首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
为了明确当前市场上具有代表性的11种防治马铃薯晚疫病杀菌剂的适宜施用时期,采用人工接种马铃薯叶片的方法,测定了其中5种药剂在接种晚疫病菌前10 d内不同时间施用的预防效果和其中7种药剂在接种后24 h内不同时间施用的治疗效果。结果显示:在保证良好防治效果的前提下,药剂在病原菌接种前保护性施用的适宜时期比在接种后治疗性施用的适宜时期要长。在测试浓度下,接种前5种供试药剂保持100%防治效果的适宜施用时期为接种前3~10 d;而接种后7种供试药剂保持相同防效的适宜施用时期仅为接种后6~12 h,在生产实际中难以操作。研究结果说明,在田间马铃薯晚疫病的化学防治中,为了取得良好防治效果,每次用药均应在病菌侵入之前采用保护性施用,尽量避免在病菌侵入之后进行治疗性施用。  相似文献   

2.
In order to replace copper fungicides in organic potato production, 53 copper-free preparations (CFPs) based on natural compounds, including plant extracts and microorganisms, and five copper preparations were evaluated for their potential to control Phytophthora infestans, the pathogen that causes late blight of potatoes. In in vitro assays, 30% of the CFPs inhibited indirect germination of sporangia, 26% mycelial growth and in growth chamber experiments, 21% efficiently reduced foliar blight of tomato plants. In micro-plot field trials with applications twice a week, the copper preparations were the most effective and reduced foliar blight by 99%. Of the CFPs tested, Oekofluid P, Mycosin and other sulphuric clays, and C-2000 reduced late blight the most, from 63% to 37%. In small-plot trials in 2001, 2002 and 2004, 27 CFPs with different formulations and four copper preparations were examined. In 2004, copper preparations at full and reduced rates and sulphuric clays were applied either weekly or according to the decision support system Bio-PhytoPRE. With Bio-PhytoPRE, copper preparations reduced foliar blight of potatoes by 23–77% and increased tuber yield by 2–28%, depending on the copper rate applied and year. With CFPs, maximal efficacy was 17% and no effect on tuber yield was observed. In vitro and in vivo trials showed that the rainfastness and the persistence of CFPs was low compared with copper preparations. This indicates that the failure of CFPs under field conditions is probably due to a lack of stability under prevailing environmental conditions and not to a lack of efficacy. Until stable formulations for CFPs are developed, an optimised and restricted use of copper fungicides using a decision support system could help to control late blight in organic potato production and to reduce copper input into the environment.  相似文献   

3.
Phytophthora infestans is the causal agent of potato late blight. This pathogen is usually controlled by fungicides, but new European regulations have imposed changes in crop protection management that have led to a search for alternative control measures. The induction of plant defence responses by elicitors is a promising new strategy compatible with sustainable agriculture. This study investigated the effect of eliciting a defence response in potato against P. infestans using a formulation of the COS‐OGA elicitor that combines cationic chitosan oligomers (COS) and anionic pectin oligomers (OGA). Trials were conducted under greenhouse conditions to assess the ability of COS‐OGA to control P. infestans. The results showed that three foliar applications with this elicitor significantly increased potato protection against late blight in controlled conditions. The activation of potato defence genes was also evaluated by RT‐qPCR during these trials. Two pathogenesis‐related proteins, basic PR‐1 and acidic PR‐2, were rapidly and significantly up‐regulated by the elicitor treatment. Therefore, these results suggest that the COS‐OGA elicitor increases the protection of potato against P. infestans and that this protection could be explained by an increase in the expression of potato defence genes rather than by biocide activity.  相似文献   

