首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The lower mantle of the Earth is believed to be largely composed of (Mg,Fe)O (magnesiowustite) and (Mg,Fe)SiO3 (perovskite). Radiative temperatures of single-crystal olivine [(Mg0.9,Fe0.1)2SiO4] decreased abruptly from 7040 +/- 315 to 4300 +/- 270 kelvin upon shock compression above 80 gigapascals. The data indicate that an upper bound to the solidus of the magnesiowustite and perovskite assemblage at 4300 +/- 270 kelvin is 130 +/- 3 gigapascals. These conditions correspond to those for partial melting at the base of the mantle, as has been suggested occurs within the ultralow-velocity zone beneath the central Pacific.  相似文献   

2.
In three different experiments up to 100 gigapascals and 3000 kelvin, (Mg,Fe)SiO3-perovskite, the major component of the lower mantle, remained stable and did not decompose to its component oxides (Mg, Fe)O and SiO2. Perovskite was formed from these oxides when heated in a diamond anvil cell at pressures up to 100 gigapascals. Both MgSiO3 crystals and glasses heated to 3000 kelvin at 75 gigapascals also formed perovskite as a single phase, as evident from Raman spectra. Moreover, fluorescence measurements on chromium-doped samples synthesized at these conditions gave no indication of the presence of MgO.  相似文献   

3.
Meade C  Mao HK  Hu J 《Science (New York, N.Y.)》1995,268(5218):1743-1745
To study the crystallography of Earth's lower mantle, techniques for measuring synchrotron x-ray diffraction from a laser-heated diamond anvil cell have been developed. Experiments on samples of (Mg, Fe)SiO(3) show that silicate perovskite maintains its orthorhombic symmetry at 38 gigapascals and 1850 kelvin. Measurements at 65 and 70 gigapascals provide evidence for a temperature-induced orthorhombic-to-cubic phase transition and dissociation to an assemblage of perovskite and mixed oxides. If these phase transitions occur in Earth, they will require a significant change in mineralogical models of the lower mantle.  相似文献   

4.
Post-perovskite phase transition in MgSiO3   总被引:2,自引:0,他引:2  
In situ x-ray diffraction measurements of MgSiO3 were performed at high pressure and temperature similar to the conditions at Earth's core-mantle boundary. Results demonstrate that MgSiO3 perovskite transforms to a new high-pressure form with stacked SiO6-octahedral sheet structure above 125 gigapascals and 2500 kelvin (2700-kilometer depth near the base of the mantle) with an increase in density of 1.0 to 1.2%. The origin of the D" seismic discontinuity may be attributed to this post-perovskite phase transition. The new phase may have large elastic anisotropy and develop preferred orientation with platy crystal shape in the shear flow that can cause strong seismic anisotropy below the D" discontinuity.  相似文献   

5.
Fe-Mg interdiffusion coefficients for (Mg,Fe)SiO3 perovskite have been measured at pressures of 22 to 26 gigapascals and temperatures between 1973 and 2273 kelvin. Perovskite Fe-Mg interdiffusion is as slow as Si self-diffusion and is orders of magnitude slower than Fe-Mg diffusion in other mantle minerals. Length scales over which chemical heterogeneities can homogenize, throughout the depth range of the lower mantle, are limited to a few meters even on time scales equivalent to the age of Earth. Heterogeneities can therefore only equilibrate chemically when they are stretched and thinned by intense deformation.  相似文献   

6.
We measured the spin state of iron in magnesium silicate perovskite (Mg(0.9),Fe(0.1))SiO(3) at high pressure and found two electronic transitions occurring at 70 gigapascals and at 120 gigapascals, corresponding to partial and full electron pairing in iron, respectively. The proportion of iron in the low spin state thus grows with depth, increasing the transparency of the mantle in the infrared region, with a maximum at pressures consistent with the D" layer above the core-mantle boundary. The resulting increase in radiative thermal conductivity suggests the existence of nonconvecting layers in the lowermost mantle.  相似文献   

7.
Stability of Perovskite (MgSiO3) in the Earth's Mantle   总被引:1,自引:0,他引:1  
Available thermodynamic data and seismic models favor perovskite (MgSiO3) as the stable phase in the mantle. MgSiO3 was heated at temperatures from 1900 to 3200 kelvin with a Nd-YAG laser in diamond-anvil cells to study the phase relations at pressures from 45 to 100 gigapascals. The quenched products were studied with synchrotron x-ray radiation. The results show that MgSiO3 broke down to a mixture of MgO (periclase) and SiO2 (stishovite or an unquenchable polymorph) at pressures from 58 to 85 gigapascals. These results imply that perovskite may not be stable in the lower mantle and that it might be necessary to reconsider the compositional and density models of the mantle.  相似文献   

