首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
2.
Dendrobaena mrazeki is an endemic earthworm species inhabiting dry habitats such as pine and thermophilous oak forests in Central Europe. Metabolically, D. mrazeki showed some features typical for endogeic species and some of epigeic ones. In comparison with the related Dendrobaena octaedra, D. mrazeki was a larger earthworm with fresh body mass of adult and subadult individuals of W = 0.59 ± 0.05 g. Its body mass-specific oxygen consumption (M/W = 48 ± 5 μl O2 g?1 h?1, at 15 °C) was the lowest of all earthworms studied (Aporrectodea caliginosa, Aporrectodea rosea, D. octaedra, Lumbricus castaneus, Lumbricus rubellus and Octolasion lacteum), being strongly dependent on W (b from the equation M/W = aWb about ?0.8). D. mrazeki had low relative water content (77.4% of fresh body mass) and small relative amount of dry weight of the intestinal content (20.1% of dry body mass), which is similar to the epigeic D. octaedra. The respiration rate of D. mrazeki remained the lowest even after recalculating M/W to respiration rate per dry mass or per dry mass without the intestine content to correct for the differences among species in body water content and gut content.  相似文献   

3.
The cultivated varieties and landraces of Cucurbitaceae growing in Egypt are presented, 27 taxa, belonging to three genera, six species, and five subspecies. These characters are arranged according to their usefulness for identifications as follow: fruit characters, seed characters and trichome type. Fruit characters are a good taxonomic tool at varietal level when combined with the other vegetative characters. Two keys to 27 cultivated varieties of Cucurbitaceae (Cucumis, Cucurbita and Luffa) were constructed using the DELTA software system. One key is used for identification, and then the other is used as a confirmatory key. Those keys were built using 36 morphological characters include vegetative, floral, fruit and seed characters. There is a significant correlation between seed size and growth parameters. The growth parameters of the studied taxa included leaf length/size, petiole length and corolla length. There is a highly positive, significant correlation between seed volume and leaf size (r = 0.81831, P ≤ 0.001), seed volume and petiole length (r = 0.79112, P ≤ 0.001), seed volume and leaf length (r = 0.83566, P ≤ 0.001), and seed volume and corolla length (r = 0.59108, P ≤ 0.001).  相似文献   

4.
In this study, the soil structure of two soils (Haplic Chernozem and Eutric Fluvisol) of different land uses (forest, meadow, urban and agro-ecosystem – consisted of four crop rotations) in Slovakia was compared. The soil aggregate stability was determined with a dependence on the chemical composition of plant residues. The quantity and quality of the organic matter was assessed through the parameters of the C and N in size fractions of dry-sieved and water-resistant aggregates. The soil structure of the forest ecosystem was evaluated as the best of all of forms of land use. Differences in the soil structure under the grass vegetation of a meadow (natural conditions) and urban ecosystem were also recorded. The agro-ecosystem was characterised by a higher portion (55.95%) of the most valuable (agronomically) water-resistant aggregate size fraction of 0.5–3 mm. Values of the carbon management index showed that the larger water-resistant aggregates were, the greater were the changes in the organic matter (r = ?0.680, P < 0.05). In addition, a smaller content of dry-sieved aggregates of the 3–5 mm size fraction was observed with higher contents of soil organic carbon (SOC) (r = ?0.728, P < 0.05) and labile carbon (CL) (r = ?0.760, P < 0.05); there were also greater changes in the soil organic matter and vice versa, higher contents of SOC (r = 0.744, P < 0.05) and CL (r = 0.806, P < 0.05) greater contents of dry-sieved aggregates of size fraction 0.5–1 mm. The soil structure of agro-ecosystem was superior at a higher content of cellulose (r = ?0.712, P < 0.05) in the plant residues. The higher content of cellulose and hemicellulose in the plant residue of a previous crop was reflected in a smaller CL content in the water-resistant aggregates (r = ?0.984, P < 0.05). A correlation was observed between a high content of lignin in the plant residue and a smaller SOC content in the water-resistant aggregates (r = ?0.967, P < 0.05). Lastly, a higher content of proteins in the plant residues (r = 0.744, P < 0.05) supported a greater content of dry-sieved aggregates of the 0.5–1 mm size fraction.  相似文献   