4.
We have investigated to what degree induced resistance with β-aminobutyric acid (BABA) can protect potato from late blight infection under Swedish field conditions and if synergistic interactions occur if BABA is applied in combination with a commonly used fungicide, Shirlan. In greenhouse experiments we also investigated the durability of BABA induced resistance, the dose-response relationships in susceptible (Bintje) and partially resistant (Ovatio, Suberb) cultivars and effects of combined applications of BABA and fungicides. We found a clear effect of BABA on P. infestans infection of greenhouse grown potato plants. The lesion sizes were reduced by on average 40–50% compared to untreated control. However, this effect lasted for only 4–5 days after BABA treatment and then the efficacy was lower. When BABA was given in combination with the fungicides it appeared to have an additive effect both in greenhouse and field experiments. Higher concentrations of BABA gave a stronger protective effect. The partially resistant cultivars Ovatio and Superb reacted to lower concentrations of BABA where no effect was found in susceptible Bintje. According to our field data, 20–25% reduction of the fungicide dose in combination with BABA gave on average the same result on late blight development as full dose Shirlan alone; while reduced dose of Shirlan alone sometimes resulted in less effective protection. Our results indicate that induced resistance could be used in practice in combinations with fungicides in order to reduce the amount of toxic compounds under north European conditions.  相似文献   

5.

Development of late blight of potatoes caused by Phytophthora infestans (US 8 fungal genotype, A2 mating type) was monitored in two Russet Norkotah commercial fields at Fort Fairfield in 1996 and Duncan Farm in 1997. Experimental plots representing various disease treatments (low, moderate, high and random late blight severity levels) were established in two fields in 1996. In 1997, only low and high disease treatments were established. The application of fungicides for late blight control was conducted in both years. Late blight incidence and severity were assessed in each plot of each treatment. Components of late blight disease development, tuber blight incidence and tuber yields were determined from each plot. Progress of late blight disease was rapid in 1996 but not in 1997. During the 1996 cropping season, mean disease incidence and severity in the random disease treatment plots were 84 and 21% respectively within 10 days of disease detection. In 1997, low levels of late blight severity were detected in the field plots. Average numbers of late blight leaf and stem lesions on infected plant and fungal sporangia on the diseased leaf were not significantly affected by disease treatment. Late blight foliar severity significantly affected potato tuber yields. Lowest tuber yield was obtained in plots with high disease levels and highest yields were recorded in plots with low late blight severity in 1996. Late blight severity was significantly correlated with tuber yield but not with per cent tuber blight.  相似文献   

6.
Late blight caused by Phytophthora infestans is the most devastating disease of tomato (Solanum lycopersicum L.) and causes important economically losses if not properly controlled. Control is achieved mainly by preventive fungicide applications. However, even if curative applications are discouraged because they increase the risk of resistance development in the target pathogens, in practice fungicides may be applied also when the disease is already present, a situation that commonly occurs in the field. The aim of this work was to study the curative activity of several fungicides toward P. infestans to determine their efficacy when applied after the infection process. Nine trials were performed in greenhouse using potted tomato plants that were treated 24 h after inoculation. Disease severity was assessed three times from the development of the symptoms on the untreated plants and data analysed using a linear mixed model. Differences in post-infection control between the different chemical classes were found. Metalaxyl-M and cymoxanil showed the best curative activity while among the CAA fungicides, a good efficacy was expressed by dimethomorph. Interestingly, evidence of synergy between active ingredients having different modes of action was observed such as in the mixtures containing dimethomorph?+?ametoctradin, dimethomorph?+?pyraclostrobin and fosetyl-Al?+?propamocarb. This study provided useful information on the post-infection activity of some fungicides used to control tomato late blight and should be taken into account to perform more in depth studies at the field level and to improve the management strategies of the disease.  相似文献   

