首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
氨氮和亚硝酸氮对南美白对虾的毒性研究   总被引:52,自引:2,他引:52  
用通常的生物毒性试验方法进行了氨氮和亚硝氨氮对体长5cm南美白对虾的急性毒性试验。在海水pH8.15、水温T=27℃、盐度S=20.0‰条件下,求得了两种物质对南美白对虾24h、48h、72h、96h的半死浓度,提出总氨氮和非离子氨氮对南美白对虾的安全浓度分别为2.667mg/L和0.201mg/L,亚硝酸氮的安全浓度为5.551mg/L。氨氮对南美白对虾的毒性强于亚硝酸氮,并提出降低氨氮和亚硝酸氮含量的措施。  相似文献   

2.
本实验以非生物絮团养殖模式作为对照,研究了生物絮团凡纳滨对虾养殖模式中,水质因子氨氮和亚硝酸氮的变化规律。结果表明:试验组的生物絮团沉积量至第35天达到峰值(15.93±0.31)m L/L,而后保持相对稳定状态,对照组的生物絮团量一直处于极低水平(1.5 m L/L),两组之间差异显著(P0.05);对照组氨氮含量至第35天达到峰值(1.05±0.19)mg/L,试验组氨氮含量增加缓慢,至第60天时仅为(0.37±0.04)mg/L,显著低于对照组(P0.05);在实验的前15天,实验组和对照组的亚硝酸氮含量无显著差异(P0.05),随后试验组亚硝酸氮含量增速减慢并趋于稳定,而对照组则直线上升,对照组亚硝酸氮含量显著高于试验组(P0.05)。  相似文献   

3.
硝化细菌对海水水族箱硝化功能建立过程的影响   总被引:2,自引:1,他引:1  
氨和亚硝酸盐对海水观赏鱼具有很强的毒害作用,是海水水族箱的主要去除目标。研究考察投加硝化细菌对海水水族箱硝化功能建立的影响。结果表明,投加硝化细菌制剂可以明显缩短硝化功能建立的时间。投加菌剂的实验组水族箱可在9 d时间将40 mg/L氨氮降低到检测不出,亚硝酸氮在第七天出现峰值(37.4 mg/L),亚硝酸氮在第十五天降低到检测不出。不投加菌剂的对照组将40 mg/L氨氮降低到检测不出需要25 d,亚硝酸氮在第二十五天出现峰值(36.6 mg/L),亚硝酸氮在第四十三天降低到检测不出。即实验组完成硝化功能建立需要15 d,而对照组则需要43 d。投加硝化细菌制剂后,海水水族箱内氨氧化细菌、亚硝酸盐硝化细菌可在短时间内形成优势,使氨氮、亚硝酸氮维持在较低浓度水平,缩短硝化系统建立的时间;在不投加菌剂的情况下,氨氧化细菌虽然可在一定时间内形成优势,使氨氮浓度降低,但由于亚硝酸氧化细菌生长更为缓慢,水族箱中亚硝酸积累问题严重。  相似文献   

4.
本研究由浅海网箱区富营养沉积物经多步富集和筛选获得高效复合生态净化菌群,对浅海养殖区的有机物、氨氮和亚硝酸氮有明显去除效果.研究了不同条件对复合菌液去除养殖水体中氨氮、亚硝酸氮和有机物能力的影响,并确定了最佳净化条件.结果表明,复合菌添加量、葡萄糖添加量,处理时间、温度、pH和盐度对复合菌的去除效果均有影响,实验条件确定为复合菌的添加量为3%、处理时间为4 d、温度为30±2 ℃、pH值为8.1±0.2、葡萄糖添加量为2 g/L和盐度为(30±10) g/L 时,去除效果达到最佳,此时氨氮、亚硝酸氮和溶解有机物的去除率可分别达到79.1%、85.2%和88.7%.  相似文献   

