首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
[目的]采用石墨炉原子吸收分光光度法测定不同类型水样中的总镉含量。[方法]对样品采用微波消解前处理,在灰化温度1 000℃,原子化温度1 850℃条件下测定。[结果]标准曲线线性范围为0~3.0μg/L,r=0.999 7方法检出限为0.023μg/L;精密度为1.2%~7.5%;样品加标回收率为105%~109%。[结论]所建立的石墨炉原子吸收法能够准确测定地表水、地下水和污水中总镉的含量,方法具有重复性好、操作简便等特点,可获得满意结果。  相似文献   

2.
汪鑫  赵微  杨剑虹 《南方农业学报》2011,42(12):1532-1535
[目的]筛选无火焰电热石墨炉原子化器测定植物性食品样品中铅的最佳基体改进剂,提高石墨炉原子吸收光谱法快速测定铅的精密度和准确度.[方法]分别采用钯盐和铂盐作为测定铅的基体改进剂,测定吸光度值,使用标准加入法分析改进效果,并探索其最佳灰化温度、原子化温度和用量.[结果]采用钯基体改进剂,改进效果显著,较未用时提高原子化温度200~300℃,且低温下(<900℃)铅的原子化损失极低,回收率达80%~113%;而以铂盐作基体改进剂无明显改进效果.[结论]测定基体成分复杂样品中的铅时,可选用钯盐作为基体改进剂,其最佳灰化温度为500℃,最佳原子化温度为2200℃,最佳使用量为25 mg/L.  相似文献   

3.
采用石墨炉原子吸收光谱法测定茶叶中的铅含量,并优化了试验条件。确定了测定铅的最佳基体改进剂为磷酸二氢铵,灰化温度为700℃、原子化温度为1450℃。该方法的测定范围为0~50μg/L,最低检出限为0.003mg/kg,相对标准偏差为2.52%~5.31%,样品加标回收率为95.5%~104.2%,具有良好的线性关系、精密度和准确度,适用于茶叶中铅的检测分析。  相似文献   

4.
[目的]建立地表水中镍的石墨炉-原子吸收分光光度法。[方法]对试样酸度、基体改进剂、光谱宽带等测定条件进行了确定,对主要升温程序进行了探讨优化,并对工作曲线线性范围、方法检出限、精密度及样品加标回收率进行了测定。[结果]在以0.2%硝酸为定容介质、仪器狭缝宽度为0.2 nm、灰化温度1 100℃保持5 s、原子化温度2 300℃保持5 s的条件下进行测定,标准曲线线性范围为0~50μg/L;方法检出限为0.95μg/L;精密度为2.05%~2.57%;样品加标回收率为88.5%~103.0%。[结论]该方法检出限低、精密度与准确度良好,适于清洁地表水中镍的测定,值得推广应用。  相似文献   

5.
【目的】筛选无火焰电热石墨炉原子化器测定植物性食品样品中铅的最佳基体改进剂,提高石墨炉原子吸收光谱法快速测定铅的精密度和准确度。【方法】分别采用钯盐和铂盐作为测定铅的基体改进剂,测定吸光度值,使用标准加入法分析改进效果,并探索其最佳灰化温度、原子化温度和用量。【结果】采用钯基体改进剂,改进效果显著,较未用时提高原子化温度200~300℃,且低温下(<900℃)铅的原子化损失极低,回收率达80%~113%;而以铂盐作基体改进剂无明显改进效果。【结论】测定基体成分复杂样品中的铅时,可选用钯盐作为基体改进剂,其最佳灰化温度为500℃,最佳原子化温度为2200℃,最佳使用量为25 mg/L。  相似文献   

