首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
水性异氰酸酯胶合板与细木工板的研究   总被引:1,自引:0,他引:1  
以水性异氰酸酯胶粘剂试制胶合板和细木工板。研究结果表明,单板的材种和施胶量等对异氰酸酯胶合的板材性能有较大影响;采用异氰酸酯,胶合板用胶量较少,在施胶量为200g/m~2时,马尾松、杨木、荷木、枫木单板制成的胶合板胶合强度均能达到GB/T5849-1999的要求,枫木作中板的细木工板在施胶量为250g/m~2时胶合强度和横向静曲强度均达到国家标准;根据试验结果并结合生产实际的成本分析表明,胶合板成本增加了81~189元/m~3,细木工板的成本增加了120元/m~3和104元/m~3。  相似文献   

2.
采用常压空气介质阻挡放电等离子体对杨木单板表面进行改性处理,利用自制纳米纤维素改性大豆蛋白胶黏剂制备胶合板,研究等离子体处理工艺对杨木单板表面润湿性能和杨木胶合板胶合性能的影响,以期提高胶合板性能、降低施胶量,并从等离子体处理对微观形貌和化学组分两方面的影响分析其机理。试验结果表明:常压等离子体处理后,胶液在单板表面的初始接触角和平衡角相比未处理单板最大分别下降12.4%和46.3%,润湿性能得到明显改善;在达到Ⅱ类胶合板胶合性能的前提下可降低一定的施胶量;改性单板表面粗糙度提高,含氧官能团含量增加,均有利于胶液在单板表面的润湿。综合胶合板性能与经济效益,选择较优处理工艺条件为处理功率4.5 kW、处理速率14 m/min和单面施胶量140 g/m~2。  相似文献   

3.
以磷酸二氢铵(MAP)溶液为阻燃剂,通过浸泡尾叶桉单板,研究了单板的载药量;以Ⅱ类胶合强度为指标,利用正交试验对常规胶合板生产工艺进行了优选。在此基础上,选取浸泡时间和最优生产工艺试制了阻燃桉树胶合板,并对其Ⅱ类胶合强度和燃烧性能进行了检测。结果表明:不同厚度尾叶桉单板的载药量随浸泡时间的延长呈现相似的增长规律;试验所得常规尾叶桉胶合板最优生产工艺为施胶量210 g.m-2、热压温度130℃、热压时间8 min,该条件下胶合板的Ⅱ类胶合强度达到了2.01 MPa;单板浸泡8h后,单板平均载药量为32.05 kg.m-3,所制得阻燃胶合板氧指数提高了13.9%,炭化长度减少了8.3 mm(26.2%),阻燃性能明显提高,而胶合强度也达到了Ⅱ类胶合板的国家标准。研究初步证明利用常规桉树胶合板生产工艺生产阻燃桉树胶合板是可行的。  相似文献   

4.
以大豆蛋白胶和竹柳为原料制备胶合板。分析竹柳的密度、干缩性和大豆蛋白胶在竹柳单板表面的润湿性。采用单因子试验,分析施胶量、热压时间、单板厚度对胶合强度的影响规律。试验结果表明:竹柳的气干密度为0.401g/cm~3,属于低密度材。竹柳的气干差异干缩为2.12,全干差异干缩为1.68。大豆蛋白胶在单板上的接触角总是松面大于紧面,随着单板厚度的增加,接触角逐渐增大。大豆蛋白胶制备竹柳胶合板的最优工艺:施胶量350g/cm~2,热压时间80 s/mm。在此工艺下,使用不同厚度的单板生产的胶合板胶合强度均高于GB/T 9846-2015《普通胶合板》中Ⅱ类胶合板的要求。随着单板厚度的增加,胶合强度呈下降趋势,且大豆蛋白胶制备的胶合板的胶合强度低于UF制备的板材,但两者的力学性能均能达到国标的要求,说明大豆蛋白胶制备胶合板是可行的。SEM图像表明竹柳胶合板的管孔被压缩,但细胞本身并没有被压溃,仍保持着完整性。  相似文献   

5.
改性豆基蛋白胶黏剂的胶合工艺初探   总被引:2,自引:0,他引:2  
以杨木单板为试材研究了改性豆基蛋白胶黏剂的胶合性能,采用单因素实验方法,探讨了改性豆基蛋白胶黏剂压制胶合板的胶合工艺。分析了热压温度、热压时间和涂胶量对三层杨木胶合板胶合性能的影响。结果表明:采用改性后的豆基蛋白胶黏剂,在压力为1.4MPa,温度为165℃左右,热压时间为1.4~1.6 min/mm,涂胶量为220g/m~2,压制的杨木胶合板胶合性能较佳且达到Ⅰ类胶合板的标准。  相似文献   

