首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The changes in dry matter (DM) yield, botanical composition and nutritive value of herbage to ruminants of two wet grasslands, Arrhenatherum elatius grassland (Experiment 1) and a Molinia caerulea fen meadow (Experiment 2), in which a range of cutting and fertilizer treatments were imposed in 1999, were assessed after 4–7 years of treatment imposition. Both experiments had a split‐plot design with four replicates. In Experiment 1 the three main‐plot cutting treatments were two cuts with a delayed first cut, three cuts and four cuts during the growing season of each year. In Experiment 2 the cutting treatments were two cuts with a traditional harvest time, two cuts with a delayed first cut and three cuts. The four sub‐plot fertilizer treatments were an unfertilized control, application of a phosphorus and potassium (PK) fertilizer, application of a nitrogen (N) and PK fertilizer to the first cut only (N1PK) and application of PK plus N applied to each of two, three or four cuts (Nc PK). Application of fertilizer influenced yield and botanical composition of herbage more than the cutting treatments while the opposite occurred for nutritive value of the herbage. Application of fertilizer increased the proportion of tall grasses in Experiment 1 and forbs in Experiment 2. The proportion of Equisetum palustre, present only in Experiment 1, was reduced from 0·33 to less than 0·01 by increased cutting frequency together with the NPK fertilizer treatments. In Experiment 1 diversity of vascular plants was negatively affected only by the four‐cuts treatment while on both wet grasslands other cutting and fertilizer application treatments had no effect. Changes in DM yield of herbage caused by the cutting and fertilizer application treatments were similar for both vegetation types with DM yield increased significantly by fertilizer application but only slightly or not reduced by increasing the cutting frequency. Nutritive value of herbage was positively correlated with cutting frequency and was most influenced at the first cut.  相似文献   

2.
The addition of cool‐season, tall fescue [Lolium arundinaceum (Schreb.) Darbysh.], to warm‐season, bermudagrass [Cynodon dactylon (L.) Pers.], pastures can improve forage productivity and nutritive value. Effects of four binary mixtures consisting of cv. Flecha (incompletely summer dormant) and cv. Jesup (summer active) tall fescue overseeded into established stands of cv. Russell and cv. Tifton 44 bermudagrass and three seasonal N treatments were evaluated on dry‐matter (DM) yield, crude protein (CP), in vitro true digestible DM (IVTDDM), acid detergent fibre (ADF) and neutral detergent fibre (NDF). Nitrogen‐timing treatments were 168 kg N ha?1 (as ammonium nitrate) split into three applications per season with an additional 8·6 t ha?1 of broiler litter (as‐is moisture basis) split into two applications varied to favour either tall fescue (in October and January), bermudagrass (in March and May) or both grasses (in January and March). Treatment effects were determined in samples of mixed herbage harvested in April, May, July, August and September of 2009 and 2010. Regardless of bermudagrass cultivar, herbage DM yield was greater (< 0·05) in Flecha–bermudagrass than Jesup–bermudagrass in July of both years and in August 2010. Nutritive value generally was greatest in Jesup–Tifton 44, based on high CP and IVTDDM, and low ADF and NDF. Averaged across mixtures, avoiding fertilizer N and litter applications beyond April increased (< 0·01) DM yield in April and May and IVTDDM in July (603 vs. 629 g kg?1; 2‐year average) and August (618 vs. 660 g kg?1) compared with applications in January–July. The timing of N and broiler litter applications on tall fescue–bermudagrass to favour growth of tall fescue appeared to increase fescue cover during the cool season and nutritive value of the mixed herbage during the warm season.  相似文献   