6.
高淑云  陈宏伟 《安徽农业科学》2007,35(36):11745-11745,11754
[目的]用石墨炉原子吸收法测定银杏及银杏叶中的微量元素,为开发利用银杏及银杏叶提供参考数据。[方法]以银杏及银杏叶为原料,采用HNO3-HClO4湿法消解处理样品,利用石墨炉原子吸收法测定Cu、Se、Cd、Pb微量元素的含量。[结果]HNO3-HClO4湿法消解的最佳比例是:Cu为2:1,Se为3:1,Cd为3:1,Pb为2:1。银杏中Pb含量较高,为3.572μg/g,Cu和Se含量分别为19.310和1.763μg/g,含量最低的是Cd,为0.181μg/g;银杏叶中Pb的含量为4.021μg/g,高于银杏中Pb的含量,Cu含量为8.320μg/g,Se含量为1.691μg/g,Cd含量为0.202μg/g。用石墨炉原子吸收法测定的回收率在99%~101%。[结论]硝酸-高氯酸比例对微量元素的测定有一定影响,当硝酸-高氯酸为2:1时测定的Cu、Pb含量较高些;为3:1时测定的Se、Cd含量较高些。  相似文献   

7.
王姣  王蓓  迟志娟  母昌立  任伟 《安徽农业科学》2014,(30):10681-10682,10749
[目的]研究微波消解-石墨炉原子吸收法测定茶叶中铅含量的测量不确定度评定方法。[方法]试验采用微波消解的前处理方法,对茶叶中的铅含量用石墨炉原子吸收光谱法进行测定,建立了相应的数学模型,对数学模型中各种不确定因素进行量化处理。[结果]研究表明,不确定度的主要来源为标准溶液配制、样品称量、容量器具的体积、标准曲线拟合、重复性测定等,茶叶中铅的测量不确定度测定结果为(1.90±0.11)mg/kg。[结论]该评定方法可用于微波消解-石墨炉原子吸收法测定茶叶中铅含量的测量不确定度分析,保证测量结果的准确、可靠。  相似文献   

8.
通过对石墨炉干燥、灰化、原子化、净化过程的实验和研究,建立石墨炉原子吸收法测定茶叶中铅的升温程序,结果表明其方法操作简单、灵敏度较高。  相似文献   

9.
石墨炉原子吸收光谱法测定土壤铝的条件优化   总被引:1,自引:0,他引:1  
酸性土壤中的活性A1是影响作物生长发育的主要因子之一,土壤Al的测定一直是人们关注的问题.石墨炉原子吸收光谱法测土壤Al所需的样品量少、灵敏度高、离子干扰小,目前在国内外应用较为广泛.由于其测试条件多是应用单因素轮换法来确定,存在实验量大且未考虑交互作用的影响等缺点.采用双因素重复实验及正交实验可显著降低确定最佳测试条件的工作量,且实验条件代表性强,对于准确快捷测定土壤Al具有重要意义.通过双因素(波长和灯电流)重复试验对石墨炉原子吸收光谱仪测定土壤Al的波长和灯电流进行了优化选择,确定最佳波长为309.3 nm,最佳灯电流为14 mA;应用L<,25>(5<'6>)正交试验法对控温程序及基体改进剂、基体酸度条件进行了优化,得出最佳的灰化温度为1 400℃、灰化时间为10 s,原子化温度为2 300℃、原子化时间为5 s,最佳基体改进剂为0.1%NH4H2PO4、最佳基体酸度为0.2%硝酸.优化后的方法检出限为1.14μg·L-1,加标回收率达到93.6%~104.1%,相对偏差均小于8%.  相似文献   

10.
石墨炉原子吸收光谱仪测定香榧中铝的方法   总被引:2,自引:0,他引:2  
探讨了运用石墨炉原子吸收光谱法测定植物性食品中的微量Al的方法.采用干法灰化,在盐酸介质中,通过加入硝酸镁作为基体改进剂,控制灰化温度在1 200℃,原子化温度为2 600℃等措施可以很好地消除基体干扰,得到较为理想的吸光度值.该方法的检出限为0.015 μg*L-1,回收率为96%~102%.  相似文献   

