首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
There is worldwide interest in adult plant resistance (APR) because of greater durability of APR to the cereal rusts. Peruvian bread wheat genotype ‘CPAN (Coordinated Project Accession Number) 1842’ (LM 50–53) has shown leaf rust resistance in disease screening nurseries since its introduction in 1977. However, it is susceptible at the seedling stage to several Puccinia triticina (Pt) pathotypes including the widely prevalent 77‐5 (121R63‐1) that infects bread wheat. Inheritance studies showed that CPAN 1842 carried a dominant gene for APR to pathotype 77‐5, which was different from Lr12, Lr13, Lr22a, Lr34, Lr35, Lr37, Lr46, Lr48, Lr49 and Lr68, based on the tests of allelism; and from Lr67, based on genotyping with the closely linked SSR marker cfd71. This gene should also be different from Lr22b as the latter is totally ineffective against pathotype 77‐5. CPAN 1842 therefore appears to be a new promising source of leaf rust resistance. Also having resistance to stem rust and stripe rust, this line can contribute to breeding for multiple rust resistances in wheat.  相似文献   

2.
Genetic basis of seedling-resistance to leaf rust in bread wheat 'Thatcher'   总被引:1,自引:0,他引:1  
A. N. Mishra    K. Kaushal    G. S. Shirsekar    S. R. Yadav    R. N. Brahma    H. N. Pandey 《Plant Breeding》2005,124(5):514-516
The bread wheat cultivar ‘Thatcher’ is documented to carry the gene Lr22b for adult‐plant resistance to leaf rust. Seedling‐resistance to leaf rust caused by Puccinia triticina in the bread wheat cultivar ‘Thatcher’, the background parent of the near‐isogenic lines for leaf rust resistance genes in wheat, is rare and no published information could be found on its genetic basis. The F2 and F3 analysis of the cross ‘Agra Local’ (susceptible) × ‘Thatcher’ showed that an apparently incompletely dominant gene conditioned seedling‐resistance in ‘Thatcher’ to the three ‘Thatcher’‐avirulent Indian leaf rust pathotypes – 0R8, 0R8‐1 and 0R9. Test of allelism revealed that this gene (temporarily designated LrKr1) was derived from ‘Kanred’, one of the parents of ‘Thatcher’. Absence of any susceptible F2 segregants in a ‘Thatcher’ × ‘Marquis’ cross confirmed that an additional gene (temporarily designated LrMq1) derived from ‘Marquis’, another parent of ‘Thatcher’, was effective against pathotype 0R9 alone. These two genes as well as a second gene in ‘Kanred’ (temporarily designated LrKr2), which was effective against all the three pathotypes, but has not been inherited by ‘Thatcher’, seem to be novel, undocumented leaf rust resistance genes.  相似文献   

3.
The protection provided by the leaf rust resistance gene Lr34 against Puccinia recondita f. sp. tritici was studied in the field over two seasons. In leaf-rust inoculated and fungicide-sprayed control plots, yield of RL6058, the ‘Thatcher’ backcross line with Lr34, was compared to that of the susceptible cultivar ‘Thatcher’. Leaf rust severity remained low on RL6058 in both seasons, but was high on ‘Thatcher’. The latent period of wheat leaf rust isolate 3SA132 in flag leaves of RL6058 was 256 h longer than in ‘Thatcher’. The uredinium density on ‘Thatcher’ was 14.4/cm2, compared to 3.7/cm2 flag leaf surface on RL6058. Leaf rust infection of ‘Thatcher’ reduced the total grain yield per plot by 25.4% and 1,000 kernel mass by 15.6%. Leaf rust caused little or no damage on RL6058 and rusted plots outyielded the control plots by 0.3 %. Seed weight of RL6058 was reduced by 0.7%. Compared to previous greenhouse studies, the adult-plant resistance conferred by Lr34 is more clearly expressed in the field. Evaluation of milling and baking quality characteristics revealed that compared to ‘Thatcher’, RL6058 had a higher flour protein content, but that its milling, dough development and baking properties were inferior.  相似文献   