3.
The effect of humic substances on the nutrient uptake, herbage production and nutritive value of herbage from sown grass pastures was studied in six field experiments. Commercial humic substances were applied in combination with mineral fertilizer or slurry, either as a solution (HF liquid; 8·3 kg humic substances ha−1) or incorporated into the mineral fertilizer (HF incorporated; 3·6 to 6·4 kg humic substances ha−1). A series of cuts, ranging from two to five cuts, was taken during the growing season. The general response in herbage production to application of humic substances was an increase in herbage mass of dry matter (DM) at the first cut although this was only significant in two experiments for the HF incorporated treatment. Total herbage production of DM over the growing season, however, was similar for treatments with or without application of humic substances. The overall effect of HF incorporated and HF liquid on the herbage mass of DM at the first cut across the experiments was calculated using a meta-analysis technique and it was shown that there was a significant proportional increase of 0·14 ( P  <   0·05) with the HF incorporated treatment and a non-significant increase of 0·08 with the HF liquid treatment compared to the control treatment. The nutritive value of the herbage at the first cut was similar across all treatments. In general nitrogen, phosphorus and potassium uptake at the first grass cut was higher after application of humic substances but only in one experiment was this increase statistically significant.  相似文献   

4.
This small‐plot field study evaluated food processing liquid slurry (FPLS) as a potential fertilizer for tanner grass (Brachiaria arrecta) production on an acidic loam soil. The treatments, arranged in a randomized complete block design with three replicates, consisted of an unfertilized control, inorganic fertilizer applied at 50 and 200 kg nitrogen (N) ha?1 with and without phosphorus (P) at 50 kg P ha?1, and FPLS applied at 50 and 200 kg N ha?1. Compared to the unfertilized control, the FPLS applied at 200 kg N ha?1 significantly increased grass dry‐matter yield (DMY), herbage crude protein (CP) and P content, and N and P uptake in the second of two trials and P uptake in both trials. However, DMY and contents, of CP and P were generally lower for the FPLS treatments compared to the inorganic fertilizers. Apparent N recovery was higher for the inorganic fertilizer treatments than FPLS treatments in trial 1, while apparent P recovery was similar among all treatments in both trials. The FPLS treatments did not significantly increase soil NO3‐N and P concentrations, but increased NH4‐N in the 0–15 cm layer. The results suggest that application of FPLS to tanner grass pastures is an alternative to its disposal in landfill.  相似文献   

5.
Effects of timing and rate of N fertilizer application on concentrations of P, K, S, Ca, Mg, Na, Cl, Mn, Fe, Cu and Zn in herbage from perennial ryegrass/white clover pastures were studied at two sites in south-western Victoria, Australia. Nitrogen fertilizer (0, 15, 25, 30, 45 and 60 kg ha–1) was applied as urea in mid-April, early May, mid-May, early June and mid-June 1996 to pastures grazed by dairy cows. At Site 1, N fertilizer resulted in a linear increase in P, K, S, Mg and Cl concentrations in herbage and a linear decrease in Ca concentration. For all times of application, concentrations of P, K, Ca, Mg and Cl in herbage increased by 0·0048, 0·08, −0·010, 0·0013 and 0·053 g kg–1 dry matter (DM) per kg N applied respectively. For S concentration, maximum responses occurred in mid-May (0·012 g kg–1 DM per kg N applied). At Site 2, N fertilizer resulted in a linear increase in P, S and Na concentrations in herbage, a linear decrease in Ca concentration and a curvilinear increase in K and Cl concentration. The maximum responses for P, S and K concentrations in herbage occurred for the N application in mid-June and were 0·015, 0·008 and 0·47 g kg–1 DM per kg N applied respectively. For Cl concentration, the maximum response occurred for the N application in early June and was 0·225 g kg–1 DM per kg N applied. Overall, applications of N fertilizer up to 60 kg ha–1 did not alter herbage mineral concentration to levels that might affect pasture growth or animal health.  相似文献   