7.
Late blight, caused by the oomycete Phytophthora infestans, is a threat to potato‐cropping systems worldwide. In the Ecuadorian Andes, despite a high late blight incidence in foliage, tuber blight is rare. In this work, the hypothesis that Ecuadorian Andean soils are naturally suppressive to P. infestans tuber infection was evaluated. Soils from four potato‐growing regions were assessed for disease suppressiveness by determining the effects of soil heat treatment on P. infestans sporangia and their ability to infect potato slices after 1, 8, 15 and 30 days of exposure to soils. Tuber infection after inoculation with P. infestans‐infested soils was consistently lower during the evaluation period compared with heat‐treated soils. Fresh, untreated soils affected germination and viability of P. infestans sporangia in a site‐dependent manner. In addition, the effect of heat treatment on soil bacterial communities was assessed through terminal restriction fragment length polymorphism analysis of the 16S rDNA gene region. Heat treatment disrupted bacterial community composition, and a subset of terminal restriction fragments (TRF) was either positively or negatively correlated with tuber infection. Bacterial TRF negatively correlated with tuber infection corresponded in fragment size to taxa with known ability to inhibit pathogens and promote plant growth. Finally, bacterial isolates obtained from untreated soils, which inhibited P. infestans growth in vitro, represented 22–47% of isolates recovered, and matched classes predicted by the TRFs. This work represents a first step in understanding the mechanisms behind the low incidence of tuber blight in Andean potato‐cropping systems.  相似文献   

8.
During the period 1978–1992, phenylamide fungicides in co-formulation with the dithiocarbamate fungicide mancozeb were tested for the control of potato late-blight in 51 separate field experiments in England and Wales. Whilst there was a general trend over all the experiments which indicated that foliage blight was less severe where the phenylamide + dithiocarbamate mixture had been used, the benefit was more marked in some than in others. Despite the detection of phenylamide resistance, at some sites the mixture gave better control of foliage blight than the dithiocarbamate alone. At one site where continuous data were available, the additional benefit of the phenylamide compound for control of foliage infection was lost after 1986 coinciding with a rise in phenylamide resistance from 31.7% in 1986 to 81% in 1987. Where foliar blight epidemics occurred, yield responses to fungicide programmes compared with unsprayed controls ranged from 0 to +118.5% with a mean response of +30.2%. This is equivalent to 30.8 and 12.92 t/ha respectively. Standardized yield differences were calculated to allow inter-trial and inter-year comparisons and showed no benefit from the phenylamide fungicide applied at 14-day intervals in 33 out of 38 experiments where foliar blight epidemics occurred. At one site, Cusum analysis of standardized yield differences following treatment with the phenylamide + dithiocarbamate mixture and the dithiocarbamate alone showed a mean benefit from the phenylamide mixture of 2.23 t/ha during the period 1978 to 1986. From 1987 to 1992, the yield benefit dropped to a mean level of 0.68 t/ha a decrease of 69.5%. In experiments where blight was not recorded, fungicide treatments had no deleterious effect on yields. Over all the trials, there was no effect of fungicide treatment on the incidence of tuber blight at harvest.  相似文献   

9.
Propamocarb (Previcur-N; propyl-[3-dimethylamino-propyl] carbamate-monohydrochloride) was testedin vivo against 32 field isolates ofPhytophthora infestans from six countries. Fungicide dosages required to achieve 90% control of the blight ranged between 676 and 1530 ppm a.i. in potted potato (cv. ‘Alpha’) plants and between 1135 and 2648 ppm in potato tuber slices. Isolates from Israel were less sensitive to the fungicide than isolates from Europe or North America. Toxicity of propamocarb was not related to resistance or sensitivity to phenylamide fungicides (e.g. metalaxyl). Nevertheless, most metalaxyl-resistant isolates from Israel were less sensitive to propamocarb than most metalaxyl-sensitive isolates from this country. Monocyclic epidemics conducted with the 20 Israeli isolates in the field showed that 1081–2012 ppm of the fungicide was required to achieve 90% control of the disease. Laboratory experiments revealed that the fungicide was poorly active against sporangial germination and had a limited curative efficacy. It exhibited a translaminar translocation in leaves but a poor acropetal or basipetal systemicity from foliage. Propamocarb + mancozeb mixtures (1:1, v/w) were synergistically effective in controlling the blight. Growers in Israel use tank mixtures of propamocarb (Dynone) and mancozeb to combat late blight in potato fields where phenylamide-resistant isolates ofP. infestans are prevalent.  相似文献   