4.
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is a devastating fungal disease in common wheat (Triticum aestivum L.) worldwide. Chinese wheat cultivars ‘Lumai 21’ and ‘Jingshuang 16’ show moderate levels of adult‐plant resistance (APR) to stripe rust in the field, and they showed a mean maximum disease severity (MDS) ranging from 24 to 56.7% and 26 to 59%, respectively, across different environments. The aim of this study was to identify quantitative trait loci (QTL) for resistance to stripe rust in an F3 population of 199 lines derived from ‘Lumai 21’ × ‘Jingshuang 16’. The F3 lines were evaluated for MDS in Qingshui, Gansu province, and Chengdu, Sichuan province, in the 2009–2010 and 2010–2011 cropping seasons. Five QTL for APR were detected on chromosomes 2B (2 QTL), 2DS, 4DL and 5DS based on mean MDS in each environment and averaged values from all three environments. These QTL were designated QYr.caas‐2BS.2, QYr.caas‐2BL.2, QYr.caas‐2DS.2, QYr.caas‐4DL.2 and QYr.caas‐5DS, respectively. QYr.caas‐2DS.2 and QYr.caas‐5DS were detected in all three environments, explaining 2.3–18.2% and 5.1–18.0% of the phenotypic variance, respectively. In addition, QYr.caas‐2BS.2 and QYr.caas‐2BL.2 colocated with QTL for powdery mildew resistance reported in a previous study. These APR genes and their linked molecular markers are potentially useful for improving stripe rust and powdery mildew resistances in wheat breeding.  相似文献   

5.
A recombinant inbred line (RIL) population derived from the cross Arina/Forno was field tested for 2 years against Puccinia graminis f. sp. tritici under artificially created epidemic conditions. Both parents showed intermediate adult plant stem rust responses and the RIL population showed continuous variation for this trait. Composite interval mapping identified genomic regions controlling low stem rust response on chromosomes 5B and 7D consistently across all experiments. These genomic regions were named QSr.Sun-5BL and QSr.Sun-7DS and explained on an average 12% and 26% of the phenotypic variation in adult plant stem rust response, respectively. QSr.Sun-5BL mapped close to Xglk0354 and was contributed by Arina. The Lr34-linked markers csLV34 and swm10 were closely associated with QSr.Sun-7DS suggesting the involvement of Lr34 in controlling adult plant stem rust response of cultivar Forno. Additional minor and inconsistent QTLs explaining variation in adult plant stem rust response were identified on chromosome arms 1AS and 7BL. The QTL located on chromosome 7BL corresponded to the stem rust resistance gene Sr17 carried by cultivar Forno. A seedling stem rust resistance gene carried by Arina, SrAn1, was ineffective under field conditions and was mapped on the long arm of chromosome 2A. Genotypes carrying combinations of QSr.Sun-5BL and QSr.Sun-7DS based on positive alleles of the respective closest marker loci Xglk0354 and XcsLV34 or Xswm10 exhibited a lower response than either parent indicating an additive effect of these genes. Transfer of these genes into cultivars carrying Sr2 would provide a more effective and durable resistance against the stem rust pathogen. Markers csLV34 and/or swm10 could be used in marker assisted selection of QSr.Sun-7DS in breeding programs.  相似文献   

6.
J. A. Kolmer    L. M. Oelke    J. Q. Liu 《Plant Breeding》2007,126(2):152-157
A genetic analysis of the landrace‐derived wheat accessions Americano 25e, Americano 26n, and Americano 44d, from Uruguay was conducted to identify the leaf rust resistance genes present in these early wheat cultivars. The three cultivars were crossed with the leaf rust susceptible cultivar ‘Thatcher’ and approximately 80 backcross (BC1) F2 families were derived for each cross. The BC1F2 families and selected BC1F4 lines were tested for seedling and adult plant leaf rust resistance with selected isolates of leaf rust, Puccinia triticina. The segregation and infection type data indicated that Americano 25e had seedling resistance genes Lr3, Lr16, an additional unidentified seedling gene, and one adult plant resistance gene that was neither Lr12 nor Lr13, and did not phenotypically resemble Lr34. Americano 26n was postulated to have genes Lr11, Lr12, Lr13, and Lr14a. Americano 44d appeared to have two possibly unique adult plant leaf rust resistance genes.  相似文献   