5.
Soil samples were collected from Panchamarhi dry deciduous forest in Satpuda Biosphere Reserve, India to determine the effect of hill slopes and altitude on the population size of methanotrophic bacteria. Population size, in range of 4×105-3.6×107 g−1 dry soil, was negatively correlated with altitude and increased exponentially (r2=0.97, P<0.001) at steep slope (60°) while logarithmically (r2=0.97, P<0.001) at low slope (45°). Soil organic C, total N, and soil moisture increased while C/N ratio and temperature decreased down the hill slope. The results indicated that nutritional status of the soil across the slopes determines the methanotrophic bacterial population size.  相似文献   

6.
《Soil biology & biochemistry》2001,33(7-8):913-919
A reliable and simple technique for estimating soil microbial biomass (SMB) is essential if the role of microbes in many soil processes is to be quantified. Conventional techniques are notoriously time-consuming and unreproducible. A technique was investigated that uses the UV absorbance at 280 nm of 0.5 M K2SO4 extracts of fumigated and unfumigated soils to estimate the concentrations of carbon, nitrogen and phosphorus in the SMB. The procedure is based on the fact that compounds released after chloroform fumigation from lysed microbial cells absorb in the near UV region. Using 29 UK permanent grassland soils, with a wide range of organic matter (2.9–8.0%) and clay contents (22–68%), it was demonstrated that the increase in UV absorbance at 280 nm after soil fumigation was strongly correlated with the SMB C (r=0.92), SMB N (r=0.90) and SMB P (r=0.89), as determined by conventional methods. The soils contained a wide range of SMB C (412–3412 μg g−1 dry soil), N (57–346 μg g−1 dry soil) and P (31–239 μg g−1 dry soil) concentrations. It was thus confirmed that the UV absorbance technique described was a rapid, simple, precise and relatively inexpensive method of estimating soil microbial biomass.  相似文献   

7.
We present novel length to ash-free dry mass and preclitellar diameter to ash-free dry mass allometric equations for seven earthworm species from the families Megascolecidae and Lumbricidae, all of which are exotic and most of which are of ecological concern in North America: Eisenia hortensis, Eisenia fetida, Dendrodrilus rubidus, Lumbricus rubellus, Octolasion sp., Amynthas hilgendorfi, and Perionyx excavatus. We also present a length-biomass allometric equation for one enchytraeid, Mesenchytraeus sp. All relationships between length and biomass, and diameter and biomass were statistically significant at the species and family level (P<0.001). The predictive powers of these allometric regressions (as coefficients of determination, r2) were species-specific, and ranged widely from 0.27 to 0.93. Length-biomass regressions provided more predictive power and precision overall than preclitellar diameter-biomass calculations at both the species and the family levels. An ANCOVA followed by orthogonal contrasts determined that, while the slopes of these regressions did not differ significantly between the two earthworm families, significant differences in slopes of length-biomass regressions existed among species within families, indicating the utility of having species-level equations for accurate biomass predictions. With these allometric relationships, we aim to improve the estimation of earthworm biomass in order to facilitate investigations of how exotic-invasive earthworm species impact soil ecosystems.  相似文献   