5.
通过探究活性酵素对凡纳滨对虾(Litopenaeus vannamei)生长及养殖池水质的影响,为稳定养殖池水质、提高饲料利用率提供技术支持。实验共设3组(实验组A、B和对照组),各组均投喂3餐/天,对照组不拌活性酵素,实验组A、B分别拌活性酵素2餐/天、3餐/天,试验周期为45 d。分别于投喂后的第15、30和45天测定凡纳滨对虾的体长和体重,并每3天测量养殖池pH、温度、溶解氧(DO)、氨氮和亚硝酸氮含量等水质指标,初始氨氮、亚硝酸氮含量均未检出。结果显示,使用活性酵素的2个实验组均能促进凡纳滨对虾的生长,拌料2餐的实验组A增重率为(962.02±13.55)%,高于拌料3餐的实验组B(726.58±16.04)%,实验组A体长为(5.50±0.14)cm,高于实验组B(4.70±0.15)cm,促生长作用显著(P0.05),说明活性酵素拌料2餐/天投喂为宜。对照组养殖池水的氨氮、亚硝酸氮含量波动大,分别高达(2.70±0.03)mg/L和(0.31±0.01)mg/L,而2个实验组的氨氮、亚硝酸氮含量始终低于0.5 mg/L和0.1 mg/L的安全浓度水平,表明活性酵素在稳定养殖池氨氮、亚硝酸氮含量方面的作用显著。3组的养殖池DO范围为10~13 mg/L、温度范围为19~23℃、pH值范围为7.5~8.4,表明活性酵素对养殖池DO、温度、pH无明显影响。上述结果说明,活性酵素拌料按照2餐/天投喂可显著提高凡纳滨对虾生长速度,同时能够有效抑制养殖池水中氨氮、亚硝酸氮含量的增加,调节改善养殖池水质。  相似文献   

6.
监测并分析了单独或组合加入光合细菌、益生菌(酵母与乳杆菌)和芽孢杆菌后,对虾养殖池凌晨水体中氨氮和亚硝酸氮的变化。试验分为6组,即3个单独添加组(益生菌组、芽孢杆菌组、光合细菌组)和3个组合添加组(光合细菌与芽孢杆菌组、益生菌与芽孢杆菌组、光合细菌与益生菌组)。结果表明,添加微生物制剂后,益生菌组、芽孢杆菌组、光合细菌与芽孢杆菌组、益生菌与芽孢杆菌组池塘水体中总氨氮水平提高了41%~99.8%;而光合细菌组、光合细菌与益生菌组无显著性变化,但亚硝酸氮水平有所升高(107%~210%)。单独添加组水体中总氨氮水平的变化强弱顺序为芽孢杆菌>益生菌>光合细菌,组合添加组为芽孢杆菌与益生菌组>芽孢杆菌与光合细菌组>益生菌与光合细菌组。试验期间各组养殖池中总氨氮浓度为0.51~1.94 mg/L、亚硝酸氮水平为0.016~0.096 mg/L,均在安全浓度以下,说明添加微生物制剂未引起池塘氨氮和亚硝酸氮的毒性问题。  相似文献   

7.
为了降低投入和提高单位水体的鱼载量,需要选择高效的水净化方法。流化床生物滤器结合了普通生物滤器和活性污泥法的优点,当生物滤器中水向上流动时,滤料会成悬浮态,流化床生物滤器可以减少固定床生物滤器经常发生的阻塞问题,实验结果:1、研究、设计制造出了养鱼生产上应用的流化床生物滤器及其配套设施,提出并优化了设计参数;流化床生物滤器的单元水处理能力为30~50t/h。2、优选了天然多孔、价廉、易得、比重适宜流化稳定的载体,与固定床生物滤器比较,流化床生物滤器的硝化率和过流率为同等条件下固定床生物滤器3倍。3、本系统养鱼可节水85~90%,建设费用和占地面积可减少50%。载鱼量为25±2Kg/m~3时,流化床生物滤器进水氨氮浓度为1.3mg/l,亚硝酸态氮为0.068mg/l。流化床生物滤器出水中,氨氮浓度为0.20mg/l,亚硝酸态氮浓度为0.024mg/l,符合渔业水质标准。氨氮去除率80~95%,亚硝酸态氮去除率65%以上。  相似文献   

8.
冷水鱼循环水养殖中的低温氨氮处理技术研究   总被引:1,自引:0,他引:1  
为解决冷水鱼养殖过程中养殖水体中的氨氮累积问题,根据低温生物滤器及臭氧催化氧化处理氨氮的特点,设计了冷水鱼工厂化养殖氨氮处理系统并进行了试验。试验基于以臭氧氧化为主、低温生物处理为辅的处理工艺,试验鱼为虹鳟鱼,养殖密度为23 kg/m3,试验水体约为10 m3,试验周期为7 d。结果表明,该系统能够满足冷水鱼工厂化养殖过程中有关氨氮处理的水质指标要求,处理后的养殖池进水口的水质指标总氨氮≤0.18 mg/L,硝酸盐氮氮≤29.43 mg/L,亚硝酸盐氮氮≤0.1 mg/L;养殖水体氨氮浓度监测表明,臭氧在水中残留低于0.008 mg/L,符合养殖鱼类对水体臭氧浓度的安全要求。  相似文献   