7.
Variation for adult plant resistance in near-isogenic wheat lines carrying Lrl4b, Lrl4ab and Lr30 in a ‘Thatcher’ background indicated the possible presence of novel adult plant resistance genes effective against the Indian leaf rust population. Sixty-one wheats released for cultivation in India were grown in isolated nurseries. Each nursery was separately inoculated with one of four leaf rust pathotypes which had been selected to aid identification of resistance effective only in the adult plant stage. Seven distinct response groups were recognised and a minimum of six sources of adult plant resistance were postulated. In a group of 14 wheats, resistance was explained on the basis of the seedling response genes that were identified. Similar results for two years with pathotype 77-1 gave support to the reliability of field tests. Adult plant resistance (APR) sources were either race-specific or effective against all pathotypes used. Seedlings of cultivars with APR showed susceptible reactions. The possible presence of Lr34 in Indian wheats and its role in durable leaf rust resistance are discussed.  相似文献   

8.
Three recombinant inbred line populations from the crosses RL6071/Thatcher, RL6071/RL6058 (Thatcher Lr34), and Thatcher/RL6058, were used to study the genetics of stem rust resistance in Thatcher and TcLr34. Segregation of stem rust response in each population was used to determine the number of genes conferring resistance, as well as the effect of the leaf rust resistance gene Lr34 on stem rust resistance. The relationship between resistance in seedling and adult plants was also examined, and an attempt was made to identify microsatellite markers linked to genes that were effective in adult plants. In field plot tests at least three additive resistance genes segregated in the RL6071/RL6058 population, whereas two resistance genes segregated in the RL6071/Thatcher population. The presence of the gene Lr34 permitted the expression of additional stem rust resistance in Thatcher-derived lines both at the seedling and adult plant stages. Seedling resistance to races TPMK and RKQQ was significantly associated with resistance in adult plants, whereas seedling resistance to races QCCD and QCCB may have made a minor contribution. The seedling resistance genes Sr16 and Sr12 may have contributed to resistance in adult plants. A molecular marker linked to resistance in adult plants was identified on chromosome 2BL.  相似文献   

9.
Stem rust and leaf rust are important diseases affecting durum wheat production in India. Inheritance and extent of diversity in resistance were studied in five durum genotypes, viz. ?B 662', ?ED 2398‐A', ?HG 110', ?IWP 5019' and ?Line 1172? using Pgt pathotypes 40A and 117‐6, and Pt pathotypes 12‐2 and 104‐2. F2 and F3 analyses showed that resistance was conferred by one or two genes in each line. In all, four genes for resistance to 40A, and eight each for pathotypes 117‐6 and 12‐2 were identified among the five genotypes, and three for resistance to 104‐2 among B 662, ED 2398‐A and IWP 5019 were indicated by tests of allelism. Although the gene identities are not known, at least some of them should be different from Sr2, Sr7b, Sr8a, Sr8b, Sr9e, Sr9g, Sr11, Sr12, Sr13, Sr14, Sr17, Sr23 and Sr28; and from Lr3, Lr14a, Lr23 and Lr27 + Lr31. These genotypes enrich the diversity of resistance to stem rust and leaf rust for durum wheat improvement.  相似文献   