8.
To properly assess soil erosion in agricultural areas, it is necessary to determine precisely the volume of ephemeral gullies and rills in the field by using direct measurement procedures. However, little information is available on the accuracy of the different methods used. The main purpose of this paper is to provide information for a suitable assessment of rill and ephemeral gully erosion with such direct measurement methods. To achieve this objective: a) the measurement errors associated to three methods used for field assessment of channel cross sectional areas are explored; b) the influence of the number of cross sections used per unit channel length on the assessment accuracy, is analysed and; c) the effect of the channel size and shape on measurement errors is examined. The three methods considered to determine the cross sectional areas were: the micro-topographic profile meter (1); the detailed measurement of section characteristic lengths with a tape (2); and the measurement of cross section width and depth with a tape (3). Five reaches of different ephemeral gully types 14.0 or 30.0 m long and a set of six 20.4 to 29.4 m long rill reaches were selected. On each gully reach, the cross sectional areas were measured using the three above mentioned methods, with a separation (s) between cross sections of 1 m. For rills, the cross sectional areas were measured with methods 1 and 3, with s = 2 m. Then, the corresponding total erosion volumes were computed. The volume calculated with method 1 with s = 1 m for gullies and s = 2 m for rills was taken as the reference method. For each channel, and for each one of the possible combinations of s and measurement method (m), the relative measurement error and the absolute value of the relative measurement error (Esmr and |Esmr|), defined with respect to the reference one, was calculated. |Esmr| much higher than 10% were obtained very easily, even for small s values and for apparently quasi prismatic channels. Channel size and shape had a great influence on measurement errors. In fact, the selection of the more suitable method for a certain gully shape and size seemed to be much more important than s, at least when s < 10 m. Method 1 always provided the most precise measurements, and its results were the less dependent on s. However, s must be < 5 m to guarantee an error smaller than 10%. Method 2 is not recommended, because it is difficult, time consuming and can lead to large errors. Method 3 seems to be enough for small, wide and shallow gullies, and for small rills, but only if s is shorter than 5 m. Results obtained after the analysis of rill measurement errors were similar to those of gullies. The analysis of Esmr and |Esmr| when calculating channel volumes using a unique representative cross section highlighted the importance of correctly selecting the adequate cross section. Due to the high error values that this method can entail, it is not considered as advisable whenever accurate erosion measurements are pursued.  相似文献   

9.
《Soil biology & biochemistry》2001,33(7-8):1103-1111
Biologically active fractions of soil organic matter are important in understanding decomposition potential of organic materials, nutrient cycling dynamics, and biophysical manipulation of soil structure. We evaluated the quantitative relationships among potential C and net N mineralization, soil microbial biomass C (SMBC), and soil organic C (SOC) under four contrasting climatic conditions. Mean SOC values were 28±11 mg g−1 (n=24) in a frigid–dry region (Alberta/British Columbia), 25±5 mg g−1 (n=12) in a frigid–wet region (Maine), 11±4 mg g−1 (n=117) in a thermic–dry region (Texas), and 12±5 mg g−1 (n=131) in a thermic–wet region (Georgia). Higher mean annual temperature resulted in consistently greater basal soil respiration (1.7 vs 0.8 mg CO2–C g−1 SOC d−1 in the thermic compared with the frigid regions, P<0.001), greater net N mineralization (2.8 vs 1.3 mg inorganic N g−1 SOC 24 d−1, P<0.001), and greater SMBC (53 vs 21 mg SMBC g−1 SOC, P<0.001). Specific respiratory activity of SMBC was, however, consistently lower in the thermic than in the frigid regions (29 vs 34 mg CO2–C g−1 SMBC d−1, P<0.01). Higher mean annual precipitation resulted in consistently lower basal soil respiration (1.1 vs 1.3 mg CO2–C g−1 SOC d−1 in the wet compared with the dry regions, P<0.01) and lower SMBC (31 vs 43 mg SMBC g−1 SOC, P<0.001), but had inconsistent effects on net N mineralization that depended upon temperature regime. Specific respiratory activity of SMBC was consistently greater in the wet than the dry regions (≈33 vs 29 mg CO2–C g−1 SMBC d−1, P<0.01). Although the thermic regions were not able to retain as high a level of SOC as the frigid regions, due likely to high annual decomposition rates, biologically active soil fractions were as high per mass of soil and even 2–3-times greater per unit of SOC in the thermic compared with the frigid regions. These results suggest that macroclimate has a large impact on the portion of soil organic matter that is potentially active, but a relatively small impact on the specific respiratory activity of SMBC.  相似文献   

