首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phytoplasmas infecting sour cherry and lilac in Lithuania were found to represent two lineages related to clover phyllody phytoplasma (CPh), a subgroup 16SrI-(R/S)C (formerly 16SrI-C) strain exhibiting rRNA interoperon sequence heterogeneity. 16S rDNAs amplified from the cherry bunchy leaf (ChBL) and lilac little leaf (LcLL) phytoplasmas were identical or nearly identical to those of operon rrnA and operon rrnB, respectively, of CPh. There was no evidence of 16S rRNA interoperon sequence heterogeneity in either LcLL or ChBL phytoplasma. Based on collective RFLP patterns of 16S rDNA, ChBL was classified in subgroup 16SrI-R, and LcLL was classified in new subgroup 16SrI-S. The ribosomal protein (rp) gene sequences from LcLL phytoplasma were identical to those of CPh, and strain LcLL was classified in rp subgroup rpI-C. By contrast, rp gene sequences from ChBL phytoplasma differed from those of subgroup rpI-C; based on RFLP patterns of rp gene sequences, ChBL was classified in new rp subgroup rpI-O. Single nucleotide polymorphisms (SNPs), designated here by a new SNP convention, marked members of rp subgroup rpI-C, and distinguished LcLL and CPh from ChBL and other non-rpI-C phytoplasmas in group 16SrI. The results raise questions concerning phytoplasma biodiversity assessment based on rRNA genes alone and encourage the supplemental use of a single copy gene in phytoplasma identification and classification, while drawing attention to a possible role of horizontal gene transfer in the evolutionary history of these lineages.  相似文献   

2.
Coconut palm ( Cocos nucifera ), oil palm ( Elaeis guineensis ), Bermudagrass ( Cynodon dactylon ) and Madagascar periwinkle ( Catharanthus roseus ) with symptoms indicative of phytoplasma disease were collected from different locations in Malaysia. PCR assays employing phytoplasma universal rRNA gene primers P1/P7 alone or P1/P7 followed by R16F2n/R16R2 detected phytoplasmas in eight out of 20 Malayan Red Dwarf (MRD), nine out of 12 Malayan Yellow Dwarf (MYD) and 12 out of 12 Malayan Tall (MT) coconut palms displaying coconut yellow decline symptoms. Positive detections were also obtained from six out of six oil palm seedlings showing symptoms of yellowing and necrosis, from 10 out of 10 Bermudagrass samples with white leaf symptoms, and from eight out of eight periwinkle plants showing phyllody, virescence, little leaf, proliferation and foliar yellowing. Phytoplasmas were not detected in any of the symptomless plants tested. Sequencing and phylogenetic analysis of PCR products determined that phytoplasmas infecting both MRD and MT coconuts and Bermudagrass in Serdang, Selangor State, were all members of the 16SrXIV ' Candidatus Phytoplasma cynodontis' group, whereas isolates in periwinkle in Serdang were all members of the 16SrI ' Ca. Phytoplasma asteris' group. However, the phytoplasmas detected in MYD coconuts and oil palms from Banting, Selangor State, and in periwinkle from Putrajaya were collectively very similar (99%), but shared <97·5% similarity with 16S rDNA sequences of all other known phytoplasmas, indicating that they represent a novel taxonomic group. Thus, at least two phylogenetically distinct phytoplasmas are associated with the coconut yellow decline syndrome in Malaysia, both of which were also detected in other plant species.  相似文献   