6.
Little is known about the long-term effects of mineral N, P and K application on the nutritional status of mown alluvial grasslands. We asked how long-term fertilizer application affected soil chemical properties, plant species composition, herbage production, nutrient concentrations in soils and plants and balance of nutrients. Six treatments (control, PK, N50PK, N100PK, N150PK and N200PK) were investigated at the Černíkovice Experiment (Czech Republic) established in 1966 on an Alopecurus pratensis meadow, using annual application rates of 50, 100, 150 and 200 kg N, 40 kg P and 100 kg K ha−1. Data were collected and analysed for 2007, 2008 and 2009. Although fertilizers had been applied over 45 years, differences in soil chemical properties between fertilization treatments were small. The legumes Lathyrus pratensis and Trifolium repens responded highly positively to PK application, and tall grasses, A. pratensis in particular, to NPK application. Herbage quality was high in terms of content of major nutrients, and its chemical properties varied considerably between treatments, cuts and years. Mean annual herbage yield ranged from 6·1 in the control to 9·7 t ha−1 in the N200PK treatment. Herbage production was N-limited in 2007 and 2009, but not in 2008. Seasonal N agronomical efficiency ranged from 4·2 to 22·9 kg of DM herbage per kg of applied N. The herbage N:P and N:K ratios did not reflect the actual response of herbage production to N application. A negative balance between N applied and N removed in harvested herbage was recorded in all treatments. We concluded that in highly productive alluvial grasslands, mineral-rich soils can respond weakly to N, P and K application, fertilizer application modifies plant species composition and herbage production is not N-limited in all years. Nutrient ratios must be interpreted with caution for the estimation of nutrient limitation.  相似文献   

7.
A rare stay‐green allele transferred from meadow fescue (Festuca pratensis L.) to perennial ryegrass (Lolium perenne L.) has improved both the colour of turf and the nutritive value of herbage. In this study its effect on shoot density and forage yield was assessed. Equivalent populations of perennial ryegrass were constructed with and without the stay‐green allele, following eight generations of backcrossing to perennial ryegrass. The stay‐green population, the normal population and the cv. AberStar were compared over two harvest years (2005 and 2006) in a field experiment with six application rates of N fertilizer (100, 200, 300, 400, 500 and 600 kg ha?1 annually). There were no significant interactions between level of N fertilizer and population in any of the traits measured. The mean annual dry‐matter (DM) yield over all populations and fertilizer levels was 6·45 t ha?1 lower in the second harvest year. Mean annual DM yields over all fertilizer levels of the normal population were higher than, or equal to, AberStar while those of the stay‐green population were significantly (proportionately 0·10–0·13) lower than the normal population. In 2005, the mean total yield of N in the herbage of the stay‐green population was 0·09 lower than that of the normal population and the mean concentration of N over all harvests was 1·5 g kg?1 DM higher. The shoot density of the stay‐green population after the last harvest in November 2006 was 0·18 lower than that of the normal population (3689 and 4478 shoots m?2 respectively).  相似文献   