10.
Nitrogen mineralization and nitrification in the soil of sub-alpine ruderal community of Mount Uludağ, Bursa, Turkey was measured for 1 year, under field conditions with Verbascum olympicum and Rumex olympicus being the dominant pioneer species under dry and wet sites, respectively. Seasonal fluctuations were observed in N mineralization and nitrification. The net N mineralization and nitrification were high in early summer and winter, due to high moisture. The annual net N mineralization rate (for the 0–15 cm soil layer) was higher under R. olympicus (188 kg N ha−1 yr−1) than under V. olympicum (96 kg N ha−1 yr−1). A significant positive correlation between net N mineralization and soil organic C (r2 = 0.166), total N (r2 = 0.141) and water content (r2 = 0.211) was found. Our results indicate that N mineralization rate is high in soils of ruderal communities on disturbed sites and varies with dominant species and, a difference in net N mineralization rate can be attributed to organic C, total N and moisture content of soils.  相似文献   

11.
In this study we examined the effects of glucose-C on the activities of fungi and bacteria determined by the method of substrate-induced respiration (SIR) in combination with the selective inhibition technique, the immobilized-S and the arylsulphatase (ARS) activity in two calcareous arable and fallow soils. The amounts of glucose-C were added at six doses: 0, 125, 250, 500, 750 and 1000 mg kg− 1 soil to the soils and then incubated for one week with a Na235SO4 solution (518.9 kBq kg− 1 dry soil and 20 mg S kg− 1 dry soil) prior to analysis. At the highest dose of 1000 mg kg− 1 soil, fungal activity increased by 59.1% (of the dose 0) versus 45.5% for bacterial activity in the arable soil, while in the fallow soil the increases were more marked and corresponded to 69.9% and 71.1%, respectively. Largest increase in immobilized-S was observed in the arable soil (300.7%) compared with the fallow soil (153.1%). In contrast, the ARS activity increased by 16.4% in the arable soil versus 32.1% in the fallow soil. These results indicate that glucose proportionately affected more the intensities of immobilized-S than those of ARS. Strong positive correlation coefficients were found between fungal activities and immobilized-S in the arable soil (r = 0.96, P < 0.01) and in the fallow soil (r = 0.98, P < 0.001). However, non-significant correlations were observed between fungal activities and ARS in both studied soils. As to bacterial activities, positive significant correlation coefficients were found with immobilized-S in the arable soil (r = 0.95, P < 0.01) and in the fallow soil (r = 0.90, P < 0.05) as well as with ARS activities in the arable soil (r = 0.83, P < 0.05) and in the fallow soil (r = 0.97, P < 0.01). Overall, we also found positive and significant correlation coefficients of immobilized-S with ARS activities in the arable soil (r = 0.86, P < 0.05) and in the fallow soil (r = 0.83, P < 0.05). Accordingly, the results showed a presence of extracellular arylsulphatase activity of 38.7 mg p-nitrophenol kg− 1 soil h− 1 in the arable soil and of 63.5 mg p-nitrophenol kg− 1 soil h− 1 in the fallow soil. It was concluded that fallowing maintained larger activities of fungi, bacteria and arylsulphatase compared with the arable soil.  相似文献   

12.
Although a significant proportion of plant tissue is located in roots and other below-ground parts of plants, little is known on the dietary choices of root-feeding insects. This is caused by a lack of adequate methodology which would allow tracking below-ground trophic interactions between insects and plants. Here, we present a DNA-based approach to examine this relationship. Feeding experiments were established where either wheat (Triticum aestivum) or maize (Zea mays) was fed to Agriotes larvae (Coleoptera: Elateridae), allowing them to digest for up to 72 h. Due to the very small amount of plant tissue ingested (max = 6.76 mg), DNA extraction procedures and the sensitivity of polymerase chain reaction (PCR) had to be optimized. Whole-body DNA extracts of larvae were tested for the presence of both rbcL and trnL plastid DNA using universal primers. Moreover, based on cpDNA sequences encoding chloroplast tRNA for leucine (trnL), specific primers for maize and wheat were developed. With both, general and specific primers, plant DNA was detectable in the guts of Agriotes larvae for up to 72 h post-feeding, the maximum time of digestion in these experiments. No significant effect of time since feeding on plant DNA detection success was observed, except for the specific primers in maize-fed larvae. Here, plant DNA detection was negatively correlated with the duration of digestion. Both, meal size and initial mass of the individual larvae did not affect the rate of larvae testing positive for plant DNA. The outcomes of this study represent a first step towards a specific analysis of the dietary choices of soil-living herbivores to further increase our understanding of animal-plant feeding interactions in the soil.  相似文献   

