of seedlings during their third year after planting was dominated by a taproot. A lower leaf N concentration of seedlings was associated with lower maximal Rubisco activity and electron transport rate and with assimilation rates similar to or lower than those of mature trees, despite the higher stomatal conductances and potential photosynthetic nitrogen-use efficiencies of seedlings. Consequently, stomatal limitation to photosynthesis increased with tree age in both species. In both seedlings and mature trees, a lower assimilation rate in Q. ilex than in Q. faginea was associated with lower stomatal conductance, N allocation to photosynthetic functions, maximal Rubisco activity and electron transport rate, and potential photosynthetic nitrogen-use efficiency but greater leaf thickness and leaf mass per unit area. Tree-age-related changes differed quantitatively between species, and the characteristics of the two species were more similar in seedlings than in mature trees. Despite higher stomatal conductances, seedlings are more N limited than adult trees, which contributes to lower biochemical efficiency.  相似文献   

    9.
    Scaling leaf-level measurements to estimate carbon gain of entire leaf crowns or canopies requires an understanding of the distribution of photosynthetic capacity and corresponding light microenvironments within a crown. We have compared changes in the photosynthetic light response and nitrogen (N) content (per unit leaf area) of Pinus contorta Dougl. ssp. latifolia Engelm. (lodgepole pine) leaves in relation to their age and light microenvironment. The vertical gradient in integrated daily photosynthetic photon flux density (PPFD) from the upper to the lower crown of lodgepole pine was similar in magnitude to the horizontal gradient in daily PPFD along shoots from young to old leaves. The relationship between light-saturated net photosynthesis (A(max)) and daily PPFD was significant for both young and old leaves. However, old leaves had a lower A(max) than young leaves in a similar daily irradiance regime. For leaves of all ages from throughout the crown, A(max) was linearly related to the estimated daily net carbon gain that leaves could achieve in their natural PPFD environment (estimated A(day)) (r(2) = 0.84, P < 0.001, n = 39), indicating that estimated A(day) may be dominated by carbon fixed when leaves are light-saturated and operating at A(max). Comparison of the PPFD required to achieve A(max) and the PPFD available to the leaves showed that all of the measured leaves (n = 39), regardless of their position in the crown or age, were in light environments that could light-saturate photosynthesis for a similar proportion of the day. For all data pooled, foliar N was weakly correlated with daily PPFD. Analyzing each leaf age class separately showed that foliar N was significantly related to daily PPFD, A(max), and estimated A(day) for the youngest leaves but not for middle-aged or old leaves. Therefore, the general theory that foliar N is allocated within a crown according to total daily light availability was supported only for young (1-4 years old) leaves in this study.  相似文献   

    10.
    About 95% of swamp tupelo (Nyssa sylvatica var. biflora (Walt.) Sarg.) and sweetgum (Liquidambar styraciflua L.) seedlings survived continuous root flooding for more than two years, whereas none of the swamp chestnut oak (Quercus michauxii Nutt.) and cherrybark oak (Q. falcata var. pagodifolia Ell.) seedlings survived one year of flooding. Death of oak seedlings occurred in phases associated with periods of major vegetative growth, e.g., after bud burst in spring, after summer stem elongation, and during the winter deciduous stage, suggesting that stored reserves and sources were inadequate to maintain the seedlings when vegetative sinks were forming. Additional evidence that flooding induced a source deficiency in oak was that leaves of flooded oak were 65 to 75% smaller than leaves of nonflooded oak. Flooded swamp tupelo seedlings had a normal leaf size and patchy stomatal opening compared with nonflooded seedlings. Flooding caused increases in alcohol dehydrogenase (ADH) specific activity in taproot cambial tissues and increases in starch concentrations of swamp tupelo seedlings that were reversed when seedlings were removed from flooding. Flooding had little effect on soluble sugar concentrations in swamp tupelo or sweetgum. In the long-term flood-dry-flood treatment, in which all species had survivors, upper canopy leaf photosynthetic rates were higher in all species during the dry period than in nonflooded controls, whereas their starch and soluble sugars concentrations were similar to those of nonflooded controls. Based on seedling survival and the sink-source relationships, the order of flood tolerance was: swamp tupelo > sweetgum > swamp chestnut oak > cherrybark oak.  相似文献   