3.
Kerala wilt disease of coconut palm is a major threat of coconut production in Kerala caused by phytoplasma. The genomic DNA purified from the insect tissues of Proutista moesta (PM) and Stephanitis typica (ST) was subjected to PCR assay using the primer combination P1/P6, P1/P7 and P4/P7. The amplified products resolved a prominent band of 650 bp for the universal primer P4/P7 and no bands were noticed for the primer pairs P1/P6 and P1/P7 combination. Since P4/P7 amplifies the 16S–23S intergenic spacer region of 16SrRNA gene, the PCR product 650 bp of the insect PM indicate the phytoplasma DNA. The presence of 650 bp for the primer P4/P7 in the genomic DNA isolated from P. moesta indicates the vectoral ability of the insect. No sign of amplification was noticed in the case of ST for the three sets of primers suggesting the inability of this insect as vector. The amplified product 650 bp from the genomic DNA of KWD palms as well as the insect tissues of P. moesta was gel purified and sequenced. The sequential similarity of 650 bp of both KWD phytoplasma and the insect phytoplasma supports the transmission of phytoplasma through the vector PM. Moreover, the sequence of 650 bp was compared with other sequences of 26 coconut phytoplasmas so far reported internationally and a cladogram was prepared for determining the phylogenetic status. It is obvious from the cladogram that the KWD disease phytoplasma is evolutionarily closest to coconut phytoplasma of coconut lethal yellowing of Mexican palms within the group 16SrIV. Phylogenetically, KWD phytoplasma is grouped in the new subgroup 16SrIV-C subsequent to the groups 16SrIV-A and 16SrIV-B for Mexican coconut lethal yellowing and Tanzanian coconut lethal decline, respectively. The restriction enzyme analysis of the PCR product 650 bp using the enzymes AluI, BclI, HindIII and RsaI further supports the phytoplasmic nature of DNA. This data records the first finding of the vector of Kerala wilt disease by detecting KWD phytoplasma in insect tissue of PM by PCR based methods. Moreover, the study reveals the phylogenetic status of KWD phytoplasma compared to other coconut phytoplasmas internationally.  相似文献   

4.
Purple coneflower plants showing leaf reddening and flower abnormalities were observed in South Bohemia (Czech Republic). Transmission electron microscopy observations showed phytoplasmas in sieve cells of symptomatic plants but not in healthy ones. Polymerase chain reactions with universal and group specific phytoplasma primers followed by restriction fragment length polymorphism analyses of 16S rDNA allowed us to classify the detected phytoplasmas into the X-disease group, ribosomal subgroup 16SrIII-B. Sequence analyses of the 16S-23S ribosomal operon (1684 bp), ribosomal protein L15, and protein translocase genes (1566 bp) confirmed the closest relationship with phytoplasmas belonging to the 16SrIII ribosomal group, specifically the 16SrIII-B subgroup. The current study reports purple coneflower as a new host for the X-disease phytoplasma group in the Czech Republic and worldwide.  相似文献   

5.
Phytoplasma: ecology and genomic diversity   总被引:1,自引:0,他引:1  
ABSTRACT The recent development of molecular-based probes such as mono- and polyclonal antibodies, cloned phytoplasma DNA fragments, and phytoplasma-specific primers for polymerase chain reaction (PCR) has allowed for advances in detection and identification of uncultured phytoplasmas (formerly called mycoplasma-like organisms). Comprehensive phylogenetic studies based on analysis of 16S ribosomal RNA (rRNA) or both 16S rRNA and ribosomal protein gene operon sequences established the phylogenetic position of phytoplasmas as members of the class Mollicutes, and the revealed phylogenetic interrelationships among phytoplasmas formed a basis for their classification. Based on restriction fragment length polymorphism (RFLP) analysis of PCR-amplified 16S rRNA gene sequences, phytoplasmas are currently classified into 14 groups and 38 subgroups that are consistent with groups delineated based on phylogenetic analysis using parsimony of 16S rRNA gene sequences. In the past decades, numerous phyto-plasma strains associated with plants and insect vectors have been identified using molecular-based tools. Genomic diversity of phytoplasma groups appears to be correlated with their sharing common insect vectors, host plants, or both in nature. The level of exchange of genetic information among phytoplasma strains in a given group is determined by three-way, vector-phytoplasma-plant interactions. A putative mechanism for the creation of new ecological niches and the evolution of new ecospecies is proposed.  相似文献   

