首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The arthropod-borne Schmallenberg virus (SBV), family Orthobunyaviridae, emerged in Europe in 2011. SBV is associated with a mild disease in adult ruminants but fetal malformation after an infection during a critical phase of pregnancy. A number of inactivated vaccines have been developed; their efficacy after two injections was demonstrated. To make the vaccination of sheep more efficient and economic the effect of a single immunization with one of these vaccines was investigated in the present study. Five vaccinated sheep and five additional control sheep were inoculated with SBV three weeks after vaccination and the results of a competitive ELISA, a standard microneutralization test and an SBV-specific real-time RT-PCR confirmed vaccine efficacy by demonstrating complete inhibition of viral replication in immunized animals.  相似文献   

2.
During March 2013, we investigated the presence and the levels of Schmallenberg virus (SBV) circulation in three dairy cow herds and three sheep flocks in Central Macedonia, Greece. In two cow herds, a high number of abortions had been observed during the winter. Six bulk-tank milk samples and 147 individual sera were screened for SBV-specific antibodies by ELISA. Positive reactions were obtained from 5 out of 6 bulk-tank milk samples, 58 out of 90 sera from the 3 cow herds, and 2 sera from 2 of the 3 sheep flocks. Twenty-two ELISA-positive sera were tested by serum neutralization test (SNT). SNT confirmed the presence of neutralizing antibodies against SBV in all samples tested, with titers ranging between 1:32 and ≥1:256. No neutralizing antibodies against Akabane virus (AKAV) or Shamonda virus (SHAV) were detected, indicating that neutralizing antibodies against SBV do not cross react with AKAV or SHAV in SNT. ELISA testing of bulk-tank milk samples proved to be convenient and reliable. None of the tested sera was found positive for SBV by real-time RT-PCR, indicating that the sampling was conducted past the viremia stage. This is the first report of SBV circulation in Greece.  相似文献   

3.
In autumn 2011, a novel species of the genus Orthobunyavirus of the Simbu serogroup was discovered close to the German/Dutch border and named Schmallenberg virus (SBV). Since then, SBV has caused a large epidemic in European livestock. Like other viruses of the Simbu serogroup, SBV is transmitted by insect vectors. Adult ruminants may show a mild transient disease, while an infection during a critical period of pregnancy can lead to severe congenital malformation, premature birth or stillbirth. The current knowledge about the virus, its diagnosis, the spread of the epidemic, the impact and the possibilities for preventing infections with SBV is described and discussed.  相似文献   

4.
The duration of maternally-derived antibodies against three arboviruses was investigated in calves, using the results of arbovirus serosurveillance performed in Kagoshima Prefecture during 2002–2016. The duration of maternally-derived antibodies against Akabane virus (AKAV), Aino virus (AINOV), and Chuzan virus (CHUV) was estimated to be 178 (sensitivity: 0.769, specificity: 0.730), 156 (sensitivity: 0.806, specificity: 0.791), and 156 days of age (sensitivity: 0.845, specificity: 0.814), by receiver operating characteristic analysis. The duration of maternally-derived antibodies against AKAV, AINOV, and CHUV differed 7–14, 22–28, and 20–31 days in the same calf types between the regions far from each other although it was similar between the adjacent regions. The dairy calves showed 6–29 days longer duration than the beef calves rearing in a similar region.  相似文献   

5.
The initial viraemic phase of Schmallenberg virus (SBV) infection in bovine animals is characterized by the non-specific and inconspicuous clinical signs of pyrexia (>40 °C), drop in milk yield and sometimes diarrhea. As a result, the early detection of SBV epizootics can difficult, and typically only become apparent when the congenital form of the disease is observed. The aim of the study was to describe the course of the acute phase response and haematological findings in bovine calves following experimental SBV infection. No clinical signs except for increase in rectal temperature were observed in the calves inoculated subcutaneously with a Polish strain of SBV. Viral RNA was detected in serum at 2 and 4 days post inoculation (dpi). SBV antibodies were first detected by ELISA (9–21 dpi), and subsequently by virus neutralization test (14–32 dpi). The hematological parameters showed a reduction in mid-size leucocytes (MID), and also in red blood cell count (RBC). An increase in mean corpuscular hemoglobin was also observed in SBV infected calves. No significant difference in acute phase proteins (APP) was observed between experimentally infected and control calves, suggesting limited potential as diagnostic biomarker of acute SBV infection.  相似文献   

6.