    11.
    Saplings of 19 valuable rain forest timber species representative of three successional status groups (early secondary, late secondary and climax) were grown in a polyhouse to examine their responses to three light intensity/quality treatments and nitrogen supply. Solar radiation was modified using painted polyethylene sheet to mimic natural light environments across a rain forest vertical column as follows: 1. Transparent plastic, 80% of full sunlight, R:FR = 0.95, 2. Blue shade, 14% of full sunlight, R:FR = 0.69; 3. Green shade, 7% of full sunlight, R:FR = 0.50. Transparent plastic conditions promoted an increase in stem height and diameter (i.e., growth), leaf thickness and gas exchange per unit leaf area. Additional nitrogen availability enhanced growth and specific leaf area (i.e., leaves were thinner), particularly in the full sun environment and on early secondary and late secondary successional species, but did not influence photosynthetic rate. Successional status of the species did not affect photosynthetic rate although early secondary successional species grew faster and had fewer branches than species of the other successional groups. We recommend that for a successful mixed stand the high-light requiring species should be planted first, with increased nitrogen supply, and the shade tolerant species should be introduced later with no extra nitrogen supply required.  相似文献   

    12.
    Photosynthetic light response curves (A/PPFD), leaf N concentration and content, and relative leaf absorbance (alpha(r)) were measured in 1-year-old seedlings of shade-intolerant Betula papyrifera Marsh., moderately shade-tolerant Quercus rubra L. and shade-tolerant Acer rubrum L. Seedlings were grown in full sun or 26% of full sun (shade) and in ambient (350 ppm) or elevated (714 ppm) CO(2) for 80 days. In the shade treatments, 80% of the daily PPFD on cloud-free days was provided by two 30-min sun patches at midday. In Q. rubra and A. rubrum, leaf N concentration and alpha(r) were significantly higher in seedlings in the shade treatments than in the sun treatments, and leaf N concentration was lower in seedlings in the ambient CO(2) treatments than in the elevated CO(2) treatments. Changes in alpha(r) and leaf N content suggest that reapportionment of leaf N into light harvesting machinery in response to shade and elevated CO(2) tended to increase with increasing shade tolerance of the plant. Shifts induced by elevated CO(2) in the A/PPFD relationship in sun plants were largest in B. papyrifera and least in A. rubrum: the reverse was true for shade plants. Elevated CO(2) resulted in increased light-saturated A in every species x light treatment combination, except in shaded B. papyrifera. The light compensation point (Gamma) decreased in response to shade in all species, and in response to elevated CO(2) in A. rubrum and Q. rubra. Acer rubrum had the greatest increases in apparent quantum yield (phi) in response to shade and elevated CO(2). To illustrate the effects of shifts in A, Gamma and phi on daily C gain, daily integrated C balance was calculated for individual sun and shade leaves. Ignoring possible stomatal effects, estimated daily (24 h) leaf C balance was 218 to 442% higher in the elevated CO(2) treatments than in the ambient CO(2) treatments in both sun and shade seedlings of Q. rubra and A. rubrum. These results suggest that the ability of species to acclimate photosynthetically to elevated CO(2) may, in part, be related to their ability to adapt to low irradiance. Such a relationship has implications for altered C balance and nitrogen use efficiency of understory seedlings.  相似文献   