8.
The effects of levels of application of potassium (K) fertilizer, and its interactions with both nitrogen (N) fertilizer and the growth interval between fertilizer application and harvesting on ryegrass herbage yield and chemical composition, and the fermentation, predicted feeding value, effluent production and dry-matter (DM) recovery of silage were evaluated in a randomized block design experiment. Twenty plots in each of four replicate blocks received either 0, 60, 120, 180 or 240 kg K ha?1, each at either 120 or 168 kg N ha?1. Herbage from the plots was harvested on either 24 May or 8 June and ensiled (6 kg) unwilted, without additive treatment, in laboratory silos. Immediately after harvesting, all plots received 95 kg N ha?1 and were harvested again after a 49-day regrowth interval. From the primary growth, herbage DM yields were 6·31, 6·57, 6·74, 6·93 and 6·93 (s.e. 0·091) t ha?1, herbage K concentrations were 15·5, 16·2, 19·1, 22·4 and 26·1 (s.e. 1·06) g kg?1 DM and herbage ash concentrations were 57, 63, 71, 73 and 76 (s.e. 0·9) g kg?1 DM, and for the primary regrowth herbage DM yields were 2·56, 2·73, 2·83, 2·94 and 2·99 (s.e. 0·056) t ha?1 for the 0, 60, 120, 180 and 240 g K ha?1 treatments respectively. Otherwise, the level of K fertilizer did not alter the chemical composition of the herbage at ensiling. After a 120-day fermentation period the silos were opened and sampled. The level of K fertilization had little effect on silage fermentation and had no effect on estimated intake potential, in vitro DM digestibility (DMD), DM recovery or effluent production. Increasing N fertilizer application increased silage buffering capacity (P < 0·05) and the concentrations of crude protein (P < 0·001), ammonia N (P < 0·01) and effluent volume (P < 0·01), and decreased ethanol concentration (P < 0·05) and intake potential (P < 0·05). Except for the concentrations of lactate and butyrate, delaying the harvesting date deleteriously changed the chemical composition (P < 0·001) and decreased intake potential (P < 0·001) and DMD (P < 0·001) of the silages. It is concluded that, other than for K and ash concentration, increasing the level of K fertilizer application did not alter the chemical composition of herbage from the primary growth or the resultant silage. Also, the level of K fertilizer application did not affect predicted feeding value, DM recovery or effluent production. Herbage yield increased linearly with increased fertilizer K application. Except for acetate and ethanol concentrations, there were no level of K fertilizer application by level of N fertilizer application interactions or level of K fertilizer application by harvest date interactions on silage fermentation or predicted feeding value. Increasing N fertilizer application from 120 to 168 kg ha?1 had a more deleterious effect on silage composition and feeding value than increasing K fertilizer application from 0 to 240 kg ha?1. Delaying harvesting was the most important factor affecting herbage yield and composition, and silage composition and had the most deleterious effect on silage feeding value.  相似文献   

9.
Eight varieties of perennial ryegrass (six new varieties and two old ones) grown at five levels of applied fertilizer (100, 200, 300, 400 and 500 kg of N ha–1) were cut monthly during two growing seasons (March to October in 1997 and 1998) and their herbage dry‐matter (DM) yield and nitrogen (N) content were determined. Herbage leaf content and the N content of young fully expanded leaves were also measured in 1997, and monthly recovery of applied N was determined in both the first and second harvest years by using 15N. The rank order of varieties was similar for annual yield of DM and N at all five fertilizer levels. Proportional differences between varieties in DM yield were greatest in the first cut of each year, the late‐heading candidate variety Ba12151 out‐yielding the old late‐heading variety S23 by more than 70%. However, differences in annual DM yield were much more modest than in early spring yield, up to 10% in 1997 and up to 21% in 1998. The relatively small differences in total annual DM yield were attributed to only a small proportion of the applied N being recovered during a single regrowth period, most of the remainder becoming available for uptake in subsequent regrowth periods. There were small but highly statistically significant differences among varieties in the N content of their leaves, leaf N content being inversely related to yield of DM and N. This lends further support to the hypothesis that the metabolic cost of protein synthesis and turnover is a key factor controlling genetic variation both in leaf yield and in annual DM and N yield under frequent harvesting. Seasonal variation in herbage N content was much greater than differences among varieties in mean N content over all harvests. In May of both years at all applied fertilizer levels, herbage N content fell below the 20 g N kg–1 DM level required by productive grazing animals.  相似文献   

10.
Fertilizer‐nitrogen (N) management is a decisive factor in grass‐based, intensive dairy farming, as it strongly influences economic and environmental performance but little attention has been paid to providing guidance on N‐fertilizer management at an operational level to meet these criteria of performance. Essential criteria in operational N‐fertilizer management were identified as target dry matter (DM) yield of herbage, growth period per cut, herbage N concentration, N use efficiency (NUE), amounts of unrecovered N and marginal N response. Statistical relationships between fertilizer‐N application rates per cut and these criteria were derived from field experiments. These relationships were then used to explore the effects of the criteria on optimum fertilizer‐N applications. Optimum fertilizer‐N rates depended strongly on target levels for NUE, amounts of unrecovered N, growth period and DM yield of herbage. Calculations showed that target DM yield of herbage and growth period per cut are essential in estimating the effect of applied N on marginal N response, NUE and amounts of unrecovered N. The derived relationships can be used to explore the effects of changes in target levels of the criteria on optimum fertilizer‐N applications. The study showed that operational fertilizer‐N management set constraints to the decisions made at strategic and tactical management levels and vice versa.  相似文献   