11.
[目的]研究不同消解方法对原子吸收光谱法测定三七中重金属铜的影响。[方法]以云南文山三七为材料,分析研究了干法灰化、湿法消解前处理样品对原子吸收光谱法测定三七中重金属铜含量的影响。[结果]干法灰化的最佳条件为灰化温度600℃、灰化时间4 h;在此条件下,测定出三七中铜含量为3.221μg/g。常压下湿法消解的最佳消解体系为HNO3-HClO4-H2O2;在此条件下,测定出三七中铜含量为3.721μg/g。[结论]原子吸收光谱法简单准确、快捷,可用于三七中重金属铜的含量测定。云南文山三七粉中重金属铜含量符合国家《药用植物及制剂进出口绿色行业标准》。  相似文献   

12.
李瑜  刘运华  赵娜  赵欣  杨凉花 《安徽农业科学》2013,(18):7800-7801,7805
[目的]利用微波消解-氢化物发生原子荧光法,测定紫阳高硒区土壤中的硒含量。[方法]以浓硝酸和双氧水(10+2)为消解剂,采取以微波消解的方法对紫阳富硒区土壤样品进行处理,采取氢化物发生-原子荧光光谱法测定土壤中硒含量,并设定最佳的样品处理条件和仪器测定条件。利用加标回收试验,对试验方法进行了验证。[结果]紫阳富硒区土壤硒含量为16.28 mg/kg,达到高硒土壤标准。该方法硒的检出限达到0.15μg/L,硒回收率为92.0%~101.8%,相关系数达0.999 9,线性范围为0~100 mg/kg。[结论]该微波消解的方法对土壤总硒的测定结果准确且稳定,线性范围宽,节约时间。  相似文献   

13.
胡兰基  杨娜  王洪桂  霍成玉  马文 《安徽农业科学》2014,(19):6387+6480-6387,6480
[目的]快速、准确地测定鲜黄蘑菇中的硒含量.[方法]采用新鲜黄蘑菇直接打成浆液后经硝酸和高氯酸微波消解,用氢化物发生-原子荧光光谱法测定消解液中硒的含量.[结果]鲜黄蘑菇样品经硝酸和高氯酸微波消解后,所得消解液在6 mol/L盐酸介质中煮沸3 ~5 min使硒(Ⅵ)完全还原成硒(Ⅳ),用Fe3+盐作为抑制剂,氢化物发生器在还原剂为20 g/L的硼氢化钾(5 g/L KOH介质),载流为5% ~ 10% HCl时进行测定.氢化物发生-原子荧光光谱法测定鲜黄蘑菇中的微量硒,硒的质量浓度在20 μg/L以内与荧光强度呈线性关系,方法检出限(3s/k)为0.020 μg/L,其相对标准偏差(n=7)为2.18%.[结论]该测试方法简单、快捷、稳定性较好,可用于测定鲜黄蘑菇中的硒含量.  相似文献   

14.
铜对3种蔬菜生长的影响及其累积效应研究   总被引:1,自引:1,他引:0  
[目的]研究Cu污染对3种蔬菜生长的影响及其累积效应。[方法]在不同浓度Cu(0、100、200、400 mg/L)胁迫下,对萝卜(Ra-phanus sativus L.)、小白菜(Brassica campestrisssp.Chinensis)和苋菜(Amaranthus tricolour)进行种子萌发和盆栽试验,研究不同处理对蔬菜种子发芽率、幼苗生长、生物量及Cu含量的影响。[结果]不同浓度Cu胁迫对3种蔬菜种子的发芽率无显著影响,100和200 mg/LCu胁迫对蔬菜苗长具有显著影响,萝卜对过量Cu毒害的耐性强于小白菜和苋菜;各处理3种蔬菜的地上部和地下部Cu含量均低于国家食品卫生标准,萝卜可食部位Cu含量低于小白菜和苋菜。3种蔬菜对土壤中Cu的富集指数表现为苋菜〉小白菜〉萝卜。[结论]在遭受Cu污染的农田中,种植萝卜比种植小白菜和苋菜更有利于减少Cu进入食物链。  相似文献   