6.
7.
In this study, the putative phytoplasma species causing coconut lethal yellowing disease in Mozambique and Tanzania were characterized. The 16S rRNA and secA genes were sequenced. Phylogenetic analysis revealed that Mozambican coconut phytoplasmas belong to three different types: ‘Candidatus Phytoplasma palmicola’ 16SrXXII‐A, a second strain that was previously isolated in Tanzania and Kenya (16SrIV‐C), and a third strain that was different from all known lethal yellowing phytoplasma species. The third strain potentially represents a novel species and is closely related to pine phytoplasma. Co‐infection with ‘Ca. Phytoplasma pini’‐related and ‘Ca. Phytoplasma palmicola’ 16SrXXII‐A strains was observed. Furthermore, sequence variation in ‘Ca. Phytoplasma palmicola’ at the population level was consistent with purifying selection and population expansion.  相似文献   

8.
Heteroduplex mobility assay (HMA) and DNA sequencing were performed on Flavescence dorée (FD) phytoplasma strains and related phytoplasmas belonging to the elm yellows group. Part of the ribosomal RNA gene operon and a nonribosomal DNA region were utilized for phylogenetic analyses. Two FD strains, FD92 and FD-D, detected in France and Italy, respectively, were identical in both DNA fragments, confirming previous results. Other FD strains were all very similar and most closely resembled ALY, an Italian alder phytoplasma. Phytoplasmas associated with German Palatinate grapevine yellows were shown to form a distinct subcluster, also different from the elm yellows phytoplasma subcluster. Strain disparities revealed by HMA and sequence data were mostly in agreement, highlighting the utility of HMA in differentiation and classification of phytoplasmas belonging to the same ribosomal RNA group.  相似文献   

9.
Previously undescribed phytoplasmas were detected in diseased plants of dandelion (Taraxacum officinale) exhibiting virescence of flowers, thistle (Cirsium arvense) exhibiting symptoms of white leaf, and a Gaillardia sp. exhibiting symptoms of stunting and phyllody in Lithuania. On the basis of restriction fragment length polymorphism (RFLP) analysis of 16S rDNA amplified in PCR, the dandelion virescence (DanVir), cirsium whiteleaf (CirWL), and gaillardia phyllody (GaiPh) phytoplasmas were classified in phylogenetic group 16SrIII (X-disease phytoplasma group), new subgroups III-P and III-R and subgroup III-B, respectively. RFLP and nucleotide sequence analyses revealed 16S rRNA interoperon sequence heterogeneity in the two rRNA operons, rrnA and rrnB, of both DanVir and CirWL. Results from phylogenetic analysis based on nucleotide sequences of 16S rDNA were consistent with recognition of the two new subgroups as representatives of distinct new lineages within the group 16SrIII phytoplasma subclade. The branching order of rrnA and rrnB sequences in the phylogenetic tree supported this interpretation and indicated recent common ancestry of the two rRNA operons in each of the phytoplasmas exhibiting interoperon heterogeneity.  相似文献   

10.
Polymerase chain reaction (PCR) assays were used to detect phytoplasmas in foliage samples from Chinaberry ( Melia azedarach ) trees displaying symptoms of yellowing, little leaf and dieback in Bolivia. A ribosomal coding nuclear DNA (rDNA) product (1·8 kb) was amplified from one or more samples from seven of 17 affected trees by PCR employing phytoplasma-universal rRNA primer pair P1/P7. When P1/P7 products were reamplified using nested rRNA primer pair R16F2n/R16R2, phytoplasmas were detected in at least one sample from 13 of 17 trees with symptoms. Restriction fragment length polymorphism (RFLP) analysis of P1/P7 products indicated that trees CbY1 and CbY17 harboured Mexican periwinkle virescence (16SrXIII)-group and X-disease (16SrIII)-group phytoplasmas, respectively. Identification of two different phytoplasma types was supported by reamplification of P1/P7 products by nested PCR employing X-disease-group-specific rRNA primer pair R16mF2/WXint or stolbur-group-related primer pair fSTOL/rSTOL. These assays selectively amplified rDNA products of 1656 and 579 bp from nine and five trees with symptoms, respectively, of which two trees were coinfected with both phytoplasma types. Phylogenetic analysis of 16S rDNA sequences revealed Chinaberry yellows phytoplasma strain CbY17 to be most similar to the chayote witches'-broom (ChWBIII-Ch10) agent, a previously classified 16SrIII-J subgroup phytoplasma. Strain CbY1 resembled the Mexican periwinkle virescence phytoplasma, a 16SrXIII-group member. The latter strain varied from all known phytoplasmas composing group 16SrXIII. On this basis, strain CbY1 was assigned to a new subgroup, 16SrXIII-C.  相似文献   