9.
利用异位生物絮团反应器,分别在有机碳源存在(第Ⅰ阶段,持续21 d)和有机碳源缺失(第Ⅱ阶段,持续21 d)阶段,比较研究了无机碳源(NaHCO_3)浓度为0.0 (对照组),0.5,1.0和1.5 g/L的模拟养殖废水对反应器生物絮团降氮及沉降性能的影响。结果显示,第Ⅰ阶段对照组出水氨氮浓度显著高于其他处理组,但总体上呈先下降后稳定的趋势,各组亚硝态氮和硝态氮均有少量积累;生物絮团生物量及沉降速度对照组显著低于处理组,处理组之间差异不显著。第Ⅱ阶段各组出水的氨氮、亚硝态氮浓度无显著差异,对照组硝态氮浓度高于各处理组,氨氮浓度迅速下降;此阶段生物絮团的生物量、沉降速度有所下降,NaHCO_3浓度为1.0 g/L处理组表现出较好的沉降效果;粒径分布也趋向均匀。整个实验阶段,不同浓度无机碳源处理条件下,氨氮的去除效率均达到97.8%以上,亚硝态氮无显著积累,处理组生物絮团沉降速度和生物量显著高于对照组。研究表明,添加无机碳源可提高生物絮团降氮性能,增强其沉降速度;移除有机碳源后,生物絮团反应器可维持氨氮去除能力,但引起硝态氮积累,生物絮团生物量减少;有机碳源缺失时,无机碳源(≥0.5 g/L)有助于生物絮团反应器保持其氨氮去除能力。  相似文献   

10.
复合硝化菌制剂对水质改良的应用效果   总被引:8,自引:0,他引:8  
室内静态水体中0.25mg/L复合硝化菌制剂使用后,7d内氨氮平均降解率为34.84%,亚硝酸盐氮的平均降解率为19.05%。0.5mg/L组氨氮平均降解率为45.05%,亚硝酸盐的平均降解率为41.79%。1.0mg/L组的氨氮平均降解率为55.26%,亚硝酸盐氮平均降解率为51.20%。氨氮和亚硝酸盐氮的最大的降解峰值出现6d之间。而养殖池塘中,0.5mg/L复合硝化菌制剂后,5d内氨氮的降解率为13.61%~28.03%,7d内亚硝酸盐氮的降解率为9.30%~25.58%。0.2mg/L复合硝化菌制剂使用后,6d内氨氮的降解为23.40%~34.75%,7d内亚硝酸盐氮的降解率为16.33%~36.13%。试验结果表明,复合硝化菌制剂在养殖池塘中使用后,有降解速度快、降解能力强、维持时间长等特点,适宜于作为净化和调控养殖水质的渔用微生物制剂使用。  相似文献   

11.
闭合循环水产养殖系统生产过程中生物过滤器功能的形成   总被引:15,自引:2,他引:13  
罗国芝 《水产学报》2005,29(4):574-577
生物过滤器对维持闭合循环水产养殖系统水质稳定起着核心的作用。生物过滤器存使用之前需要对生物膜进行培养、驯化,使生物过滤器有充分的硝化能力。生物过滤器硝化功能的建立一般需要较长的时间,淡水需要14~20d海水需要40~80d。在生产中因会产生较高浓度的氨氮、亚硝酸氮对饲养对象产生不良影响,增加养殖风险。  相似文献   

12.
采用上流式和下流式曝气生物滤池处理凡纳滨对虾(Litopenaeus vannamei)养殖污水,连续进行30 d,分析出水水质,并观察系统运行情况和装置污染状况。研究了养殖污水中化学需氧量、氨氮、硝酸盐氮、亚硝酸盐氮、无机氮及活性磷酸盐6项指标的去除效果。实验结果表明:从养殖污水主要污染物指标的去除效果和稳定性上看,上流式优于下流式曝气生物滤池。在系统进水化学需氧量质量浓度为7.62~8.20 mg/L、氨氮质量浓度为0.62~0.65 mg/L、硝酸盐氮质量浓度为0.54~0.59 mg/L、亚硝酸盐氮质量浓度为0.23~0.27 mg/L、无机氮质量浓度为1.40~1.47 mg/L、活性磷酸盐质量浓度为0.24~0.29 mg/L,水温为25℃~30℃时,上流式曝气生物滤池对养殖污水中6项指标的去除率分别为:45.2%、88.9%、58.5%、78.8%、75.3%和25.1%。可见,对氨氮的去除效果最佳,亚硝酸盐氮和无机氮次之,化学需氧量和硝酸盐氮的去除效果较差,活性磷酸盐去除率最低。  相似文献   