    13.
    Hieke S  Menzel CM  Lüdders P 《Tree physiology》2002,22(17):1249-1256
    Effects of photosynthetic photon flux density (PPFD) on leaf gas exchange of lychee (Litchi chinensis Sonn.) were studied in field-grown "Kwai May Pink" and "Salathiel" orchard trees and young potted "Kwai May Pink" plants during summer in subtropical Queensland (27 degrees S). Variations in PPFD were achieved by shading the trees or plants 1 h before measurement at 0800 h. In a second experiment, potted seedlings of "Kwai May Pink" were grown in a heated greenhouse in 20% of full sun (equivalent to maximum noon PPFD of 200 micromol m(-2)xs(-1)) and their growth over three flush cycles was compared with seedlings grown in full sun (1080 micromol m(-2)xs(-1)). Young potted plants of "Kwai May Pink" were also grown outdoors in artificial shade that provided 20, 40, 70 or 100% of full sun (equivalent to maximum PPFDs of 500, 900, 1400 and 2000 micromol m(-2)xs(-1)) and measured for shoot extension and leaf area development over one flush cycle. Net CO2 assimilation increased asymptotically in response to increasing PPFD in both orchard trees and young potted plants. Maximum rates of CO2 assimilation (11.9 +/- 0.5 versus 6.3 +/- 0.2 micromol CO2 m(-2) s(-1)), dark respiration (1.7 +/- 0.3 versus 0.6 +/- 0.2 micromol CO2 m(-2) s(-1)), quantum yield (0.042 +/- 0.005 versus 0.027 +/- 0.003 mol CO2 mol(-1)) and light saturation point (1155 versus 959 micromol m(-2) s(-1)) were higher in orchard trees than in young potted plants. In potted seedlings grown in a heated greenhouse, shoots and leaves exposed to full sun expanded in a sigmoidal pattern to 69 +/- 12 mm and 497 +/- 105 cm(2) for each flush, compared with 27 +/- 7 mm and 189 +/- 88 cm(2) in shaded seedlings. Shaded seedlings were smaller and had higher shoot:root ratios (3.7 versus 3.1) than seedlings grown in full sun. In the potted plants grown outdoors in 20, 40, 70 or 100% of full sun, final leaf area per shoot was 44 +/- 1, 143 +/- 3, 251 +/- 7 and 362 +/- 8 cm(2), respectively. Shoots were also shorter in plants grown in shade than in plants grown in full sun (66 +/- 5 mm versus 101 +/- 2 mm). Photosynthesis in individual leaves of lychee appeared to be saturated at about half full sun, whereas maximum leaf expansion occurred at higher PPFDs. We conclude that lychee plants can persist as seedlings on the forest floor, but require high PPFDs for optimum growth.  相似文献   

    14.
    To determine light requirement and adaptability of Fraxinus mandshurica seedlings, the seasonal variations of photosynthetic variables were measured in 3-year-old seedlings grown under four light levels (100%, 60%, 30%, and 15% of full sunlight) with a LI-6400 portable photosynthesis system. The leaf chlorophyll content, special leaf weight, annual height and basal diameter increment of seedlings were also observed. The maximum and minimum values of net photosynthetic rate, maximum rate of carboxylation, an...  相似文献   

    15.
    We investigated susceptibility to photoinhibition in leaves acclimated to different light regimes in intermediately shade-tolerant Japanese oak (Quercus mongolica Fisch. ex Turcz. var. crispula (Blume) Ohashi) and shade-tolerant Japanese maple (Acer mono Maxim. var. glabrum (Lév. et Van't.) Hara), to elucidate adaptability to gap formation in leaves differing in shade acclimation. We hypothesized that there is a tradeoff between shade adaptation and capacity to mitigate photoinhibition associated with leaf morphology. We simultaneously measured chlorophyll fluorescence and gas exchange in seedlings that had been grown in full sunlight (open), 10% of full sun (moderate shade) and 5% of full sun (deep shade). Shade-tolerant A. mono adapted to deep shade through changes in leaf morphology, lowering its leaf mass per area (LMA), but Q. mongolica showed little change in LMA between moderate and deep shade. Photochemical quenching (qP) did not differ between species in full sunlight and moderate shade; however, in deep shade, qP of Q. mongolica was higher than that of A. mono, suggesting that Q. mongolica grown in deep shade is less susceptible to photoinhibition at gap formation. This is consistent with the finding that chronic photoinhibition 3 days after the transfer to full sunlight, indicated by the decrease in maximum photochemical efficiency, Fv/Fm, at predawn, was less in deep-shade-grown Q. mongolica than in deep shade-grown A. mono. In deep shade, the electron transport rate (ETR) of Q. mongolica was higher than that of A. mono, whereas thermal energy dissipation through photosystem II antennae, indicated by non-photochemical quenching, was lower in Q. mongolica than in A. mono. In deep shade, the greater ETR capacity in Q. mongolica in association with higher LMA and higher leaf N content could contribute to maintaining high qP and mitigating photoinhibition. These results indicate that, by maintaining a high electron transport capacity even in deep shade, the gap-dependent and intermediate-shade-tolerant Q. mongolica trades improved shade adaptation for higher growth potential when a gap event occurs.  相似文献   