13.
A two-year field hydroponic study was conducted on root mass of maize (Zea mays L.) using the root electrical capacitance (Croot) method. The primary objective of the study was to test the utility of the Croot method in estimating root mass of maize (on a fresh and dry weight basis), and to determine any influence of maize genotype on this relationship. Secondary objectives were: (i) To determine if the volume of the Turface®-filled hydroponic containers had an effect on root mass-Croot relationships, and (ii) to determine if the number of plants/container affected the Croot measurements of individual plant root systems. Firstly, it was concluded that different maize genotypes appeared to have uniquely different root dry mass vs. Croot relationships. Secondly, the massing of the maize plant roots at the bottom of smaller (20-litre) pails seemed to frequently have a negative effect on the strength of the root mass-Croot relationship. Thirdly, multiple plants could be regarded as a single experimental unit in Croot studies when their root electrical capacitance was measured simultaneously. The predictive capability of the equations developed from this hydroponic study was reasonably good, but research is needed on similar genotype-specific relationships under field soil conditions to determine if they might have some utility in broader agronomic field applications.  相似文献   

14.
Reactive forms of nitrogen (Nr) are accumulating at local, regional and global levels largely due to human activities, particularly N-fertilizer production and use as well as fossil fuel combustion. This has resulted in a change in the nitrogen (N) cycle and excess Nr in the environment, which has negative environmental effects. Therefore, characterizing denitrification and the edaphic variables controlling denitrification and its products is the first step in predicting the long-term effects of Nr accumulation. In the present study, six forest soil types in different climatic zones were collected from East China and evaluated for denitrification products following a K15NO3 amendment and subsequent incubation. The results showed that denitrification, indicated by production of nitric oxide (NO), nitrous oxide (N2O) and dinitrogen (N2), was higher in the studied temperate forest soils than in the studied subtropical and tropical forest soils and was negatively correlated with soil redox potential at the beginning of incubation (r = −0.94, P < 0.01), but not with soil pH. The ratios of NO/total N gas and N2O/total N gas produced during denitrification varied among the soils, and were generally higher in the subtropical and tropical soils. Spearman's correlation analysis showed that the NO ratio was positively correlated with soil oxidation capacity (OXC) (r = 0.94, P < 0.01) and redox potential at the beginning of incubation (r = 0.86, P < 0.05), but negatively correlated with soil pH (r = −0.83, P < 0.05). The N2O ratio was not significantly correlated with these edaphic variables, but showed a significant correlation to NO ratio (r = 0.83, P < 0.05). These results suggested that the OXC value might be the key factor affecting denitrification rates in soils. One possible explanation for these effects is that large OXC values would result in a higher level soil redox potential, thus suppressing denitrification and enhancing NO and N2O ratios during denitrification.  相似文献   

15.
The gut load and gut transit time (GTT) of the endogeic earthworm Hormogaster elisae in laboratory cultures at 18 °C and 23 ºC were studied. The GTT, 5.25 h ± 0.40 at 18 ºC and 3.63 h ± 0.46 at 23 ºC, was determined by staining the soil with alimentary colouring (tartrazine). The gut load was calculated with two methods: earthworm mass difference, before and after voiding the gut, and dry mass of the gut content. The gut load ranged between 168 and 261 mg wet mass g live earthworm mass–1 (mass difference method) or 137–196 mg dry mass g live earthworm mass–1 (dry mass method). With the obtained data a potential annual soil turnover for H. elisae was calculated: 211–470 kg wet soil mass kg live earthworm mass–1 year–1 (mass difference method) or 176–325 kg dry soil mass kg live earthworm mass–1 year–1 (dry mass method).  相似文献   