13.
不同水循环率对大菱鲆生长和水质的影响研究   总被引:2,自引:1,他引:1  
研究了封闭循环水养殖系统中不同水循环率对大菱鲆(Scophthalmus maximus)生长和水质变化的影响。试验设置4个水循环率梯度12,24,36,48次/d,大菱鲆初始平均体重为200.36 g。经43 d养殖,12次/d组大菱鲆最终平均体重为277.98 g/尾,而48次/d组达到了296.24 g/尾;12次/d组水体氨氮(TAN)和亚硝酸盐氮(NO2--N)浓度分别为0.41~1.50 mg/L和0.12~0.38 mg/L,而48次/d组分别为0.33~0.56 mg/L和0.05~0.09 mg/L。试验结果显示,提高水循环率可降低系统中氨氮和亚硝酸盐氮的积累速度,优化养殖水质,减小水中有害物质对大菱鲆的胁迫作用,从而加快大菱鲆的生长速度,但对化学需氧量(COD)的去除没有显著影响。  相似文献   

14.
单级生物接触氧化法去除海水养殖废水中的无机氮   总被引:1,自引:0,他引:1  
利用在填料上人工接种微生物组成的浸没式生物接触氧化单级处理系统对养殖废水进行净化,效果良好。在试验水体体积与处理系统体积之比约为100∶1的情况下,对氨氮、亚硝酸盐氮、硝酸盐氮起始质量浓度分别为4.0 mg/L、1.76 mg/L、800 mg/L,COD质量浓度为16.33 mg/L的养殖废水进行处理,发现处理系统中进行着强烈的硝化和反硝化作用:处理30 h,氨氮质量浓度下降并一直保持在0.1 mg/L;亚硝酸盐氮浓度48 h内,前6 h从1.76 mg/L短暂上升到2.24 mg/L,然后持续下降,最低到0.22 mg/L;对硝酸盐氮的反硝化作用能力也很强,经48 h处理,硝酸盐氮质量浓度从800 mg/L下降到180 mg/L。根据对处理过程中的水质测定,浸没式生物接触氧化单级处理试验系统具有较强的生物脱氮能力。  相似文献   

15.
在水温21~23℃,pH 8.2~8.5,溶解氧6.00~7.50mg/L的条件下,采用半静水法研究了非离子氨氮和亚硝酸盐氮对全长(1.6±0.2)cm、体质量为(0.11±0.05)g的暗纹东方鲀稚鱼的急性毒性效应。试验结果表明,暗纹东方鲀稚鱼受到非离子氨氮和亚硝酸盐氮胁迫后,先后出现鱼体体色变白、扭曲、侧游、失去平衡、昏迷等中毒症状。随着非离子氨氮和亚硝酸盐氮质量浓度的提高和胁迫时间的延长,暗纹东方鲀稚鱼死亡率逐渐升高,存在明显的剂量效应和时间效应关系。非离子氨氮和亚硝酸盐氮对暗纹东方鲀稚鱼96h半致死质量浓度分别为0.46mg/L(95%置信限0.34~0.64mg/L)和290.12mg/L(95%置信限255.16~329.87mg/L),安全质量浓度分别为0.046 mg/L和29.01mg/L。非离子氨氮和亚硝酸盐氮对暗纹东方鲀稚鱼具有一定毒性,且非离子氨氮毒性大于亚硝酸盐氮毒性。  相似文献   