    16.
    Studies of tree seedling physiology and growth under field conditions provide information on the mechanisms underlying inter- and intraspecific differences in growth and survival at a critical period during forest regeneration. I compared photosynthetic physiology, growth and biomass allocation in seedlings of three shade-tolerant tree species, Virola koschynii Warb., Dipteryx panamensis (Pittier) Record & Mell and Brosimum alicastrum Swartz., growing across a light gradient created by a forest-pasture edge (0.5 to 67% diffuse transmittance (%T)). Most growth and physiological traits showed nonlinear responses to light availability, with the greatest changes occurring between 0.5 and 20 %T. Specific leaf area (SLA) and nitrogen per unit leaf mass (N mass) decreased, maximum assimilation per unit leaf area (A area) and area-based leaf N concentration (N area) increased, and maximum assimilation per unit leaf mass (A mass) did not change with increasing irradiance. Plastic responses in SLA were important determinants of leaf N and A area across the gradient. Species differed in magnitude and plasticity of growth; B. alicastrum had the lowest relative growth rates (RGR) and low plasticity. Its final biomass varied only 10-fold across the light gradient. In contrast, the final biomass of D. panamensis and V. koschynii varied by 100- and 50-fold, respectively, and both had higher RGR than B. alicastrum. As light availability increased, all species decreased biomass allocation to leaf tissue (mass and area) and showed a trade-off between allocation to leaf area at a given plant mass (LAR) and net gain in mass per unit leaf area (net assimilation rate, NAR). This trade-off largely reflected declines in SLA with increasing light. Finally, A area was correlated with NAR and both were major determinants of intraspecific variation in RGR. These data indicate the importance of plasticity in photosynthetic physiology and allocation for variation in tree seedling growth among habitats that vary in light availability.  相似文献   

    17.
    Plant growth, morphology and nutritive value under shade can differ between temperate grasses. Therefore, the aim of this study was to quantify the dry matter (DM) production, sward morphology, crude protein (CP%), organic matter digestibility (OMD) and macro-nutrient concentrations (P, K, Mg, Ca and S) in a grazed cocksfoot (Dactylis glomerata L.) pasture under 10-year-old Pinus radiata D. Don forest. Four levels of light intensity were compared: full sunlight (100% photosynthetic photon flux density-PPFD), open + wooden slats (∼43% PPFD), trees (∼58% PPFD) and tree + slats (∼24% PPFD). The mean total DM production was 8.2 t DM ha−1 yr−1 in the open and 3.8 t DM ha−1 yr−1 in the trees + slats treatment. The changes in cocksfoot leaf area index (LAI) were related to variations in morphological aspects of the sward such as canopy height and tiller population. CP% increased as PPFD declined with mean values of 18.6% in open and 22.5% in the trees + slats treatment. In contrast, the intensity of fluctuating shade had little effect on OMD with a mean value of 79 ± 3.2%. The mean annual macro-nutrient concentrations in leaves increased as the PPFD level declined mainly between the open and the trees + slats treatments. It therefore appears that heavily shaded dominant temperate pastures in silvopastoral systems limit animal production per hectare through lower DM production rates and per animal through reduced pre-grazing pasture mass of lower bulk density from the etiolated pasture.  相似文献   