8.
Karato S  Li P 《Science (New York, N.Y.)》1992,255(5049):1238-1240
High-temperature creep experiments on polycrystalline perovskite (CaTiO(3)), an analog of (Mg,Fe)SiO(3) perovskite of the lower mantle, suggest that (grain size-sensitive) diffusion creep is important in the lower mantle and show that creep rate is enhanced by the transformation from the orthorhombic to the tetragonal structure. These observations suggest that grain-size reduction after a subducting slab passes through the 670-kilometer discontinuity or after a phase transformation from orthorhombic to tetragonal in perovskite will result in rheological softening in the top portions of the lower mantle.  相似文献   

9.
Ultrasonic interferometric measurements of the shear elastic properties of MgSiO3 perovskite were conducted on three polycrystalline specimens at conditions up to pressures of 8 gigapascals and temperatures of 800 kelvin. The acoustic measurements produced the pressure (P) and temperature (T) derivatives of the shear modulus (G), namely ( partial differentialG/ partial differentialP)T = 1.8 +/- 0.4 and ( partial differentialG/ partial differentialT)P = -2.9 +/- 0.3 x 10(-2) gigapascals per kelvin. Combining these derivatives with the derivatives that were measured for the bulk modulus and thermal expansion of MgSiO3 perovskite provided data that suggest lower mantle compositions between pyrolite and C1 carbonaceous chondrite and a lower mantle potential temperature of 1500 +/- 200 kelvin.  相似文献   

10.
The independent elastic constants of an upper mantle mineral, San Carlos olivine [(Mg(1.8)Fe(0.2))SiO(4)], were measured from 0 to 12.5 gigapascals. Evidence is offered in support of the proposition that the explicit temperature dependence of the bulk modulus is small over the range of temperatures and pressures thought to prevail above the 400-kilometer discontinuity, and thus the data can be extrapolated to estimate the properties of olivine under mantle conditions at a depth of 400 kilometers. In the absence of high-temperature data at high pressures, estimates are made of the properties of olivine under mantle conditions to a depth of 400 kilometers. In contrast with low-pressure laboratory data, the predicted covariance of shear and compressional velocities as a function of temperature nearly matches the seismically estimated value for the lower mantle.  相似文献   

11.
The single-crystal elastic moduli of the modified spinel structure (beta phase) of magnesium orthosilicate (Mg(2)SiO(4)) have been measured by Brillouin spectroscopy under ambient conditions. Single crystals with dimensions up to 500 micrometers were grown at 22 gigapascals and 2000 degrees C over a period of 1 hour. Growth of crystals larger than 100 micrometers was achieved only when the pressure was within 5 percent of the pressure of the phase boundary separating the beta- and gamma-phase stability fields. A comparison of the elastic properties of the modified spinel phase with those of the olivine phase suggests that the 400-kilometer seismic discontinuity in the earth's mantle can be described by a mantle with 40 percent olivine. These results confirm that the 400-kilometer discontinuity can be due to the transition from olivine to modified spinel. The amount of olivine that must be present is less than that in a pyrolite model, although the results do not exclude pyrolite as a possible mantle model.  相似文献   

12.
Measurements of the electrical conductivity of silicate perovskite at 25 gigapascals and 1400 degrees to 1600 degreesC show that the conductivity of (Mg,Fe)SiO3 perovskite containing 2.89 weight percent Al2O3 is about 3.5 times greater than that of aluminum-free (Mg0.915Fe0.085)SiO3 perovskite. The conduction mechanism in perovskite between 1400 degrees and 1600 degreesC is most likely by polarons, because Mossbauer studies show that the aluminum-bearing perovskite has about 3.5 times the amount of Fe3+ as the aluminum-free sample. A conductivity-depth profile from 660 to 2900 kilometers based on aluminum-bearing perovskite is consistent with geophysical models.  相似文献   

13.
Silicate perovskite of composition (Mg(0.88)Fe(0.12)) SiO(3) has been synthesized in a laser-heated diamond-anvil cell to a pressure of 127 gigapascals at temperatures exceeding 2000 K. The perovskite phase was identified and its unit-cell dimensions measured by in situ x-ray diffraction at elevated pressure and room temperature. An analysis of these data yields the first high-precision equation of state for this mineral, with values of the zero-pressure isothermal bulk modulus and its pressure derivative being K(0T) = 266 +/- 6 gigapascals and K'(0T) = 3.9 +/- 0.4. In addition, the orthorhombic distortion of the silicate-perovskite structure away from ideal cubic symmetry remains constant with pressure: the lattice parameter ratios are b/a = 1.032 +/- 0.002 and c/a = 1.444 +/- 0.006. These results, which prove that silicate perovskite is stable to ultrahigh pressures, demonstrate that perovskite can exist throughout the pressure range of the lower mantle and that it is therefore likely to be the most abundant mineral in Earth.  相似文献   