16.
Dew is an important water source for desert organisms in semiarid and arid regions. Both field and laboratory experiments were conducted to investigate the possible roles of dew in growth of biomass and photosynthetic activity within cyanobacterial crust. The cyanobacteria, Microcoleus vaginatus Gom. and Scytonema javanicum (Kütz.) Born et Flah., were begun with stock cultures and sequential mass cultivations, and then the field experiment was performed by inoculating the inocula onto shifting sand for forming cyanobacterial crust during late summer and autumn of 2007 in Hopq Desert, northwest China. Measurements of dew amount and Chlorophyll a content were carried out in order to evaluate the changes in crust biomass following dew. Also, we determined the activity of photosystem II(PSII) within the crust in the laboratory by simulating the desiccation/rehydration process due to dew. Results showed that the average daily dew amount as measured by the cloth-plate method (CPM) was 0.154 mm during fifty-three days and that the crust biomass fluctuated from initial inoculation of 4.3 μg Chlorophyll a cm−2 sand to 5.8-7.3 μg Chlorophyll a cm−2 crust when dew acted as the sole water source, and reached a peak value of approximately 8.2 μg Chlorophyll a cm−2 crust owing to rainfalls. It indicated that there was a highly significant correlation between dew amounts and crust moistures (r = 0.897 or r = 0.882, all P < 0.0001), but not a significant correlation between dew and the biomass (r = 0.246 or r = 0.257, all P > 0.05), and thus concluded that dew might only play a relatively limited role in regulating the crust biomass. Correspondingly, we found that rains significantly facilitated biomass increase of the cyanobacterial crust. Results from the simulative experiment upon rehydration showed that approximately 80% of PSII activity could be achieved within about 50 min after rehydration in the dark and at 5 °C, and only about 20% of the activity was light-temperature dependent. This might mean that dew was crucial for cyanobacterial crust to rapidly activate photosynthetic activity during desiccation and rehydration despite low temperatures and weak light before dawn. It also showed in this study that the cyanobacterial crusts could receive and retain more dew than sand, which depended on microclimatic characteristics and soil properties of the crusts. It may be necessary for us to fully understanding the influence of dew on regulating the growth and activity of cyanobacterial crust, and to soundly evaluate the crust's potential application in fighting desertification because of the available water due to dew.  相似文献   

17.
Land use changes in the Amazon region strongly impact soil macroinvertebrate communities, which are recognized as major drivers of soil functions (Lavelle et al., 2006). To explore these relations, we tested the hypotheses that (i) soil macrofauna communities respond to landscape changes and (ii) soil macrofauna and ecosystem services are linked. We conducted a survey of macrofauna communities and indicators of ecosystem services at 270 sites in southern Colombia (department of Caqueta) and northern Brazil (state of Pará), two areas of the Amazon where family agriculture dominates. Sites represented a variety of land use types: forests, fallows, annual or perennial crops, and pastures. At each site we assessed soil macroinvertebrate density (18 taxonomic units) and the following ecosystem service indicators: soil and aboveground biomass carbon stock; water infiltration rate; aeration, drainage and water storage capacities based on pore-size distribution; soil chemical fertility; and soil aggregation. Significant covariation was observed between macrofauna communities and landscape metric data (co-inertia analysis: RV = 0.30, p < 0.01, Monte Carlo test) and between macrofauna communities and ecosystem service indicators (co-inertia analysis: RV = 0.35, p < 0.01, Monte Carlo test). Points located in pastures within 100 m of forest had greater macrofauna density and diversity than those located in pastures with no forest within 100 m (Wilcoxon rank sum test, p < 0.01). Total macroinvertebrate density was significantly correlated with macroporosity (r2 = 0.42, p < 0.01), as was the density of specific taxonomic groups: Chilopoda (r2 = 0.43, p < 0.01), Isoptera (r2 = 0.30, p < 0.01), Diplopoda (r2 = 0.31, p < 0.01), and Formicidae (r2 = 0.13, p < 0.01). Total macroinvertebrate density was also significantly correlated with available soil water (r2 = 0.38, p < 0.01) as well as other soil-service indicators (but with r2 < 0.10). Results demonstrate that landscape dynamics and composition affect soil macrofauna communities, and that soil macrofauna density is significantly correlated with soil services in deforested Amazonia, indicating that soil macrofauna have an engineering and/or indicator function.  相似文献   