Background

In late 2011, a new Orthobunyavirus of the Simbu serogroup named Schmallenberg virus (SBV) emerged in continental Europe. The virus is transmitted by hematophagous arthropods, with the Culicoides species as, so far known, main vectors. Infection with the virus can cause clinical signs in adult ruminants including diarrhea, fever and reduced milk production. Transplacental infection of the developing fetus can lead to malformations of varying severity. To assess seroprevalence of SBV in Sweden an indirect enzyme-linked immunosorbent assay (ELISA) was established in connection with the surveys. Here, we describe the development and evaluation of the indirect ELISA, based on whole virus as the coating antigen and a monoclonal antibody for the detection of antibodies to SBV in ruminant sera. The evaluation includes comparison between the in-house ELISA, virus neutralization test and an indirect commercial ELISA.

Results

The optimal working dilutions of antigens and conjugate were estimated with checkerboard titrations. Comparative studies, including ROC analyses, were used for the selection of an optimal cut-off (S/P value = sample value as percentage of positive control value). With an estimated S/P value of 15% the whole virus ELISA showed a specificity of 100% and a sensitivity of 99.19% compared to virus neutralization test (VNT) and with a good consistency as shown in reproducibility and variability experiments. Furthermore, the comparison of our whole virus indirect ELISA to an indirect ELISA with a SBV nucleoprotein antigen, demonstrated a higher sensitivity of our test.

Conclusion

The indirect whole virus ELISA described in this paper is a readily available test for serological analysis of SBV antibodies. Since this in-house ELISA demonstrates a specificity and sensitivity comparable to virus neutralization test and also shows a higher sensitivity compared to commercially available indirect ELISA, it is a useful alternative for surveillance and screening purposes of SBV.  相似文献   

7.
The objective of this study was to demonstrate the efficacy of a modified-live virus (MLV) vaccine in protecting fetuses from infection with type 1 or type 2 Bovine viral diarrhea virus (BVDV) when pregnant heifers were challenged at approximately 170 d of gestation with noncytopathic field isolates. The 83 pregnant heifers had been bred naturally 4 wk after vaccination. Fetuses were collected 60 d after BVDV type 2 challenge, and newborn calves were collected before colostrum intake after BVDV type 1 challenge. Protection was determined by measuring the serum neutralizing (SN) antibody response in the fetus or calf and by virus isolation from thymus, lung, spleen, and kidney tissue samples. There was a measurable SN antibody response to BVDV in all the fetuses and calves of the control heifers, which had received a placebo vaccine. However, only 4 of 22 calves and 7 of the 28 fetuses of the MLV-vaccinated heifers demonstrated SN antibody after BVDV challenge. Type 1 BVDV was isolated from tissue samples of 5 of the 12 calves of control heifers and none of 22 calves of the MLV-vaccinated heifers challenged with type 1 BVDV. Type 2 BVDV was isolated from tissue samples of 17 of the 18 fetuses of the control heifers and 2 of the 28 fetuses of the MLV-vaccinated heifers challenged with type 2 BVDV. The results of this study demonstrate that the MLV vaccine reduces the fetal infection rate by at least 82% for BVDV type 1 and by 75% for BVDV type 2 when heifers are exposed to highly fetotrophic BVDV at 170 d of gestation.  相似文献   

8.
Four DNA vaccines against BoHV-1 were evaluated for their efficacy in calves. Twelve animals were divided into four groups which were injected with four different DNA vaccines: pVAX-tgD (Vaccine A); pVAX-tgD co-immunised with pVAX-48CpG (Vaccine B); pVAX-UbiLacI-tgD-L (Vaccine C); pVAX-UbiLacI-tgD-L co-immunised with pVAX-48CpG (Vaccine D). Three additional calves were given the plasmid vector and served as controls. Ninety days after the first vaccination all calves were challenge infected with BoHV-1.All animals developed a severe form of infections bovine rhinotracheitis. Only the calves given the pVAX-tgD co-immunised with pVAX-48CpG (Vaccine B) developed humoral antibodies against BoHV-1 between 56 and 90 days after the first vaccination, whereas in calves of other groups and in the controls, antibodies appeared only after the infection. In the calves vaccinated with either pVAX-tgD (Vaccine A) or pVAX-tgD combined with pVAX-48CpG (Vaccine B), BoHV-1-specific IFN-γ secreting cells were detected in PBMCs 90 days after the first vaccination and their number increased after challenge exposure. In the other groups the IFN-γ secreting cells were detected after virus infection and at low values.  相似文献   