10.
In an attempt to reduce or eliminate the need for spraying to control potato late blight caused by Phytophthora infestans, investigations were made on the use of controlled-release granules containing the systemic fungicide ofurace. The granules when mixed with sand and buried in soil released the fungitoxicant for about 100 days. When the granules were applied in furrows at planting, protection of potato plants (cv. Maris Bard), assessed by inoculation of detached leaflets with P. infestans, lasted for between 85 and 100 days. Application of the granules when the plants were earthed up 48 days after planting did not result in better late-season protection, possibly due to poorer uptake of the fungitoxicant by the plants at this time. Chemical analysis of leaves from plants that had received in-furrow treatment indicated that ofurace at 0.2–0.5 μg g?1 fresh weight was needed to confer protection from late blight.  相似文献   

11.
The potential of biocontrol products and plant extracts for control of late blight on potato plants, caused by Phytophthora infestans was evaluated in detached leaf assays and on potted plants. Based on an initial screening of 22 preparations and plant extracts, the 10 most active treatments were selected for further investigation. In the detached leaf assays the commercial preparations Elot-Vis, Serenade and Trichodex, and plant extracts of Rheum rhabarbarum and Solidago canadensis showed a significant effect on the level of infestation by P. infestans. However, none of the treatments was as effective as copper. In the case of Serenade, the metabolites produced by its active micro-organism, Bacillus subtilis, were demonstrated to be the effective component of the formulation, and not the micro-organism itself. In order to take curative and protective modes of action into account, the test substances were applied 24 h before, or 90 min after inoculation with P. infestans. Generally, better effects were obtained when the applications were made 24 h before inoculation. For defining the optimum time of application, potted plants were treated 72 or 24 h before, and 1 and 24 h after inoculation with P. infestans. In these tests, Trichodex showed no activity, while Elot-Vis gave best results when applied 1 day before inoculation. Serenade and the extracts of R. rhabarbarum and S. canadensis (all at 5% concentration) however, were effective when applied up to 3 days before and just after inoculation with P. infestans. The results of the experiments on potted plants indicated direct effects on the pathogen for all agents except the extract of S. canadensis, but other mode of actions, e.g. induced resistance, could not be ruled out. None of the treatments had a curative effect.  相似文献   

12.
Integrating cultivars that are partially resistant with reduced fungicide doses offers growers an opportunity to decrease fungicide input but still maintain disease control. To use integrated control strategies in practice requires a method to determine the combined effectiveness of particular cultivar and fungicide dose combinations. Simple models, such as additive dose models (ADM) and multiplicative survival models (MSM), have been used previously to determine the joint action of two or more pesticides. This study tests whether a model based on multiplicative survival principles can predict the joint action of fungicide doses combined with cultivars of differing partial host resistance. Data from eight field experiments on potato late blight (Phytophthora infestans) were used to test the model; the severity of foliar blight was assessed and scores used to calculate the area under the disease progress curve (AUDPC). A subset of data, derived from the most susceptible cultivar, King Edward, was used to produce dose–response curves from which parameter values were estimated, quantifying fungicide efficacy. These values, along with the untreated values for the more resistant cultivars, Cara and Sarpo Mira, were used to predict the combined efficacy of the remaining cultivar by fungicide dose combinations. Predicted efficacy was compared against observations from an independent subset of treatments from the field experiments. The analysis demonstrated that multiplicative survival principles can be applied to describe the joint efficacy of host resistance and fungicide dose combinations.  相似文献   

13.
The dynamics of a late blight epidemic and sexual reproduction in Phytophthora infestans were studied in an experimental field in mid‐Sweden. The field was inoculated with six isolates of P. infestans taken from another potato field where sexual reproduction of the pathogen was suspected. Three weeks after inoculation single‐lesion leaflets were sampled and the resulting isolates characterized using microsatellites (SSRs) and mating type as markers. Among the 151 isolates analysed, the inoculum genotypes constituted more than 80% of the genotypes found, with three other genotypes making up the remainder. The following year, P. infestans obtained from soil samples taken from this field were analysed, and six novel genotypes were identified. Genotypes from the previous summer’s population were not detected. Analysis of the genotypes recovered was consistent with them being recombinants, with the previous summer’s population acting as parents. These findings are consistent with the hypothesis that oospores produced during a summer epidemic in Sweden can overwinter and cause infection the next year.  相似文献   