11.
2022年首次在广州市发现园林植物雪花木小叶病病株, 采用分子生物学技术对其进行植原体的种类鉴定。以雪花木叶片总DNA为模板, 利用植原体16S rRNA通用引物P1/P7进行PCR扩增, 获得广东雪花木小叶病植原体(BLL-GD2022)16S rRNA基因片段(1 811 bp, GenBank登录号为OQ625536)。16S rRNA序列相似性显示, BLL-GD2022与16SrVI组植原体株系的相似性最高, 为97.05%~99.83%, 其中与隶属于16SrVI-D亚组的10个植原体株系相似性为99.21%~99.83%。系统进化分析显示, BLL-GD2022与16SrVI组各植原体株系聚类在一个大分支, 其中与16SrVI-D亚组成员聚类在一个小分支, 亲缘关系最近。基于16S rRNA序列的iPhyClassifier限制性内切酶虚拟RFLP分析表明, BLL-GD2022与16SrVI-D亚组的参考株系Brinjal little leaf phytoplasma (GenBank登录号为X83431)的酶切图谱一致, 相似系数为1.00。基于上述研究结果, 明确广州市雪花木小叶病植原体隶属16SrVI-D亚组成员。本研究首次在园林植物雪花木上检测到植原体, 通过16S rRNA序列分析明确为16SrVI-D亚组成员, 为开展16SrVI-D亚组植原体在蔬菜、花卉和园林植物的发生监测及病害防控提供科学依据。  相似文献   

12.
About 40 different species of wild herbaceous and woody plants were collected in underbrush close to a vineyard where Flavescence dorée (FD) has been reported for several years. Polymerase chain reaction assays were carried out using DNA extracted from leaves of each species for the detection of the presence of phytoplasmas. Only samples of Clematis vitalba were found to be infected with phytoplasmas. Restriction fragment length polymorphism and sequencing data of the 16S ribosomal RNA gene and of a non-ribosomal DNA fragment FD9 revealed that the phytoplasma isolate was identical to that causing FD in the nearby vineyard. The isolate identified in the clematis is the same as the FD-C phytoplasma found in grapevine in north-east Italy.  相似文献   

13.
Strawflower (Helichrysum bracteatum) with symptoms resembling those associated to phytoplasma infection were observed in several areas in the Czech Republic during the period 1994–2001. Plants with leaf bronzing, reddening and necrosis, proliferation of secondary shoots, flower abnormalities and dwarfing died in advanced stages of the disease. The disease incidence ranged from 2% to 70% and caused significant loss to the flower and seed production. Transmission electron microscopy showed phytoplasmas in sieve cells of affected plants, but not in healthy ones. Association of phytoplasmas with the disease was confirmed by polymerase chain reaction using phytoplasma universal ribosomal primers R16F2n/R16R2. An amplification product of the expected size (1.2 kb) was observed in all samples of the symptomatic strawflowers. The restriction profiles obtained following separate digestion with three endonucleases (AluI, HhaI, MseI) showed that phytoplasmas infecting strawflowers from different localities in the Czech Republic were uniform and undistinguishable from aster yellows (subgroup 16SrI-B). Sequence analysis of 1771 bp of the ribosomal operon amplified with primers P1/U3, R16F2n/R2 and 16R758/P7 indicated that the closest related phytoplasmas were those associated with 'Rehmannia glutinosa var. purpurea', both originating from Bohemia. This is the first report on the occurrence of a phytoplasma-associated disease of strawflower in the Czech Republic.  相似文献   