6.
为获得无甲醛释放的环保胶合板,将热塑性树脂薄膜(低密度聚乙烯(LLDPE)、聚丙烯(PP)、聚氯乙烯(PVC))用作胶黏剂,并利用空气介质阻挡等离子体对热塑性树脂薄膜进行表面改性处理以提高薄膜与杨木单板的界面相容性,从而获得性能良好的环保胶合板。研究了等离子体处理对胶合板胶合性能的影响,并从等离子体处理对热塑性树脂薄膜表面化学组分及其对胶合板界面形貌的影响分析其胶合机理。结果表明:在等离子体处理功率为4.5 kW、处理时间为8 m/min的条件下处理热塑性树脂薄膜,胶合板的胶合强度得到显著提高,LLDPE/杨木胶合板的胶合强度从0.49 MPa增至0.81 MPa,PP/杨木胶合板的胶合强度从0.65 MPa提高到0.84 MPa,均达到Ⅱ类胶合板标准要求。其中用等离子体处理后PVC与杨木制备的胶合板能满足Ⅰ类胶合板的标准要求,胶合强度达到0.79 MPa。XPS分析表明,等离子体改性热塑性树脂薄膜的表面发生了氧化反应,引入了含氧官能团,提高了薄膜表面极性,有利于提高薄膜与杨木单板之间的相互作用,从而使得胶合板的界面胶合更为紧密,说明等离子体处理后树脂与杨木单板的相容性提高,树脂能在单板表面更好地附着。热塑性树脂薄膜与杨木单板制备的胶合板仅有极微量甲醛释放,其主要源于木材自身,远低于国家标准对人造板甲醛释放限量的要求。研究证明等离子体处理能明显改善热塑性树脂薄膜与杨木单板的界面相容性。  相似文献   

7.
以杨木单板为基材,低密度聚乙烯(LDPE)薄膜为胶黏剂制备木塑复合胶合板,探讨了单位面积上LDPE的质量、改性剂种类及热压工艺对木塑复合胶合板胶合强度的影响。结果表明:经过表面改性的杨木单板制备的胶合板胶合强度优于未改性单板制备的胶合板胶合强度;以KH-550为杨木单板表面改性剂(用量2%),采用121 g/m~2 LDPE薄膜,在温度160℃、时间8 min、压力2.0~2.2 MPa热压工艺条件下,制备的木塑复合胶合板胶合强度符合GB/T 9846—2015中Ⅱ类胶合板要求;表面改性单板表面接触角的检测结果表明,经硅烷偶联剂KH-550处理的木材表面接触角最小,其渗透性较好。  相似文献   

8.
本文以生长在长江 3种滩地类型 (江滩、洲滩、湖滩 )、3种栽植密度 ( 3m× 4m ,4m× 5m ,5m× 6m)下的 3个品系人工林杨树木材 [欧美杨无性系 72杨 (Populus×euramericanacv .Ⅰ - 72 / 58) ,美洲黑杨无性系 63杨 (P .deltoidescv .Ⅰ - 63/ 51)和 69杨 (P .deltoidescv .Ⅰ - 69/ 55) ]为对象 ,探讨了不同培育措施下人工林杨木旋切单板、胶合板质量。结果表明 :长江滩地 72、63、69杨生材旋切均能获得较低的单板厚度偏差和背面裂隙率与较高的胶合强度 ,但不同培育措施对胶事板的胶合质量有不同程度的影响。在 0 .0 5检验水平下 ,72、63、69杨 0 .0 1mm厚对单板背面裂隙率和胶合强度差异不显著 ;滩地类型对 72、63、69杨单板背面裂隙率影响不显著 ,对胶合强度影响均达显著 ;栽植密度对 72杨单板质量和胶合强度影响较显著 ,对 63、69杨单板质量影响较显著 ,对胶合强度影响不显著  相似文献   