14.
A project has been undertaken in Switzerland to reduce the number of applications of fungicides to potato by a reduction of late blight incidence and disease pressure as well as by providing reliable and precise spraying recommendations against blight. We try to achieve this aim by combining different elements: (1) to delay and to impede disease progress, it is planned to promote less susceptible potato cultivars and to reduce the number of primary foci by advising seed potato growers to protect their crops more carefully; (2) the data of about 20 weather stations are utilized to test different forecasting systems; (3) these (theoretical) indications on the appearance of the disease are complemented by extensive monitoring of real late blight occurrence in the field; (4) the late blight susceptibility of all cultivars grown in Switzerland is being assessed by special trials. From the combination of all this information, spraying recommendations will be formulated according to regions and cultivars.  相似文献   

15.
Boron is a microelement required for normal growth and development of plants but its positive effect is restricted to a narrow range of concentrations. The gradual increase in use of recycled water, which contains high concentrations of boron for irrigation, has already raised the level of boron in soils and plants in southern Israel. This research was conducted to examine the direct effects of sub‐phytotoxic boron concentrations on potato late blight epidemics and to explore the mode of action of boron against Phytophthora infestans. When boron was applied alone to field grown potato plants it did not affect the epidemic. However, together with a reduced rate of the fungicide Melody Duo (propineb + iprovalicarb), boron improved late blight suppression compared to plants treated with the fungicide alone. The ED50 of boron against P. infestans (256·4 mg L?1) was about 6400 times higher than the ED50 value of the fungicide chlorothalonil (0·04 mg L?1), indicating that boron does not have a direct fungicidal activity that would explain the level of protection seen in the field. In greenhouse experiments conducted with potted tomato plants, boron decreased late blight severity in both treated leaves and distant leaves not treated with boron. The results suggest that boron is active locally but also may induce systemic acquired resistance against P. infestans.  相似文献   

16.
Foliar sprays of potato plants with phosphonic acid (partially neutralised with potassium hydroxide to pH 6.4) substantially reduced infection of the tubers by Phytophthora infestans, the cause of late blight, in glasshouse and field experiments over a 4-year period. Healthy tubers of blight-susceptible cultivars removed from treated plants and artificially inoculated by spraying with sporangial/zoospore suspensions of P infestans did not develop disease symptoms, demonstrating that the phosphonate applications had directly reduced the susceptibility of tubers to infection, probably as a result of translocation into tuber tissue. In contrast, foliar application of fosetyl-aluminium did not significantly reduce tuber blight development following inoculation. Five to six sprays of partially neutralised phosphonic acid (2 kg ha-1) applied at 10-14 day intervals resulted in the least tuber infection, but such a treatment regime may not be economic. In trials where the effect of timing and rate of application of 2-4 kg phosphonic acid ha-1 was examined, a single treatment of 4 kg ha-1 applied mid- or late-season proved the most effective. A spray programme in which one or two applications of phosphonic acid are combined with use of a non-systemic or systemic fungicide to enhance foliar protection offers the possibility of controlling both foliage and tuber blight and could have a major impact in reducing overwinter survival of P infestans in tubers.  相似文献   

17.
The climatological conditions for attack of late blight caused by Phytophthora infestans vary considerably in different parts of Sweden. This is due to the fact that the country is long from south to north covering 14 degrees of latitude from 55 to 69°. One important factor for blight development in Sweden is that potato production is dominated by cultivars susceptible to P. infestans. Approximately 80% of table potatoes are of cvs Bintje and King Edward VII. Cultivars with race-specific resistance such as Bellona, Ukama and Provita are attacked in the whole country. During recent years, many experiments have been carried out to investigate possible reductions in the usage of chemical agents for late blight control. These experiments include choice of fungicide, number of applications, dose rates and treatments according to blight warning systems.  相似文献   