11.
Monocultures of thirteen perennial C3 grass species that co‐occur in temperate semi‐natural grassland communities in Europe were compared in a factorial field design of two levels of N supply and two levels of cutting frequency. Above‐ground yield of dry matter (DM), crude protein (CP) concentration and pepsin‐cellulase DM digestibility of herbage were measured in two successive years. Species was the largest source of variability in yield of DM and DM digestibility of herbage, while CP concentration of herbage responded more to management factors. The highest mean DM yields and values of DM digestibility of herbage were achieved in spring for Festuca arundinacea and in autumn for Phleum pratense. Poa trivialis and Festuca rubra had the lowest DM yield and DM digestibility values, respectively, regardless of seasons and treatments. For all species CP concentration in herbage increased in response to an increase in cutting frequency and N supply by an average of 46 and 34 g kg?1 DM respectively. Differences between years and seasons indicated the importance of plant phenology on nutritional variables and the influence of environmental factors on species performance. Species ranking was compared according to their annual digestible DM and CP yields. The results show that some grasses have a nutritive value which is comparable to that of forages selected for high yields.  相似文献   

12.
Abstract The response of a long‐term, mixed‐species hayfield in Maine, USA, to commercial fertilizers and liquid dairy manure was evaluated over a 6‐year period, including the effects on yield, nutrient concentration and cycling, forage species composition and soil nutrient levels. Nutrient treatments included an unamended control, N fertilizer, NPK fertilizer and liquid dairy manure (LDM). The application rates of plant‐available N, P, and K were constant across treatments. Application of nutrients in any form increased forage yield, generally by 2–4 t dry matter (DM) ha?1 year?1. Yield from NPK fertilizer was 0·05–0·25 higher than from LDM, due to differences in N availability. Yield responses to P and K were minimal and there appeared to be no difference between P and K in fertilizer and manure. The forage sward became increasingly dominated by grass species as the experiment progressed; application of P and K in fertilizer or LDM allowed Agropyron repens to increase at the expense of Poa pratensis. Forage nutrient removal accounted for all applied N and K, and nearly all applied P, throughout the study period, demonstrating the important role these forages can play in whole‐farm nutrient management.  相似文献   

13.
The effectiveness of forages to prevent post‐calving hypocalcaemia, when used as a feed source for non‐lactating dairy cows, can be predicted by the dietary cation–anion difference (DCAD). Three to four weeks before calving, the ration of non‐lactating dairy cows should have a DCAD around ?50 mmolc kg?1 DM. In an experiment, swards, based on Timothy (Phleum pratense L.), were used to (i) evaluate the impact of two types (CaCl2 and NH4Cl) and four application rates of chloride fertilizer per season (0, 80, 160 and 240 kg Cl ha?1) in combination with two N application rates (70 and 140 kg N ha?1) on mineral concentrations and DCAD in the herbage, and (ii) determine the economically optimal rate of chloride fertilizer (Clop) for DCAD in herbage. Chloride and N fertilizers were applied in the spring and, after the first harvest in 2003 and 2004 at four locations that differed in K content of their soils. Two harvests were taken during each year. Averaged across N‐fertilizer application rates, harvests and locations, the highest rate of chloride fertilizer increased chloride concentration in herbage by 8·5 g kg?1 dry matter (DM) and decreased DCAD in herbage by 190 mmolc kg?1 DM to values as low as ?9 mmolc kg?1 DM. Both types of chloride fertilizer had the same effect on chloride concentration and DCAD in herbage and had no effect on DM yield. When no chloride fertilizer was applied on soils with a high content of available K, application of N fertilizer increased DCAD in herbage by 47 mmolc kg?1 DM at both harvests. Herbage DCAD was lower in summer than in spring by 47–121 mmolc kg?1 DM depending on the location. Application of chloride fertilizer can effectively lower the DCAD of Timothy‐based herbages; the economically optimal rate of chloride fertilizer in the spring varied from 78 to 123 kg Cl ha?1, depending on soil K and chloride contents and expected DM yield.  相似文献   