9.
Bovine herpesvirus type 5 (BoHV-5) is the causative agent of bovine herpetic encephalitis. In countries where BoHV-5 is prevalent, attempts to vaccinate cattle to prevent clinical signs from BoHV-5-induced disease have relied essentially on vaccination with BoHV-1 vaccines. However, such practice has been shown not to confer full protection to BoHV-5 challenge. In the present study, an inactivated, oil adjuvanted vaccine prepared with a recombinant BoHV-5 from which the genes coding for glycoprotein I (gI), glycoprotein E (gE) and membrane protein US9 were deleted (BoHV-5 gI/gE/US9), was evaluated in cattle in a vaccination/challenge experiment. The vaccine was prepared from a virus suspension containing a pre-inactivation antigenic mass equivalent to 107.69 TCID50/dose. Three mL of the inactivated vaccine were administered subcutaneously to eight calves serologically negative for BoHV-5 (vaccinated group). Four other calves were mock-vaccinated with an equivalent preparation without viral antigens (control group). Both groups were boostered 28 days later. Neither clinical signs of disease nor adverse effects were observed during or after vaccination. A specific serological response, revealed by the development of neutralizing antibodies, was detected in all vaccinated animals after the first dose of vaccine, whereas control animals remained seronegative. Calves were subsequently challenged on day 77 post-vaccination (pv) with 109.25 TCID50 of the wild-type BoHV-5 (parental strain EVI 88/95). After challenge, vaccinated cattle displayed mild signs of respiratory disease, whereas the control group developed respiratory disease and severe encephalitis, which led to culling of 2/4 calves. Searches for viral DNA in the central nervous system (CNS) of vaccinated calves indicated that wild-type BoHV-5 did not replicate, whereas in CNS tissues of calves on the control group, viral DNA was widely distributed. BoHV-5 shedding in nasal secretions was significantly lower in vaccinated calves than in the control group on days 2, 3, 4 and 6 post-challenge (pc). In addition, the duration of virus shedding was significantly shorter in the vaccinated (7 days) than in controls (12 days). Attempts to reactivate latent infection by administration of dexamethasone at 147 days pv led to recrudescence of mild signs of respiratory disease in both vaccinated and control groups. Infectious virus shedding in nasal secretions was detected at reactivation and was significantly lower in vaccinated cattle than in controls on days 11–13 post-reactivation (pr). It is concluded that the inactivated vaccine prepared with the BoHV-5 gI/gE/US9 recombinant was capable of conferring protection to encephalitis when vaccinated cattle were challenged with a large infectious dose of the parental wild type BoHV-5. However, it did not avoid the establishment of latency nor impeded dexamethasone-induced reactivation of the virus, despite a significant reduction in virus shedding after challenge and at reactivation on vaccinated calves.  相似文献   

10.
施马伦贝格病毒病(Schmallenberg virus,SBV)是一种新发现的动物传染病,因于2011年底在德国施马伦贝格镇首次发现而临时得名,随后蔓延于西欧(包括比利时、法国、德国、荷兰、意大利、卢森堡、西班牙、英国和丹麦),并分别在奥地利、波兰、瑞典和芬兰等国的牛、山羊、绵羊中检测到抗体。遗传分析显示该病毒与布尼亚病毒科(Bunyaviridae)正布尼亚病毒属(Orthobunyavirus)西姆布血清群病毒(Simbu serogroup viruses)的亲缘关系最密切,西姆布血清群病毒是已知的反刍动物病原,可通过节肢动物媒介(蚊、蠓)传播。施马伦贝格病毒病有2种不同的临床症状:成年牛出现短暂轻微/温和的病症(产奶量减少、发热、腹泻)和新生哺乳动物(牛、羊)死产和先天缺陷。因为同群类似的病毒不是人畜共患病病原,也无该病毒致人发病的证据,但现阶段尚不能完全排除。尽管目前没有特效的药物和疫苗,但因已有类似病毒(赤羽病)的疫苗,疫苗接种应是控制该病的可能选项。因施马伦贝格病毒是一种新发现的病毒,许多方面尚不清楚,还有待于进一步研究。  相似文献   