18.
Phytophthora infestans causes late blight on potatoes and tomatoes, which has a significant economic impact on agriculture. The management of late blight has been largely dependent on the application of synthetic fungicides, which is not an ultimate solution for sustainable agriculture and environmental safety. Biocontrol strategies are expected to be alternative methods to the conventional chemicals in controlling plant diseases in the integrated pest management (IPM) programs. Well-studied biocontrol agents against Phytophthora infestans include fungi, oomycetes, bacteria, and compounds produced by these antagonists, in addition to certain bioactive metabolites produced by plants. Laboratory and glasshouse experiments suggest a potential for using biocontrol in practical late blight disease management. However, the transition of biocontrol to field applications is problematic for the moment, due to low and variable efficacies. In this review, we provide a comprehensive summary on these biocontrol strategies and the underlying corresponding mechanisms. To give a more intuitive understanding of the promising biocontrol agents against Phytophthora infestans in agricultural systems, we discuss the utilizations, modes of action and future potentials of these antagonists based on their taxonomic classifications. To achieve a goal of best possible results produced by biocontrol agents, it is suggested to work on field trials, strain modifications, formulations, regulations, and optimizations of application. Combined biocontrol agents having different modes of action or biological adaptation traits may be used to strengthen the biocontrol efficacy. More importantly, biological control agents should be applied in the coordination of other existing and forthcoming methods in the IPM programs. © 2023 Society of Chemical Industry.  相似文献   

19.
Ascochyta blight causes significant yield loss in pulse crops worldwide. Integrated disease management is essential to take advantage of cultivars with partial resistance to this disease. The most effective practices, established by decades of research, use a combination of disease-free seed, destruction or avoidance of inoculum sources, manipulation of sowing dates, seed and foliar fungicides, and cultivars with improved resistance. An understanding of the pathosystems and the inter-relationship between host, pathogen and the environment is essential to be able to make correct decisions for disease control without compromising the agronomic or economic ideal. For individual pathosystems, some components of the integrated management principles may need to be given greater consideration than others. For instance, destruction of infested residue may be incompatible with no or minimum tillage practices, or rotation intervals may need to be extended in environments that slow the speed of residue decomposition. For ascochyta-susceptible chickpeas the use of disease-free seed, or seed treatments, is crucial as seed-borne infection is highly effective as primary inoculum and epidemics develop rapidly from foci in favourable conditions. Implemented fungicide strategies differ according to cultivar resistance and the control efficacy of fungicides, and the effectiveness of genetic resistance varies according to seasonal conditions. Studies are being undertaken to develop advanced decision support tools to assist growers in making more informed decisions regarding fungicide and agronomic practices for disease control.  相似文献   

20.
In The Netherlands in 1980 a severe late-blight epidemic involving metalaxyl-resistant strains of Phytophthora infestans did considerable damage to the potato crop. As a consequence metalaxyl or metalaxyl-containing products were withdrawn from the Dutch fungicide market for the control of potato late blight. In 1981 the majority of the P. infestans isolates obtained from various parts of the country were sensitive to metalaxyl. In three areas where metalaxyl mixtures were used on a relatively large scale metalaxyl-resistant strains dominated the population. Incidental use of metalaxyl mixtures in 1982 and 1983 showed adequate late-blight control and, when in 1984 an early and in some areas severe epidemic developed, a metalaxyl/mancozeb mixture was reintroduced for curative application in combination with conventional fungicides. Although disease control was adequate, resistant strains were present in a small number of fields. Whether resistant strains will increase in frequency and threaten the usefulness of mixtures of acylalanines will heavily depend on how well potato farmers adopt strategies involving a limited use of mixtures of acylalanines in a spray schedule with conventional late-blight fungicides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号