14.
This study examined whether genes that are less conserved than the 16S rRNA gene can distinguish Candidatus Phytoplasma australiense strains that are identical based on their 16S rRNA genes, with a view to providing insight into their origins and distribution, and any patterns of association with particular plant hosts. Sequence analysis of the tuf gene and rp operon showed that Ca . P. australiense strains could be differentiated into four subgroups, named 16SrXII-B ( tuf -Australia I; rp -A), 16SrXII-B ( tuf -New Zealand I; rp -B), 16SrXII-B ( tuf -New Zealand II) and 16SrXII-B ( rp -C). Strawberry lethal yellows 1, strawberry green petal, Australian grapevine yellows, pumpkin yellow leaf curl and cottonbush witches' broom phytoplasmas were designated members of the 16SrXII-B ( tuf -Australia I; rp -A) subgroup. The strawberry lethal yellows 2 and cottonbush reduced yellow leaves phytoplasmas were assigned to the 16SrXII ( tuf -New Zealand II; rp -B) subgroup. No relationship was observed between these phytoplasma subgroups and collection date, location or host plant. However, the study revealed evolutionary divergence in the 16SrXII group.  相似文献   

15.
Red clover (Trifolium pratense) and Ladino clover (Trifolium repens) plants showing phytoplasma-associated symptoms (yellowing/reddening, virescence and phyllody) have been recovered in Friuli-Venezia Giulia, Italy. Using AluI RFLP analysis of PCR amplified 16S rDNA we showed that the disease can be caused independently by two phylogenetically distinct phytoplasmas. One of them showed the very typical 16S rDNA RFLP pattern of the agent of Clover Phyllody in Canada (CCPh). The 16S rDNA of the other phytoplasma (Italian Clover Phyllody phytoplasma, ICPhp) has been PCR amplified, cloned and sequenced. The sequence revealed high similarity (>98%) with phytoplasmas belonging to the X disease cluster, which includes organisms not reported to cause phyllody on their hosts. The analysis by AluI RFLP of the PCR amplified pathogen 16S rDNA from other herbaceous plants (Crepis biennis, Taraxacum officinale, Leucanthemum vulgare) collected nearby with phytoplasma-associated symptoms showed similar patterns. Southern blot hybridization of their EcoRI digested total DNA revealed identical RFLP patterns, suggesting that the causative agent may be the same organism.Abbreviations PCR Polymerase Chain Reaction - rDNA gene for the small subunit ribosomal RNA - RFLP Restriction Fragment Length Polymorphism  相似文献   

16.
Russian olive trees (Elaeagnus angustifolia) showing witches’ broom symptoms typical of phytoplasma infection were observed in the Urmia region of Iran. A phytoplasma named Russian olive witches’ broom phytoplasma (ROWBp-U) was detected from all symptomatic samples by amplification of the 16S rRNA gene and 16S/23S rDNA spacer region using the polymerase chain reaction (PCR) which gave a product of expected length. DNA from symptomless plants used as a negative control yielded no product. The sequence of the 16S rRNA gene and 16S/23S rDNA spacer region of ROWBp-U showed 99% similarity with the homologous genes of members of the aster yellows group. We also detected a phytoplasma in neighboring alfalfa plants (AlWBp-U) showing severe witches’ broom symptoms. An 1107 bp PCR product from the 16S rRNA gene showed 99% homology with the corresponding product in ROWBp-U, suggesting the presence of the same phytoplasma actively vectored in the area. Further observations showed that Russian olive trees with typical ROWB symptoms were present in an orchard near Tehran which is located over 530 km south-east of the original Urmia site. The corresponding sequence of this phytoplasma (ROWBp-T) showed 99% homology to that of the ROWBp-U. A sequence homology study based on the 16S rRNA gene and 16S/23S rDNA spacer region of ROWBp-U and other phytoplasmas showed that ROWBp-U is most closely related to the 16SrI group. To our knowledge, this is the first report of a phytoplasma infection in a member of the Elaeagnaceae.  相似文献   