14.
Efficient use of cattle-slurry to avoid nitrogen (N) leaching and other losses is important in designing intensive dairy systems to minimize pollution of air and water. The response in dry-matter (DM) yield of herbage and nitrate-leaching potential to different rates and timing of application of N as cattle slurry and/or mineral fertilizer in a double-cropping system producing maize ( Zea mays L.) silage and Italian ryegrass ( Lolium multiflorum Lam.) was investigated in north-west Portugal. Nine treatments with different rates and combinations of cattle slurry, and with or without mineral-N fertilizer, applied at sowing and as a top-dressing to both crops, were tested and measurements were made of DM yield of herbage, N concentration of herbage, uptake of N by herbage and amounts of residual soil nitrate-N to a depth of 1 m, in a 3-year experiment. Regression analysis showed that the application of 150 and 100 kg of available N ha−1 to maize and Italian ryegrass, respectively, resulted in 0·95 of maximum DM yields of herbage and 0·90 of maximum N uptake by herbage. Residual amounts of nitrate-N in soil after maize ranged from 48 to 278 kg N ha−1 with an exponential increase in response to the amount of N applied; there were higher values of nitrate-leaching potential when mineral-N fertilizer was applied. The results suggest that it is possible in highly productive maize/Italian ryegrass systems to obtain high DM yields of herbage for maize silage and Italian ryegrass herbage with minimal leaching losses by using slurry exclusively at annual rates of up to 250 kg available N ha−1 (equivalent to 480 kg total N ha−1) in three applications.  相似文献   

15.
Two small-plot experiments were carried out to assess the influence on herbage dry matter (DM) production, chemical composition and soil fertility status of applying undiluted silage effluent at a range of application rates and intervals after a silage cut. In the first experiment, in 1990, silage effluent was applied at 25, 50, 100, 150 and 200 m3 ha?1 1, 8, 15 and 22 d after a silage cut in August. In the second experiment, in 1991, silage effluent was applied at 7, 14, 21, 28, 35, 42, 49, 75, 100, 125 and 150 m3 ha?1 1, 4, 8, 15, 22 and 29 d after silage cuts were taken from different sites in May, July and August. An untreated control and an Inorganic fertilizer treatment were incorporated in both experiments. The immediate effects of the treatments on herbage yield, chemical composition and soil nutrient status were assessed 6–8 weeks after the initial application; residual effects on herbage and soil fertility were measured at a subsequent harvest. Compared with the untreated control, herbage yield increases were obtained with increasing rates of effluent application. Although there was evidence that higher yields could be obtained from earlier applications, up to 50 m3 ha?1 of effluent could be applied up to 15 d after taking a silage cut with little damage to the sward. Delaying the timing of application, and increasing the application rate, increased the proportion of the sward which was damaged; this reached a maximum of 0·84 when the highest application rates were applied 29 d after a silage cut. The increase in the proportion of dead herbage in the sward, associated with increasing rate of effluent application, reduced the quality of the herbage harvested in Experiment I. In Experiment 2 the N, P and, in particular, the K content of the herbage increased with increasing rate of effluent application, whereas the effect on Mg content was variable with contents generally being less than 2·0 g kg?1 DM. Apparent recovery of nutrients applied in the effluent was both low and variable ranging from 0·58 to ?0·03 for N, 0·10 to ?0·005 for P, 0·34 to ?0·02 for K and 0·21 to ?0·002 for Mg over both experiments. Effluent had little effect on soil pH, whereas P and, in particular, K contents increased with increasing rate of effluent application. There was evidence that effluent had a beneficial effect on both herbage yield and chemical composition at the residual cut, the extent depending upon rate and time of effluent application.  相似文献   