18.
The dispersal ability, home range size and habitat preference of sixth instar larvae of the widespread cantharid species Cantharis fusca (L.) and C. livida (L.) were studied in a mark–recapture experiment in a meadow–field (winter grain) area between autumn and spring in 1999/2000. The main results and conclusions were: (i) The mean dispersal velocity of C. fusca/C. livida larvae was 1.4/1.6 m d–1 with a maximum of 3.2/2.3 m d–1. The larvae were able to disperse more than 100 m during their larval development, demonstrating that larvae and not only adults contribute to spreading. (ii) The average home range area of seven C. fusca individuals was 12.9 m2 (minimum 8 m2/maximum 19 m2). The low number of multiple recaptures and the large distances larvae can cover indicate that the real home range size was underestimated. (iii) C. fusca larvae significantly preferred the meadow area compared to the bare ground of the field. This can be explained by the meadow's higher plant cover and humidity C. livida specimens that were released one month later and recaptured only in low numbers showed no such preference. (iv) Due to the high dispersal ability of soldier beetle larvae, immigration from meadows and grass bulks of boundary strips into the crop margins and inner field areas is possible; it can be augmented by creating constant plant cover, e.g. through winter grain or cover crops.  相似文献   

19.
To increase wetland acreage and biodiversity, Delaware agencies constructed >220 depressional wetlands. During construction, agencies included amendments thought to increase biodiversity. Because the efficacy of amendments is unknown, we investigated their effects on macroinvertebrate and vegetative communities. We selected 20 standardized wetlands (five contained coarse woody debris (CWD) and microtopography amendments (land surface ridges and furrows), five had neither, five had CWD only, and five had microtopography only). Additionally, 12 wetlands had received organic matter amendments (i.e., straw). Insect richness (P = 0.010; r2 = 0.16), insect biomass (P = 0.023; r2 = 0.13), intolerant insect biomass (P = 0.033, r2 = 0.03), Ephemeroptera biomass (P = 0.027; r2 = 0.12), and Odonata biomass (P = 0.046; r2 = 0.10) increased with CWD volume. Obligate plant percent cover increased with microtopographic variation (P = 0.029; r2 = 0.120). Although organic matter amendments did not increase percent soil organic matter (t13.7 = −1.16, P = 0.264), total (P = 0.027; r2 = 0.12), native (P = 0.036; r2 = 0.11), and facultative (P = 0.001; r2 = 0.24) plant richness increased with percent soil organic matter. To enhance biodiversity, constructed wetlands should contain CWD, but additional research is needed to understand the benefits of microtopography and organic matter amendments.  相似文献   

20.
In order to test whether major reductions in acid inputs had improved water quality sufficiently for fish populations to recover, we stocked wild European perch (Perca fluviatilis) in three highly acidified lakes that had previously supported this species, and in one limed lake. The fish, which were introduced from a local lake (donor lake), generally ranged from 12 to 16 cm in total length, and were stocked at densities of 117–177 fish ha?1. The untreated lakes were highly acid, with minimum pH values and maximum inorganic aluminium concentrations (Ali) during the spring of 4.6–4.7 and 118–151 µg L?1 respectively. In the limed lake, the corresponding values for pH and Ali ranged between 5.8 and 6.6 and 5 and 19 µg L?1 respectively. Gill-netting in two subsequent years after the introduction yielded only a few recruits (0+) and one adult in one of the three acidified lakes in one year only. However, stocked perch reproduced successfully in both years in the limed lake. There was a significant linear relationship between the catches (CPUE) of juvenile perch (age 0+) in the different lakes in the autumn and the water quality in May (time of hatching), both in terms of Ali (r 2=0.934, P<0.05) and pH (r 2=0.939, P<0.05). Our data suggest unsuccessful recruitment in waters of pH <5.1 and Ali>60 µg L?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号