9.
无醛大豆胶制备胶合板工艺及性能探究   总被引:2,自引:0,他引:2  
采用生物基无醛大豆胶,通过胶合板厂现有设备对大豆胶合板的制备工艺参数进行系列实验表明:杨木胶合板最佳涂胶量为340g/m~2(双面涂胶,下同)、热压温度105℃;桉木胶合板最佳涂胶量为380g/m~2、热压温度110℃;在1~6h闭口陈化时间内,杨木、桉木胶合板的胶合强度均略有降低,但均可制备出满足国家二类板强度要求的胶合板材。实际应用过程中,我们可以根据实际情况调整上述制备工艺,以达到最佳效果。同时,利用生物基无醛大豆胶制备的板材具有较好的耐久性。  相似文献   

10.
酶解木质素改性酚醛树脂胶黏剂的研究   总被引:3,自引:0,他引:3  
利用秸秆发酵制备能源酒精的残渣中提取的酶解木质素(EHL),部分代替苯酚合成改性酚醛树脂胶,并热压制得胶合板.测定了胶合板的胶合强度,改性树脂胶的黏度、固含量、水混合比、可被溴化物、游离酚、游离醛等性能指标.结果表明:木质素替代量达20%时,各项性能仍能基本达到国家标准Ⅰ类板的要求,特别是耐水性十分良好,水煮两次后胶合强度仍远大于国家标准Ⅰ类板≥0.7MPa的要求.  相似文献   

11.
采用巨尾桉基材、胶合剂聚乙烯膜制备三层木塑复合材料,分析热压温度、热压时间、热压压力、施胶量这四个因素对复合材料胶合强度的影响。结果表明:在热压温度160℃、热压时间50s/mm、热压压力0.7MPa、施胶量为119g/m2的工艺条件下,巨尾桉/聚乙烯膜复合材料的胶合性能最优,能够达到II类胶合板标准。  相似文献   

12.
研究三种添加剂(尿素、碳酸钠和乙酸甘油酯)对酚醛树脂(PF树脂)固化性能、适用期和胶接强度的影响。试验结果表明,在添加剂作用下,PF树脂胶合板的胶合强度能够达到GB/T 9846.3-2004《胶合板第3部分:普通胶合板通用技术条件》规定的Ⅰ类板要求,所需热压时间缩短;碳酸钠可最有效地实现PF树脂的快速固化,且对树脂的适用期影响较小。  相似文献   

13.
《林产工业》2021,58(7)
以竹单板、泡沫铝为原材料,采用中温固化型酚醛树脂胶黏剂制备竹单板泡沫铝夹芯复合材料。应用单因素试验结合响应曲面法,探究施胶量、热压温度和热压时间三因素对复合材料静曲强度和胶合强度的影响规律,对制备工艺进行优化。结果表明:三因素按影响复合材料力学性能程度大小依次排序为施胶量热压温度热压时间。通过构建复合材料的力学性能与施胶量、热压温度和热压时间之间的回归方程模型,得出优化的制备工艺条件为:施胶量340 g/m~2、热压温度132℃、热压时间1.5 mm/min,在此条件下制得的复合材料静曲强度为122.6 MPa,胶合强度为3.20 MPa,测量误差在3%以内。  相似文献   

14.
王金林 《木材工业》1994,8(3):1-6,11
用UF、MUF胶制作三种松木胶合板,分别就单板厚度、涂胶量及抽提物含量对胶合性能的影响,松木与柳安混合树种组坯、特殊添加剂对改善胶合性能的作用进行了研究。结果表明:除了老挝松边材MUF胶合板以外,1.5和2.0mm厚的单板胶合强度均达到或超过日本JAS普通胶合板的要求。合板胶合强度随单板厚度增加而下降,在一定范围内增加涂胶量可以提高合板胶合强度,混合组坯及施加特殊添加剂具有改善松木单板胶合性能的作用。  相似文献   

15.
近年来,铝基泡沫材料在汽车、航空航天领域表现出较好的应用潜力,但铝基泡沫材料抗弯强度和刚度方面性能较差,且价格昂贵,限制了其在建筑、高铁车厢板及场馆装潢等方面的使用。鉴于此,选用价格低廉、保温美观的竹单板作为面层材料,轻质低密度的泡沫铝作为芯层材料,并对其进行合理组坯及热压,得到自然美观、轻质高强的新型结构材料,从而使其广泛应用于建筑、家具、地板等基材中。以竹单板(横拼)和闭孔泡沫铝为原料,采用3组不同施胶量的卡夫特AB胶、环氧树脂AB胶和酚醛树脂胶3种胶黏剂对竹单板与泡沫铝的界面进行胶接,制备竹单板/泡沫铝夹芯复合材料,探究了不同类型的胶黏剂及施胶量对复合材料力学性能、吸水性能及界面胶合机理的影响。结果分析表明:选用施胶量为340 g/m~2的水溶性酚醛树脂作为胶黏剂所制备的复合材料,其静曲强度、弹性模量及胶合强度均达到最大值,24 h吸水厚度膨胀率和72 h吸水率达到最小值,且竹单板和泡沫铝通过胶黏剂使得界面紧密黏合。试验证明使用施胶量为340 g/m~2的酚醛树脂胶接得到的材料各项综合性能最优,有利于工业化生产和实际推广利用。  相似文献   