    18.
    不同光强下核桃楸、水曲柳和黄菠萝的光合生理特征   总被引:5,自引:0,他引:5  
    研究辽东山区次生林3种树种幼苗(核桃楸、水曲柳和黄菠萝)对生长光环境的适应性,在生长季测定4种光强下(全光、60%透光、30%透光、15%透光,分别记为FI,II,LJ和WI)树种幼苗叶片气体交换参数、净光合速率、单位叶面积叶绿素含量和比叶重(LMA).结果表明:随着光强的减弱,3个树种的光补偿点(LCP)、光饱和点(LSP)、最大光合速率(Pmax)、暗呼吸速率(Rd)、类胡萝卜素(Car)、LMA、单位叶鲜质量(LFA)均呈下降趋势;全光下单位叶面积的叶绿素Chl含量均低于弱光处理.本研究结果支持水曲柳在幼苗时期具有一定耐荫性的观点.树种生理生态指标的可塑性分析表明:黄菠萝能适应更宽的光强幅度,且黄菠萝的需光性大于核桃楸.不同光环境下3个树种的生理生态变化特征对解释森林生态系统内树种的共生和演替具有重要意义.  相似文献   

    19.
    We analyzed the growth and photosynthetic responses of Canarium pimela K. D. Koenig (Chinese black olive) and Nephelium topengii (Merr.) H. S. Lo. (Hainan shaozi) to a light gradient to recommend better procedures for optimizing seedling establishment and growth of both species in restoration and agroforestry practices. One-month-old seedlings were exposed to four irradiance levels (46, 13, 2 and 0.2 % full sunlight) inside shade cloth covered shadehouses for 1 year. With decreased sunlight both species displayed trends of decreased relative growth rate (RGR) and leaf area (LA), and increased specific leaf area and leaf area ratio (LAR). The mean values of light-saturated net photosynthetic rate (Pmax) in 46 and 0.2 % full sunlight were 10.11 and 3.44 μmol CO2 m?2 s?1 for C. pimela and 6.26 and 3.47 μmol CO2 m?2 s?1 for N. topengii, respectively. C. pimela had higher RGR in 46 and 13 % full sunlight than in 2 and 0.2 % full sunlight. Differences in growth rates can be explained by the different values of LA, LAR and leaf mass ratio, as well as by the different values of photosynthetic saturation irradiance and net photosynthetic rate (Pmax) between the two species. Both morphological and physiological responses to shading indicate N. topengii could be rated as “very shade-tolerant,” while C. pimela could be rated as “intermediately shade-tolerant”.  相似文献   

    20.
    Relationships between CO(2) assimilation at light saturation (A(max)), nitrogen (N) content and weight per unit area (W(A)) were studied in leaves grown with contrasting irradiances (outer canopy versus inner canopy) and N supply rates in field-grown nectarine trees Prunus persica L. Batsch. cv. Fantasia. Both A(max) and N content per unit leaf area (N(A)) were linearly correlated to W(A), but leaves in the high-N treatment had higher N(A) and A(max) for the same value of W(A) than leaves in the low-N treatment. The curvilinear relationship between photosynthesis and total leaf N was independent of treatments, both when expressed per unit leaf area A(maxA) and N(A)) and per unit leaf weight (A(maxW) and N(W)), but the relationship was stronger when data were expressed on a leaf area basis. Both A(maxA) and N(A) were higher for outer canopy leaves than for inner canopy leaves and A(maxW) and N(W) were higher for leaves in the high-N treatment than for leaves in the low-N treatment. The relationship between A(max) and N resulted in a similar photosynthetic nitrogen-use efficiency at light saturation (A(max)NUE) for both N and light treatments. Photosynthetic nitrogen-use efficiency was similar among treatments throughout the whole light response curve of photosynthesis. Leaves developed in shade conditions did not show higher N-use efficiency at low irradiance. At any intercellular CO(2) partial pressure (C(i)), photosynthetic CO(2) response curves were higher for outer canopy leaves and, within each light treatment, were higher for the high-N treatments than for the low-N treatments. Consequently, most of the differences among treatments disappeared when photosynthesis was expressed per unit N. However, slightly higher assimilation rates per unit N were found for outer canopy leaves compared with inner canopy leaves, in both N treatments. Because higher daily irradiance within the canopies of the low-N trees more than compensated for the lower photosynthetic performances of these leaves compared to the leaves of high-N trees, daily carbon gain (and N-use efficiency on a daily assimilation basis) per leaf was higher for the low-N treatment than for the high-N treatment in both outer and inner canopy leaves.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号