11.
To determine the teratogenic potential of Aino virus (AINOV) in cattle, pregnant cows and fetal cattle were infected with a fresh isolate of AINOV. Five pregnant cows were inoculated intravenously with the virus at 122 to 162 days of gestation and allowed to give birth. All of the cows developed neutralizing antibodies to the virus, indicating that the cows had been infected with the virus; however, no clinical abnormalities were seen in their six newborn calves, and no specific antibodies to the virus were detected in the precolostral serum of calves. Five fetuses with fetal ages ranging from 132 to 156 days were inoculated in utero with the virus. One weak newborn and four stillborn calves were delivered at gestation days 256 to 263, i.e., less than the standard gestation term; they had congenital abnormalities including arthrogryposis, hydranencephaly and cerebellar hypoplasia. Antibodies specific to AINOV were detected in their precolostral serum. These results demonstrate that AINOV is a potential etiological agent of congenital malformation of cattle.  相似文献   

12.
In November 2011, the new orthobunyavirus Schmallenberg virus (SBV) was identified in dairy cows that had induced fever, drop in milk production and diarrhoea in the Netherlands (Muskens et al., 2012. Tijdschrift voor Diergeneeskunde 137, 112–115) and a drop in milk production in cows in Northwestern Germany (Hoffmann et al., 2012. Emerging Infectious Diseases 18 (3), 469–472), in August/September 2011. This study aimed at quantifying risk factors for high within-herd prevalence of SBV and SBV-induced malformations in newborn calves in dairy herds in the Netherlands. Additionally, the within-herd impact of SBV infection on mortality rates and milk production was estimated.A case-control design was used, including 75 clinically affected case herds and 74 control herds. Control herds were selected based on absence of malformations in newborn calves and anomalies in reproductive performance. SBV-specific within-herd seroprevalences were estimated. Risk factors for high within-herd SBV seroprevalence (>50%) and the probability of malformed newborn calves in a herd were quantified. In addition, within-herd impact of SBV with regard to milk production and mortality was estimated.Animal-level seroprevalence was 84.4% (95% confidence interval (CI): 70.8–92.3) in case herds and 75.8% (95% CI: 67.5–82.5) in control herds. Control herds that were completely free from SBV were not present in the study. Herds that were grazed in 2011 had an increased odds (OR 9.9; 95% CI: 2.4–41.2)) of a high seroprevalence (>50%) compared to herds that were kept indoors. Also, when grazing was applied in 2011, the odds of malformations in newborn calves tended to be 2.6 times higher compared to herds in which cattle were kept indoors. Incidence of malformations in newborn calves at herd level was associated with both within-herd seroprevalence and clinical expression of the disease in adult cattle.The rate of vertical transmission of SBV to the fetus once a dam gets infected seemed low. A total of 146 stillborn or malformed calves were submitted by 65 farmers during the study period, of which 19 were diagnosed as SBV-positive based on pathological investigation and/or RT-qPCR testing of brain tissue. Based on these results combined with calving data from these herds we roughly estimated that at least 0.5% of the calves born between February and September 2012 have been infected by SBV.A drop in milk production was observed between the end of August 2011 and the first half of September (week 35–36), indicating the acute phase of the epidemic. During a 4-week period in which SBV infection was expected to have occurred, the total loss in milk production in affected dairy herds was around 30–51 kg per cow. SBV had no or limited impact on mortality rates which was as expected given the relatively mild expression of SBV in adult cows and the low incidence of malformations in newborn calves.  相似文献   

13.
Both type-1 and type-2 bovine viral diarrhea virus (BVDV) infections are responsible for major losses in the cattle industry. However, several commercial BVDV vaccines contain only a type-1 strain. A vaccine trial was conducted to evaluate the efficacy of BVDV type-1 (Singer strain; BVDV-1) vaccine for protecting calves challenged with virulent BVDV type-2 (890 strain; BVDV-2). Thirty-eight BVDV-negative calves were randomly allocated to four groups. One group was treated with a modified live virus (MLV) BVDV-1 vaccine by i.m. injection and another group was treated with the same vaccine by s.c. injection. Two groups served as nonvaccinated controls (one i.m. and one s.c.). Twenty-eight days following vaccination, the calves were challenged with BVDV-2 and monitored for 21 days. Clinical scores and body temperatures of vaccinated calves were significantly (P<.05) lower than for controls on several days, and peak differences occurred 8 days after challenge. The control calves had significantly (P<.05) lower leukocyte counts 3 through 8 days after challenge; leukocyte counts for vaccinated animals did not decline significantly from prechallenge levels. There were no differences in protection between the i.m. and s.c. routes of vaccination. The study demonstrated satisfactory cross protection of the BVDV-1 vaccine against BVDV-2 challenge.  相似文献   