10.
The objective of this study was to identify quantitative trait loci (QTLs) controlling 100‐seed weight in soybean using 188 recombinant inbred lines (RIL) derived from a cross of PI 483463 and ‘Hutcheson’. The parents and RILs were grown for 4 years (2010–2013), and mature, dry seeds were used for 100‐seed weight measurement. The variance components of genotype (a), environment (e) and a × e interactions for seed weight were highly significant. The QTL analysis identified 14 QTLs explaining 3.83–12.23% of the total phenotypic variation. One of the QTLs, qSW17‐2, was found to be the stable QTL, being identified in all the environments with high phenotypic variation as compared to the other QTLs. Of the 14 QTLs, 10 QTLs showed colocalization with the seed weight QTLs identified in earlier reports, and four QTLs, qSW5‐1, qSW14‐1, qSW15‐1 and qSW15‐2, found to be the novel QTLs. A two‐dimensional genome scan revealed 11 pairs of epistatic QTLs across 11 chromosomes. The QTLs identified in this study may be useful in genetic improvement of soybean seed weight.  相似文献   

11.
Soybean (Glycine max (L.) Merr.) seed contains small amounts of tocopherol, a non‐enzymatic antioxidant known as lipid‐soluble vitamin E (VE). Dietary VE contributes to a decreased risk of chronic diseases in humans and has several beneficial effects on resistance to stress in plants, and increasing VE content is an important breeding goal for increasing the nutritional value of soybean. In this study, quantitative trait loci (QTLs) underlying VE content with main, epistatic and QTL × environment effects were identified in a population of F5 : 6 recombinant inbred lines from a cross between ‘Hefeng 25’ (a low‐VE cultivar) and ‘OAC Bayfield’ (a high‐VE cultivar). A total of 18 QTLs were detected that showed additive main effects (a) and/or additive × environment interaction effects (ae) in different environments. Moreover, 19 epistatic pairs of QTLs were found to be associated with α‐tocopherol (α‐Toc), γ‐tocopherol (γ‐Toc), δ‐tocopherol (δ‐Toc) and total VE (TE) contents. The QTLs identified in multienvironments could provide more information about QTL by environment interactions and could be useful for the marker‐assistant selection of soybean cultivars with high seed VE contents.  相似文献   

12.
K.V. Prabhu    S. K. Gupta    A. Charpe  S. Koul 《Plant Breeding》2004,123(5):417-420
A sequence characterized amplified region (SCAR) marker tagged to an Agropyron elongatum‐derived leaf rust resistance (Lr) gene Lr19 was validated on 18 known alien Lr gener in near‐isogenic lines (NILs) in the variety ‘Thatcher’, along with three wheat cultivers carrying Lr24 and two carrying Lr19. The marker was expressed only in the Lr24 lines confirming that the marker tagged the geneLr24. The monomorphic expression of the SCAR marker in 10NIL pairs for Lr19 and Lr24 revealed that each NIL pair possessed the same gene, Lr24. The donor parents used in the NIL pairs for Lr19 (‘Sunstar*6/C80‐1′) and Lr24 (‘TR380‐14*7/3Ag#14′) amplified the same fragment. Nonsegregation for leaf rust in the F2 population of the cross between the above donor parents confirmed the presence of the same gene in the two parents. Apparently, a genuine parent stock of ‘Sunstar*6/C80‐1’ was not involved in the development of the NIL pairs for Lr19 due to an improper maintence bredding protocol either at source or destination which went undetected in the absence of signs of virulence for either gene in the region.  相似文献   

13.
In wheat, semidwarfism resulting from reduced height (Rht)‐B1b and Rht‐D1b was integral to the ‘green revolution’. The principal donors of these alleles are ‘Norin 10’, ‘Seu Seun 27’ and ‘Suwon 92’ that, according to historical records, inherited semidwarfism from the Japanese landrace ‘Daruma’. The objective of this study was to examine the origins of Rht‐B1b and Rht‐D1b by growing multiple seed bank sources of cultivars comprising the historical pedigrees of the principal donor lines and scoring Rht‐1 genotype and plant height. This revealed that ‘Norin 10’ and ‘Suwon 92’ sources contained Rht‐B1b and Rht‐D1b, but the ‘Seu Seun 27’ source did not contain a semidwarf allele. Neither Rht‐B1b nor Rht‐D1b could be definitively traced back to ‘Daruma’, and both ‘Daruma’ sources contained only Rht‐B1b. However, ‘Daruma’ remains the most likely donor of Rht‐B1b and Rht‐D1b. We suggest that the disparity between historical pedigrees and Rht‐1 genotypes occurs because the genetic make‐up of seed bank sources differs from that of the cultivars actually used in the pedigrees. Some evidence also suggests that an alternative Rht‐D1b donor may exist.  相似文献   