15.
[目的]筛选盐酸改性膨润土对Cu(Ⅱ)吸附的最适吸附条件及最佳吸附性能,以期改性粘土矿物材料在重金属污染治理领域的应用提供理论基础.[方法]通过单因素与多因素相结合的方法,以贵州六盘水某地区膨润土为原料,利用盐酸对膨润土进行改性,探讨盐酸改性膨润土投加量、Cu(Ⅱ)初始浓度、溶液初始pH和反应温度等因素对Cu(Ⅱ)吸附程度的影响,并采用正交试验筛选出盐酸改性膨润土对Cu(Ⅱ)吸附的最佳吸附条件.[结果]Cu(Ⅱ)的去除率随着投加量、pH和温度的提高而增大;Cu(Ⅱ)的初始浓度增大,改性膨润土的吸附量也随之增加.最佳吸附条件为:Cu(Ⅱ)初始浓度100 mg/L,改性膨润土投加量1.0g,pH 7.0,温度40℃,吸附时间140m in时,该吸附条件下Cu(Ⅱ)的去除率可达98.2%.[结论]利用盐酸改性的膨润土吸附铜离子具有制作过程简单、价格低廉的特点,是解决重金属污染的有效途径.  相似文献   

16.
改良一步法提取植物RNA、DNA和蛋白质的研究   总被引:2,自引:0,他引:2  
[目的]利用改良的一步法提取植物RNA、DNA和蛋白质。[方法]采用CTAB试剂对Biozol抽提法进行改良,用一步法分别对玉米(Zea maysL.)、大豆(Glycine maxL.)、苜蓿(Medicago sativaL.)和黄瓜(Cucumis sativusL.)4种作物根的RNA、DNA和蛋白质进行共提取,并对其HO-1和CDPK1基因及HO-1蛋白进行鉴定。[结果]经紫外分光光度计测定和琼脂糖凝胶电泳分析证明获得的RNA和DNA样品纯度较高;HO-1基因和CDPK1基因的RT-PCR结果呈阳性;所提取的蛋白质也可用于Western blot分析;整个提取过程只需3h。[结论]该方法实用性较强,具有广泛的应用价值。  相似文献   

17.
黄晓捷  赖鹤鋆 《安徽农业科学》2011,39(31):19619-19620
[目的]对潮州凤凰茶硒含量进行测定。[方法]凤凰茶样品经干燥粉碎后,用硝酸湿法消解,原子荧光光谱法测定茶叶中的硒含量。[结果]硒浓度在0~40.00μg/L范围内与荧光强度呈线性关系,标准曲线为If=130.801 0C+137.897 3,相关系数为R2=1.000 0,检出限为0.097μg/L,相对标准偏差为1.18%,回收率为102.4%~105.2%。[方法]该方法操作简单、快速、灵敏度高,适合测定茶叶中的硒含量;凤凰茶中含有比较丰富的硒。  相似文献   

18.
根据中心组合Box-Benhnken试验设计原理采用三因素三水平的响应面分析法,研究各工艺条件对莱菔子(Raphanussativus L.)出油率的影响,得到的最佳工艺条件为:萃取压力33 MPa,萃取温度47℃,萃取时间80 min.在此条件下油脂萃取得率为24.86%.  相似文献   

19.
刘梯楼  简红霞 《安徽农业科学》2013,(28):11344-11346
[目的]研究玉竹中微量元素的溶出特性。[方法]以HN03-HClO4为消解体系,应用火焰原子吸收法(FAAS)和氢化物发生一原子荧光法(HG—AFS)测定邵东玉竹中12种微量元素Fe、Cu、Zn、Mn、Ni、Ph、Cd、cr、As、Sb、Se和Hg的含量,同时比较微波提取法、超声提取法和传统煎煮法对玉竹中12种微量元素溶出的情况。[结果]试样中各元素含量的相对偏差(RSD)为0.04%~4.37%,加标回收率为90.0%-106.O%。玉竹溶出液中含量较多元素的顺序为:Cu〉Fe〉Zn〉Mn,其余元素的含量均很少。[结论]微波萃取法在有效成分的提取中具有快速、高效和安全等特点。FAAS和HG.AFS法快速、准确、灵敏度高,适用于玉竹中微量元素的含量测定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号