16.
Silvopastoral systems in the Appalachian region of the USA could increase the carrying capacity of livestock and contribute to a reliable supply of high‐quality herbage. In 2000, 2001 and 2002, the influence of solar radiation [0·20, 0·50 or 0·80 of maximum solar radiation (MSR); treatments 20‐, 50‐ and 80‐MSR respectively] on the productivity and nutritive value of a mixture of sown grasses and legumes established under a mature stand of conifers was investigated. Yields of dry matter (DM), crude protein (CP), total non‐structural carbohydrates (TNC) and total digestible nutrients (TDN) were greater for the 80‐MSR treatment except in 2000 when DM yield did not differ. As a proportion of the sward, introduced species (Dactylis glomerata L., Trifolium repens L., and Lolium perenne L.) increased over time for the MSR‐80 treatment, corresponding with a decrease in the proportion of bare area and of non‐introduced species. CP concentration of herbage was 207 g kg?1 DM or greater across treatments and years with higher concentrations on the 20‐ and 50‐MSR treatments. Herbage from the 80‐MSR treatment had a greater concentration of TNC than that of the 20‐ and 50‐MSR treatments. Estimated concentration of TDN was similar for all treatments in 2000 and greater for the 80‐MSR treatment than the other two treatments in 2001 and 2002. High CP concentrations in herbage, as a result of appropriate thinning of trees in an Appalachian silvopastoral systems, could be utilized as a protein supplement to herbage with low CP and higher fibre concentrations.  相似文献   

17.
The role of the legume in the nitrogen (N) cycle was examined in grazed pastures receiving no N fertilizer of both temperate and tropical regions by simulating the fluxes of N through different processes of the cycle. The amounts of legume-fixed N required to balance the cycle without invoking a drain on soil organic N reserves (i.e. no net N mineralization) was estimated to vary from 38 to 53% of the above-ground herbage N or from 20 to 31% on a dry matter (DM) basis for tropical pasture systems with a range of pasture utilization of 10–40%. At higher pasture utilization levels of 50-70%, more typical of intensively grazed temperate pastures, the N input requirement in the absence of fertilizer N would be 57-67% of the aboveground herbage N or 35-45% DM. An examination of the role of each contributory process of recycling (viz. excreta returns, internal cycling or remobilization from senescing tissues, litter decomposition) suggests that variations in the amounts of internally cycled N would have the greatest impact on the requirement for biologically fixed N at low levels of pasture utilization (10-40%), while at high pasture utilization levels of 70%, variations in the recovery of excreta-N would have a major effect on the requirement for fixed-N to balance the cycle. The amounts of biologically fixed N required to sustain a range of herbage DM yields of 3-22 t DM ha ?1 yr?1 would range from 15 to 158 kg N ha?1 yr?1 for tropical pastures. For intensively managed temperate pastures producing 6-15 t DM ha?1 yr?1 with a N content of 3·5%, a range of fixation of 120-352 kg N ha?1 yr?1 is required. These simulations indicate how legume contents of 20-45% of herbage DM could contribute to productive and sustainable (in terms of N) pasture systems of both temperate and tropical regions  相似文献   

18.
Three small plot experiments were conducted to investigate the effects of species of grass and forbs, defoliation regime, inclusion of white clover and forb blend on the herbage dry matter (DM) yield, botanical composition and mineral content of swards managed with zero fertilizer inputs. The results of all three experiments were characterized by decline in herbage production and large variations in treatment effects over the harvest period.
When sown singly with a standard grass mix the species that competed well with grasses and produced annual forb herbage yields greater than 20 t DM ha−1 were black knapweed, oxeye daisy, ribwort plantain, burnet, birdsfoot trefoil, chicory, kidney vetch, red clover and white clover. When sown singly with a standard forb mix, grass species significantly affected the annual yield of total ( P <005). grass ( P <001) and forb ( P <0.001) herbage. The species that most surpressed the yield of forbs were common bent, Yorkshire fog and perennial ryegrass. Those that allowed for the highest yield of forbs were rough meadow grass, sweet vernal grass and crested dogstail. Averaged over the three harvest years, defoliation regime did not significantly affect herbage production, but the inclusion of white clover in mixtures increased the yield of grasses ( P <0.01) The use of rosette-type forb blends increased forb yield ( P <0.01), compared with erect-type blends.
The effects of treatments on herbage N and mineral contents and yields were inconsistent. However, there was some evidence to support the view that the presence of forb species in swards can result in greater contents of minerals in herbage, compared with grass-only swards.  相似文献   