14.
The slow‐rusting and mildewing gene Yr18/Lr34/Pm38/Sr57 confers partial, durable resistance to multiple fungal pathogens and has its origins in China. A number of diagnostic markers were developed for this gene based on the gene sequence, but these markers do not always predict the presence of the resistant phenotype as some wheat varieties with the gene are susceptible to stripe rust in China. We hypothesized that these varieties have a suppressor of Yr18. This study was undertaken to determine the presence of Yr18, the suppressor and/or another resistance gene in 144 Chinese wheat landraces using molecular markers and stripe rust field data. Forty‐three landraces were predicted to have Yr18 based on the presence of the markers, but had final disease severities higher than 70%, indicating that this gene may be under the influence of a suppressor. Four of these landraces, ‘Sichuanyonggang 2’, ‘Baikemai’, ‘Youmai’ and ‘Zhangsihuang’, were chosen for genetic studies. Crosses were made between the lines and ‘Avocet S’, with further crosses of Sichuanyonggang 2 ×  ‘Huixianhong’ and Sichuanyonggang 2 ×  ‘Chinese Spring’. The F1 plants of Sichuanyonggang 2/Chinese Spring was susceptible indicating the presence of a dominant suppressor gene. The results of genetic analyses of F2:3 and BC1F2 families derived from these crosses indicated the presence of Yr18, a Yr18 suppressor and another additive resistance gene. The Yr18 region in Sichuanyonggang 2 was sequenced to ensure that it contained the functional allele. This is the first report of a suppressor of Yr18/Lr34/Pm38/Sr57 gene with respect to stripe rust response.  相似文献   

15.
Cold tolerance is a complex trait, and QTL pyramiding is required for rice breeding. In this study, a total of seven QTLs for cold tolerance in the Japonica rice variety ‘Nipponbare’ were identified in an F2:3 population. A stably inherited major QTL, called qCTS11, was detected in the region adjacent to the centromere of chromosome 11. In a near‐isogenic line population, the QTL was further dissected into two linked loci, qCTS11.1 and qCTS11.2. Both of the homozygous alleles of qCTS11.1 and qCTS11.2 from ‘Nipponbare’ showed major positive effects on cold tolerance. Through pyramiding the linked QTLs in the cold‐sensitive Indica rice cultivar ‘93‐11’, we have developed a new elite, high‐yielding Indica variety with cold tolerance.  相似文献   

16.
The introgression lines (ILs) of the wild tomato species Solanum pennellii have been widely used to identify genes related to yield, texture, disease resistance and stress tolerance. In addition to flavour, fruit firmness is an important evaluation index and essential trait indicating tomato fruit quality. Quantitative trait loci (QTL) for fruit firmness have been identified through hand squeezing and pericarp puncturing. However, these techniques hardly reveal the force value of the whole fruit suffering from rupture or deformation. In this study, S. pennellii ILs were used to identify QTLs related to fruit firmness through flat‐plate compression. Nine QTLs for enhancing and sixteen QTLs for decreasing fruit firmness were successfully identified. Compared with that of ‘M82’, the amount of QTLs that enhance fruit firmness increased by 8.76% to 21.00%, and the amount of QTLs that reduce fruit firmness decreased by ?8.27% to ?30.80%. The QTL Crf12a and Crf‐R‐7b is the strongest and weakest QTL, respectively, while they are very stable in all independent biological trials. Six QTLs should be further confirmed through open‐field trials.  相似文献   