14.
OBJECTIVE: To determine whether single-fraction and combination modified-live bovine respiratory syncytial virus (BRSV) vaccines commercially licensed for parenteral administration could stimulate protective immunity in calves after intranasal administration. DESIGN: Randomized controlled trial. ANIMALS: 39 calves. PROCEDURES: Calves were separated from dams at birth, fed colostrum with a minimal concentration of antibodies against BRSV, and maintained in isolation. In 2 preliminary experiments, 9-week-old calves received 1 (n = 3) or 2 (3) doses of a single-component, modified-live BRSV vaccine or no vaccine (8 control calves in each experiment), and were challenged with BRSV 21 days after vaccination. In a third experiment, 2-week-old calves received combination modified-live virus (MLV) vaccines with or without BRSV and calves were challenged with BRSV 8 days later. Calves were euthanized, and lung lesions were measured. Immune responses, including serum and nasal antibody and nasal interferon-alpha concentrations, were assessed. RESULTS: BRSV challenge induced signs of severe clinical respiratory tract disease, including death and pulmonary lesions in unvaccinated calves and in calves that received a combination viral vaccine without BRSV. Pulmonary lesions were significantly less severe in BRSV-challenged calves that received single or combination BRSV vaccines. The proportion of calves that shed virus and the peak virus titer was decreased, compared with control calves. Protection was associated with mucosal IgA antibody responses after challenge. CONCLUSIONS AND CLINICAL RELEVANCE: Single and combination BRSV vaccines administered intranasally provided clinical protection and sparing of pulmonary tissue similar to that detected in response to parenteral delivery of combination MLV and inactivated BRSV vaccines previously assessed in the same challenge model.  相似文献   

15.
Vaccination is a useful option to control infection with porcine reproductive and respiratory syndrome virus (PRRSV), and several modified live-PRRSV vaccines have been developed. These vaccines have shown some efficacy in reducing the incidence and severity of clinical disease as well as the duration of viremia and virus shedding but have failed to provide sterilizing immunity. The efficacy of modified live-virus (MLV) vaccines is greater against a homologous strain compared with heterologous PRRSV strains. The objective of this study was to evaluate the efficacy of Fostera PRRS MLV vaccine in protecting against challenge with a heterologous field strain widely circulating in the swine herds of eastern Canada. Forty-six piglets were divided into 4 groups: nonvaccinated-nonchallenged; nonvaccinated-challenged; vaccinated-challenged; and vaccinated-nonchallenged. The animals were vaccinated at 23 d of age with Fostera PRRS and challenged 23 d later with a heterologous field strain of PRRSV (FMV12-1425619). Overall, the vaccine showed some beneficial effects in the challenged animals by reducing the severity of clinical signs and the viral load. A significant difference between nonvaccinated and vaccinated animals was detected for some parameters starting 11 to 13 d after challenge, which suggested that the cell-mediated immune response or other delayed responses could be more important than pre-existing PRRSV antibodies in vaccinated animals within the context of protection against heterologous strains.  相似文献   

16.
Three groups of ten calves were each immunised with a total of 400 micrograms pili prepared from three separate strains of Moraxella bovis in Alhydrogel-oil adjuvant as two divided, equal doses 21 days apart. Groups 1 and 2 each received a monovalent vaccine made from strain 4L and S276R respectively, which belonged to pili serogroup A. Group 3 received vaccine made from pili of strain Maff1, belonging to serogroup F. A further group of ten calves served as non-vaccinated controls. Calves in groups 1 and 2 had developed serogroup A-specific antibody and those in group 3 developed serogroup F-specific antibody, and some evidence of cross-reacting antibody was also detected when measured by an agglutination test using formalin-killed piliated cells of serogroup A strain 4L. Although antibody titres measured against purified pili by ELISA were highest with homologous serogroup antigens, cross-reactive titres to shared epitopes of M. bovis pili were also detected by this method. Ocular challenge of the 40 calves with virulent M. bovis of serogroup A strain S276R was carried out 14 days after the second vaccine dose. All non-vaccinated calves developed infectious bovine keratoconjunctivitis (IBK). The percentage protection in groups 1 (strain 4L) and 2 (strain S276R) was 60% and 80% respectively (P less than 0.05), with mean lesion scores of 0.7 and 0.3 out of a possible 6.0. The percentage protection of calves in group 3 (strain Maff1) was only 30%, with a mean lesion score of 1.4 compared with 2.2 for non-vaccinated controls. The present findings, together with other evidence indicating that immunity to IBK is serogroup-specific, suggest that inclusion of pili from one representative strain from each of the seven Australian and British serogroups in a polyvalent, subunit vaccine should effectively protect the majority of cattle against IBK caused by most field strains of M. bovis encountered in Australia and the United Kingdom.  相似文献   