19.
The increasing cost of N fertilizer has stimulated an interest in sourcing protein from warm‐season legumes among beef cattle producers in the tropical/subtropical areas of the world. The objective of this study was to evaluate effects of two strategies of incorporating cowpea [Vigna unguiculata (L.) Walp.] into bahiagrass (Paspalum notatum Flügge) pastures on the herbage characteristics and performance of grazing cow–calf pairs. The study was conducted in Ona, Florida, USA, from May to August in 2007 and 2008. Experimental units were 1·0 ha. Treatments were bahiagrass pasture alone (control), 50:50 bahiagrass–cowpea pasture (cowpea), bahiagrass pasture with a cowpea creep grazing area (0·1 ha, creep grazing) and bahiagrass pasture with a creep‐fed concentrate [(creep feeding; 10 g kg?1 body weight (BW)]. The cowpea pastures had lower herbage mass [HM, 1·8 vs. 3·7 t ha?1] and herbage allowance [HA, 0·8 vs. 1·4 kg DM kg?1 live weight (LW)] compared with the other treatments. Cowpea had greater CP (CP, 160 g kg?1) and in vitro digestible organic matter (IVDOM), (600 g kg?1) than bahiagrass (110 and 490 g kg?1 respectively); however, cowpea HM was only 0·9 t ha?1 in May and 0·7 t ha?1 in June, but it did not persist in July and August. Calves receiving the creep feeding treatments had greater average daily gain (0·8 vs. 0·7 kg d?1) than calves in other treatments. Further research is necessary to exploit the superior nutritive value of cowpea in grazing systems in the south‐eastern USA.  相似文献   

20.
The impact of various starter phosphorus (P) fertilizers on the growth, nutrient uptake and dry‐matter (DM) yield of forage maize (Zea mais) continuously cropped on the same area and receiving annual, pre‐sowing, broadcast dressings of liquid and semi‐solid dairy manures was investigated in two replicated plot experiments and in whole‐field comparisons in the UK. In Experiment 1 on a shallow calcareous soil (27 mg l?1 Olsen‐extractable P) in 1996, placement of starter P fertilizer (17 or 32 kg ha?1) did not benefit crop growth or significantly (P > 0·05) increase DM yield at harvest. However, in Experiment 2 on a deeper non‐calcareous soil (41 mg l?1 Olsen‐extractable P) in 1997, placement of starter P fertilizer (19 or 41 kg P ha?1), either applied alone or in combination with starter N fertilizer (10 or 25 kg N ha?1), significantly increased early crop growth (P < 0·01) and DM yield at harvest by 1·3 t ha?1 (P < 0·05) compared with a control without starter N or P fertilizer. Placement of starter N fertilizer alone did not benefit early crop growth, but gave similar yields as P, or N and P, fertilizer treatments at harvest. Large treatment differences in N and P uptake by mid‐August had disappeared by harvest. In field comparisons over the 4‐year period 1994–97, the addition of starter P fertilizer increased field cumulative surplus P by over 70%, but without significantly (P > 0·05) increasing DM yield, or nutrient (N and P) uptake, compared with fields that did not receive starter P fertilizer. The results emphasized the extremely low efficiency with which starter P fertilizers are utilized by forage maize and the need to budget manure and fertilizer P inputs more precisely in order to avoid excessive soil P accumulation and the consequent increased risk of P transfer to water causing eutrophication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号