16.
胶合板用淀粉基水性异氰酸酯胶黏剂的研究   总被引:1,自引:0,他引:1  
对玉米淀粉进行化学改性,通过酸解、氧化、接枝等方法制得酸解氧化淀粉,以其作为AP胶的主要成分,应用于杨木单板的胶接,通过正交试验分析各因素对胶合板湿胶合强度的影响.试验结果表明,反应温度、反应时间、玉米淀粉乳浓度对胶合强度的影响较显著,以最佳配方胶黏剂压制的胶合板,其胶合强度达到GB/T 9846-2004 II类的要求.  相似文献   

17.
为提高胶合板性能,以苯丙/Si O2作为改性剂,通过物理共混的方法制备了改性脲醛树脂(UF)胶。研究了苯丙/Si O2改性剂添加量和改性UF胶施胶量对胶合板胶合强度和阻燃性能的影响。结果表明:随着改性剂添加量和施胶量的增加,胶合板的胶合强度和阻燃性能提高明显,但过量的改性剂添加量和施胶量会使胶合强度和阻燃性能有所下降,当施胶量为220 g/m2,改性剂添加量为15%时,制备的胶合板性能较佳,胶合强度为1.63 MPa,热释放总量为12.7 MJ/m2,释烟总量为213.79 m2/m2。  相似文献   

18.
以CCA为木材防腐剂,对中山杉单板进行防腐处理,然后热压成胶合板。研究结果表明:中山杉单板经防腐处理后制造的胶合板含水率、密度、胶合强度要略高于未经防腐处理的中山杉胶合板,且含水率与胶合强度均达到I类胶合板要求。单板经防腐处理后的胶合板弹性模量、静曲强度差异不显著。不同方法处理单板对胶合板载药量影响很大,其中满细胞法最高,浸泡法和双真空法相近,涂刷法最低。  相似文献   

19.
目前,胶粘剂成本的高低是影响人造板企业经济效益的主要因素之一。胶粘剂中添加填充剂、选择新的施胶法、采用高含水率胶合技术、对单板进行预处理、降低树脂的固定含量、提高单板质量、采用无胶胶合技术,都是减少胶合板耗胶量的具体措施。  相似文献   

20.
为解决醛系合成树脂胶黏剂甲醛释放、热稳定性差和阻燃效果较差的难题,探讨了一种功能叠加型无机镁质胶黏剂的制备技术,以期替代醛类合成树脂胶黏剂在木材工业上的使用。本研究中镁质胶黏剂的优化配方为n(MgO)/n(MgCl_2)=6,n(H_2O)/n(MgCl_2)=16,胶合板制备工艺为施胶量700 g/m~2(双面),冷压时间28 h,养护时间15 d。试验结果显示,养护天数对镁质胶黏剂制备胶合板胶合强度的影响最显著。当养护天数为3~19 d时,胶合板的干、湿胶合强度均呈现先增大后下降的趋势,13 d时干、湿胶合强度均达到峰值,干、湿胶合强度分别为1.40和1.08 MPa。通过对胶合板剪切破坏界面进行扫描电镜观察发现,镁质胶黏剂渗透到木材孔隙中形成了胶钉,产生了机械咬合结构。利用热重分析仪和锥形量热仪等对镁质胶黏剂的热稳定性和燃烧性能进行了测试,结果表明,镁质胶黏剂在本研究温度范围(30~800℃)内的总质量损失率为48%。在50 k W/m~2的热辐射功率下,镁质胶黏剂制备胶合板的平均热释放速率(HRR)为35.84 k W/m~2,总热释放量(THR)为20.97MJ/m~2。与普通酚醛树脂胶黏剂相比,镁质胶黏剂具有较好的热稳定性和阻燃性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号