17.
18.
Three experiments were conducted with calves in which, following intramuscular or intranasal vaccination with virulent or attenuated bovine herpesvirus 1, calves were protected against bovine herpesvirus 1 -- Pasteurella haemolytica challenge. Calves receiving low doses of vaccine had lower levels of antibody and greater evidence of virus replication upon challenge than those receiving higher doses. In contrast 11/13 unvaccinated controls had fibrino-purulent pneumonia following challenge. The immune response developed later in younger calves and those given low doses of vaccine. Neutralizing antibodies to bovine herpes-virus 1 were not found in nasal secretions, but were present in serum seven days after vaccination. Bovine herpesvirus 1 was isolated before challenge from nasal secretions of calves vaccinated intranasally or intramuscularly with virulent virus but not those vaccinated intramuscularly with vaccine virus. It was concluded that both routes of vaccination with either virulent or attenuated bovine herpesvirus 1 provided protection from challenge with homologous or heterologous bovine herpesvirus 1 and that live vaccines should contain at least 10(3) plaque forming units/dose for effective immunization.  相似文献   

19.
The objective of this study was to determine whether a commercially available, saponin-adjuvanted, inactivated bovine respiratory syncytial virus (BRSV) vaccine would protect calves from experimental infection with virulent BRSV. This was a randomized controlled trial comprising 14, 8- to 9-week-old calves seronegative for BRSV Group 1 calves (n = 8) were not vaccinated and group 2 calves (n = 6) were vaccinated on days 0 and 19 with an inactivated BRSV vaccine. All calves were challenged with virulent BRSV on day 46. Clinical signs, arterial PO2, and immune responses were monitored after challenge. Calves were euthanatized on day 54 (8 d after challenge) and lungs were examined for lesions. Vaccination elicited increases in BRSV-specific immunoglobulin (Ig) G and virus neutralizing antibody titers. Challenge with BRSV resulted in severe respiratory tract disease and extensive pulmonary lesions in control calves, but no signs of clinical disease and minimal or no pulmonary lesions in vaccinated calves. Arterial blood oxygen values on day 53 (7 d after challenge) in control calves were significantly lower than those in vaccinated calves, which remained within normal limits. Control calves shed BRSV for several days after challenge, whereas BRSV was not detected on deep nasal swabs from vaccinated calves. In summary, the results indicated that this inactivated BRSV vaccine provided clinical protection from experimental infection with virulent virus 27 d after vaccination and significantly decreased the prevalence and severity of pulmonary lesions. Efficacy was similar to that reported for other commercial inactivated and modified-live BRSV vaccines.  相似文献   

20.
Trials were conducted on rabbits and cattle to compare the immunizing effectiveness of the subunit vaccine against infectious bovine rhinotracheitis (IBR), representing antigens separated by the solubilization of the IBR virus-infected cells by means of Triton X-100 with oil adjuvant, with the inactivated oil IBR vaccine. The rabbits inoculated and re-vaccinated with both vaccines in an interval of three weeks produced neutralizing antibodies in medium titres, the values of these antibodies were balanced in both groups. Cattle immunized with the subunit vaccine reacted to the inoculation and re-vaccination by producing serum antibodies of higher titres, as compared with the cattle inoculated with the virus vaccine; secretory antibodies were detected only after re-vaccination and had balanced values in both test groups. After intranasal infection with the virulent virus performed after 14 days from re-vaccination, the calves inoculated with the subunit and virus vaccines were protected against clinical disease whereas the non-inoculated control calves fell ill with symptoms characteristic of IBR. The immunized animals of both experimental groups had a smaller amount of virus p.i. in nasal secretions and for a shorter time than the control non-inoculated calves. The intensity of multiplication and persistence of infectious virus excretion were the same in both experimental groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号