17.
The complete region of a putative streptomycin operon (str operon) of onion yellows (OY) phytoplasma, a phytopathogenic mollicute, was isolated and sequenced. This operon contains four genes, rps12, rps7, fus, and tuf, encoding ribosomal proteins S12 and s7, elongation factor (EF) -G, and EF-Tu, respectively. These four genes constitute the str operon in non-mollicute bacteria, such as Escherichia coli and Bacillus subtilis. In two species of mollicute Mycoplasma, the tuf gene was reported not to be included in this operon, but was located apart, indicating that the gene arrangement of this operon in phytoplasmas resembles that of B. subtilis more than that of Mycoplasma spp. In addition, the deduced amino acid sequence of EF-G of phytoplasmas also resembles that of B. subtilis more than that of Mycoplasma spp. These results suggest that analyses of the gene organization and sequence of the phytoplasma genome will provide valuable insights into evolutionary relationships among the culturable mollicutes, phytoplasmas and other Gram-positive bacteria. Received 25 April 2001/ Accepted in revised form 21 August 2001  相似文献   

18.
The elongation factor Tu (tuf) gene from nine Japan phytoplasma isolates was amplified with the polymerase chain reaction, and the DNA sequences of the tuf gene were determined. The tuf gene from 14 phytoplasma isolates, including reference isolates and other bacteria, were phylogenetically analyzed. A nucleotide sequence of the tuf gene among seven aster yellows group (16Sr I-B and I-D) phytoplasmas had 97%–100% similarity, and the tuf gene of two phytoplasmas of the X-disease group (16Sr III-B) had 99% similarity. The tuf genes had lower homology than did the 16S rRNA gene in the phytoplasma groups. A phylogenetic tree of amino acid sequences of the tuf gene was nearly equal to that of the 16S rRNA gene but differed somewhat from the tree based on the 16S rRNA gene in that paulownia witches broom (PaW: 16Sr I-D) and American aster yellows (AAY: 16Sr I-B) were in a subclade.The nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under the accession numbers AB095495, AB095667, AB095668, AB095669, AB095670, AB095671, AB095672, AB095673 and AB095674  相似文献   

19.

Plants of corn (Zea mays L.) exhibiting symptoms of stunting and leaf reddening were assayed for the presence of phytoplasma gene sequences through the use of phytoplasma rRNA and ribosomal protein gene and maize bushy stunt (MBS) phytoplasma-specific oligonucleotide primers in polymerase chain reactions (PCR). Polymorphisms in 16S rDNA amplified from diseased plants were those characteristic of phytoplasmas classified in the16S rRNA gene group 16SrI, subgroup IB, of which MBS phytoplasma is a member. Amplification of ribosomal protein (rp) gene sequences in PCR primed by phytoplasma-specific primers confirmed presence of a phytoplasma in the diseased plants. Restriction fragment length polymorphism (RFLP) patterns of the amplified phytoplasma rp gene sequences were similar or identical to those observed for a known strain of MBS phytoplasma. In separate PCR, an MBS-specific oligonucleotide pair primed amplification of a MBS-characteristic DNA from templates derived from the diseased corn. Our data provide the first firm evidence for the presence of maize bushy stunt phytoplasma in corn in Brazil.  相似文献   

20.
Salvadora persica trees with symptoms of witches’-broom, little leaf and severe leaf curling were observed in the Biodiversity Park, North Delhi (India) during February 2010. Using a nested-PCR assay targeting two phytoplasma specific loci (16S ribosomal RNA and the ribosomal protein gene) and sequence analysis of the amplified products, we identified the associated phytopathogen as a phytoplasma of group 16SrI. RFLP-mediated characterization revealed that the phytoplasma belongs to subgroup 16SrI-B. Phylogenetic reconstruction also grouped the phytoplasma within group 16SrI. The study reports a new host of phytoplasma in India and worldwide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号