17.
Monosomic analysis indicated that a seedling leaf rust resistance gene present in the Australian wheat cultivar ‘Harrier’(tentatively designated LrH) is located on chromosome 2A. LrH segregated independently of the stripe rust resistance gene Yr1 located in the long arm of that chromosome, but failed to recombine with Lr17 located in the short arm. LrH was therefore designated Lr17b and the allele formerly known as Lr17 was redesignated as Lr17a. The genes Lr17b and Lr37 showed close repulsion linkage. Tests of allelism indicated that Lr1 7b is also present in the English wheats ‘Dwarf A’(‘Hobbit Sib’), ‘Maris Fundin’ and ‘Norman’. Virulence for Lr17b occurs in Australia, and pathogenicity studies have also demonstrated virulence in many western European isolates of the leaf rust pathogen. Despite this, it is possible that the gene may be of value in some regions if used in combination with other leaf rust resistance genes.  相似文献   

18.
Crown rot, caused by Fusarium pseudograminearum, is an important disease of wheat in Australia and elsewhere. In order to identify molecular markers associated with partial seedling resistance to this disease, bulked segregant analysis and quantitative trait loci (QTL) mapping approaches were undertaken using a population of 145 doubled haploid lines constructed from ‘2‐49’ (partially resistant) × ‘Janz’ (susceptible) parents. Phenotypic data indicated that the trait is quantitatively inherited. The largest QTLs were located on chromosomes 1D and 1A, and explained 21% and 9% of the phenotypic variance, respectively. Using the best markers associated with five QTLs identified by composite interval mapping, the combined effect of the QTLs explained 40.6% of the phenotypic variance. All resistance alleles were inherited from ‘2‐49’ with the exception of a QTL on 2B, which was inherited from ‘Janz’. A minor QTL on 4B was loosely linked (19.8 cM) to the Rht1 locus in repulsion. None of the QTLs identified in this study were located in the same region as resistance QTLs identified in other populations segregating for Fusarium head blight, caused by Fusarium graminearum.  相似文献   

19.
The R10 late blight differential of potato, 3681ad1, exhibits good field resistance. Progeny from the cross between 3681ad1 and the susceptible cultivar ‘Katahdin’ were assessed for late blight resistance to three Phytophthora infestans isolates, using a detached leaf assay. Progeny differed in response to the three isolates. Resistance to isolates IPO‐0 and 99018 was controlled by quantitative trait loci (QTL), whereas resistance to isolate 89148‐9 was inherited as a dominant R gene, designated as R10 in this study. Statistical analysis revealed that one of the resistance QTLs to isolates IPO‐0 and 99018 is linked to the R10 gene, which maps to chromosome 11 in a region where a complex late blight resistance locus has been reported previously. A high‐resolution map of R10 was constructed using a large segregating population, and the gene was delimited to a genetic interval of 0.26 cM. The clustering of the qualitative gene R10 with resistance QTLs could explain the field resistance observed with 3681ad1.  相似文献   

20.
Soybean mosaic virus (SMV) can cause serious yield losses in soybean. Soybean cultivar ‘RN‐9’ is resistant to 15 of 21 SMV strains. To well‐characterize this invaluable broad‐spectrum SMV‐resistance, populations (F1, F2 and F2:3) derived from resistant (R) × susceptible (S) and R × R crosses were tested for SMV‐SC18 resistance. Genetic analysis revealed that SC18 resistance in ‘RN‐9’ plus two elite SMV‐resistant genotypes (‘Qihuang No.1’ and ‘Kefeng No.1’) are controlled by independently single dominant genes. Linkage analysis showed that the resistance of ‘RN‐9’ to SMV strains SC10, SC14, SC15 and SC18 is controlled by more than one gene(s). Moreover, Rsc10‐r and Rsc18‐r were both positioned between the two simple sequence repeats markers Satt286 and Satt277, while Rsc14‐r was fine‐mapped in 136.8‐kb genomic region containing sixteen genes, flanked by BARCSOYSSR_06_0786 and BARCSOYSSR_06_0790 at genetic distances of 3.79 and 4.14 cM, respectively. Allelic sequence comparison showed that Cytochrome P450‐encoding genes (Glyma.06g176000 and Glyma.06g176100) likely confer the resistance to SC14 in ‘RN‐9’. Our results would facilitate the breeding of broad‐spectrum and durable SMV resistance in soybeans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号