14.
Mineral properties in Earth's lower mantle are affected by iron electronic states, but representative pressures and temperatures have not yet been probed. Spin states of iron in lower-mantle ferropericlase have been measured up to 95 gigapascals and 2000 kelvin with x-ray emission in a laser-heated diamond cell. A gradual spin transition of iron occurs over a pressure-temperature range extending from about 1000 kilometers in depth and 1900 kelvin to 2200 kilometers and 2300 kelvin in the lower mantle. Because low-spin ferropericlase exhibits higher density and faster sound velocities relative to the high-spin ferropericlase, the observed increase in low-spin (Mg,Fe)O at mid-lower mantle conditions would manifest seismically as a lower-mantle spin transition zone characterized by a steeper-than-normal density gradient.  相似文献   

15.
We have heated ferropericlases (Mg(0.60)Fe(0.40))O and (Mg(0.50)Fe(0.50))O to temperatures of 1000 kelvin at pressures of 86 gigapascals, simulating the stability of the solid solution at physical conditions relevant to Earth's lower mantle. The in situ x-ray study of the externally heated samples in a Mao-Bell-type diamond anvil cell shows that ferropericlase may dissociate into magnesium-rich and iron-rich oxide components. The result is important because the decomposition of ferropericlase into lighter and heavier phases will cause dynamic effects that could lead to mantle heterogeneity.  相似文献   

16.
Geophysical models show that electrical conductivity in Earth's mantle rises about two orders of magnitude through the transition zone in the depth range 410 to 660 kilometers. Impedance measurements obtained on Mg1.8Fe0.2SiO4 olivine, wadsleyite, and ringwoodite at up to 20 gigapascals and 1400 degreesC show that the electrical conductivities of wadsleyite and ringwoodite are similar and are almost two orders of magnitude higher than that of olivine. A conductivity-depth profile to 660 kilometers, based on these laboratory data, shows a conductivity increase of almost two orders of magnitude across the 410-kilometer discontinuity; such a profile favors a two-layer model for the upper mantle. Activation enthalpies of 1.2 to 1.7 electron volts permit appreciable lateral variations of conductivity with lateral temperature variations.  相似文献   

17.
The stability of Mg(2)SiO(4), a major constituent in the Earth's mantle, has been investigated experimentally by in situ observation with synchrotron radiation. A cubic-type high-pressure apparatus equipped with sintered diamond anvils has been used over pressures of 11 to 15 gigapascals and temperatures of 800 degrees to 1600 degrees C. The phase stability of alpha-Mg(2)SiO(4) and beta-Mg(2)SiO(4) was determined by taking account of the kinetic behavior of transition. The phase boundary between alpha-Mg(2)SiO(4) and beta-Mg(2)SiO(4) is approximated by the linear expression P = (9.3 +/- 0.1) + (0.0036 +/- 0.0002)T where P is pressure in gigapascals and T is temperature in degrees Celsius.  相似文献   

18.
Experimental determination of oxygen self-diffusion in CaTiO(3) perovskite, a structural analog of (Mg,Fe)SiO(3) perovskite, confirms a theoretical relation between diffusion constants and anion porosity. Oxygen diffusion rates in (Mg,Fe)SiO(3) perovskite calculated with this relation increase by about eight orders of magnitude through the lower mantle. Electrical conductivity values calculated from these diffusion rates are consistent with inferred conductivity values for the lower mantle. This result suggests that the dominant conductivity mechanism in the deep mantle is ionic.  相似文献   

19.
The 410-kilometer seismic discontinuity is generally considered to be caused by a phase transformation of the main constituent of the upper mantle, olivine, alpha-(Mg,Fe)(2)SiO(4), to beta-(Mg,Fe)(2)SiO(4). Recent data show that H(2)O dissolves in olivine and other nominally anhydrous mantle minerals and that the partitioning of H(2)O between olivine and beta-(Mg,Fe)(2)SiO(4) is about 1:10. Such behavior strongly affects the region over which the alpha to beta phase transformation occurs and hence the seismic discontinuity that results. The observed width of the discontinuity constrains the maximum H(2)O content of upper mantle olivine to about 200 parts per million by weight.  相似文献   

20.
Seismic studies indicate that beneath some regions the 520-kilometer seismic discontinuity in Earth's mantle splits into two separate discontinuities (at approximately 500 kilometers and approximately 560 kilometers). The discontinuity near 500 kilometers is most likely caused by the (Mg,Fe)2SiO4 beta-to-gamma phase transformation. We show that the formation of CaSiO3 perovskite from garnet can cause the deeper discontinuity, and by determining the temperature dependence for this reaction we demonstrate that regional variations in splitting of the discontinuity arise from variability in the calcium concentration of the mantle rather than from temperature changes. This discontinuity therefore is sensitive to large-scale chemical heterogeneity. Its occurrence and variability yield regional information on the fertility of the mantle or the proportion of recycled oceanic crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号