16.
在海水闭合循环系统中加入常用剂量的呋喃唑酮 (C8H7N3 O5)、甲苯咪唑 (C16H13 N3 O3 )、土霉素 (C2 2 H2 4N2 O5.2H2 O)、氯霉素 (C11H12 O5N2 Cl2 )、CuSO4 FeSO4合剂、强氯精 (C3 Cl3 N3 O3 ,有效氯 6 2 .5 % )、甲醛 (CH2 O)等 7种常用渔药 ,确定系统把 10mg/L总氨氮 (NH4 N)硝化至较低水平 (CNH4 N<0 .0 5mg/L ,CNO2 N<0 .0 1mg/L)所需的时间及氧化过程中各主要水质指标的变化 ,并以此作为判断生物滤器的硝化能力是否受到影响的依据。结果表明 ,分别加入甲苯咪唑至 1、2、3mg/L(全水体质量浓度 ,其他同此 )、CuSO4 FeSO4合剂 (0 .5 0 .2 )mg/L、土霉素 1mg/L、氯霉素 1、2、3mg/L均对生物滤器硝化作用无明显影响 ;土霉素 2、3mg/L、强氯精 1mg/L或甲醛 10、2 0、30、4 0mg/L影响生物滤器对亚硝酸氮的氧化 ;分别以呋喃唑酮 1、2、3mg/L、重复添加氯霉素至 3mg/L、重复或直接添加强氯精至 2mg/L都影响氨氮、亚硝酸氮的氧化  相似文献   

17.
研究采用常规生物毒性实验方法,进行了亚硝酸氮对曼氏无针乌贼幼体的急性毒性实验,测定了在不同浓度亚硝酸氮急性毒性胁迫下,曼氏无针乌贼幼体内酸性磷酸酶(ACP),碱性磷酸酶(ALP)、超氧化物酶活性(SOD)和过氧化氢酶(CAT)的变化,并对其致死浓度进行了测定。结果表明,96 h的急性毒性实验对曼氏无针乌贼幼体的存活和免疫系统的活性有明显影响。在亚硝酸氮胁迫下,ACP活性在0.03 mg/L时急剧上升到最高,随胁迫浓度的增高,活性逐渐下降,在3.34 mg/L时低于对照组,在最高浓度胁迫下活性降到最低;ALP活性随亚硝酸氮胁迫浓度的增高也出现先增加后降低的趋势。SOD活性在亚硝酸氮胁迫下逐渐升高,在0.03 mg/L时达到最高,随后逐渐下降,但直到6.67 mg/L时才低于对照组;CAT活性也在0.03mg/L时即达到最高,但在0.67 mg/L时即低于对照组,并在最高浓度时降到最低。本实验还得出,亚硝酸氮的LC50(mg/L)为3.71 mg/L,安全浓度(mg/L)为0.013 mg/L。  相似文献   

18.
二、结果与讨论 试验(一)经过12天,实验(二)经过14天,其结果见表2、表3、图1、图2,各试验结果为两个平行组的平均值;温度 20—26℃;pH7.5─8.6;DO≥5mg/L,盐度20‰。 二.对氨氮及亚硝酸氮的影响 试验结果表明,在育苗水体中施用科新复合型活菌生物净水剂,能有效降低水中的氨氮和亚硝酸氮的含量,从而达到减少换水甚至不换水,降低生产成本的目的。 从表2和表3可以看出,施用四种不同的剂量,其降低氨氮和亚硝酸氮的效果基本一致,无显著差异。但与对照组比较降低氨氮和亚硝酸氮的效果是十分显…  相似文献   

19.
养殖水体中氨氮的存在、危害及控制   总被引:3,自引:0,他引:3  
1 氨氮在水中的存在及危害 氮元素在水中的存在形式主要有硝酸氮(NO3-)、亚硝酸氮(NO2-)、氨氮(包括分子态NH3和离子态NH4 )和氮气.水生植物直接吸收水中的氨氮和硝酸氮,水生动物通过摄食获得氮,生物死亡后,有机物被分解,氮又回到水中.  相似文献   

20.
在实验室规模下,以旋转式生物流化床(CB-FSB)为研究对象,研究了初始总氨氮(TAN)、水温及滤料膨胀率3种条件下,海水生物流化床生物过滤功能启动期间TAN和亚硝酸盐氮(NO-2-N)去除及amoA基因数量的变化。结果显示:生物流化床生物过滤功能启动所需时间随着水温的升高而缩短,在水温为15℃、20℃和25℃时,启动所需时间分别为27 d、25 d和23 d;初始TAN质量浓度的升高也会缩短生物流化床生物过滤功能启动所需要的时间,在初始TAN质量浓度为1 mg/L、2 mg/L、4 mg/L时,启动所需时间分别为24 d、22 d和21 d;在膨胀率为100%和150%时,启动所需时间无明显差别,分别为21 d和20 d,明显好于膨胀率为50%时启动所需时间27 d;amoA基因的数量变化与TAN去除率的变化有一定的相关性,并随着初始TAN浓度的升高而增多,在4 mg/L时数量最多,达到2.76×10~7copies/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号