首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We used the ‘Baronesse’/‘Full Pint’ doubled haploid population to analyse the genetic factors controlling flowering date under South American conditions. Both parents have similar heading dates, but the population shows transgressive segregation. Two genes, eps2S on chromosome 2H and sdw1 on chromosome 3H, explained most of the phenotypic variation for anthesis date, with the later allele carried by ‘Baronesse’ and ‘Full Pint’ , respectively. Both effects were completely additive with no interaction. We studied three plant developmental periods: seedling emergence to tillering (Z10–Z20), tillering (Z20–Z30) and end of tillering to anthesis (Z30–Z49) under field conditions at three contrasting planting dates. Z10–Z20 was also measured under semi‐controlled conditions. eps2S controlled Z30–Z49 periods, while sdw1 controlled Z20–Z30. Each of the two genes for the end‐point phenotype—anthesis date—was a determinant of flowering at a different developmental stage. No gene x planting date interactions were detected.  相似文献   

2.
K. Kato    H. Miura  S. Sawada 《Plant Breeding》1999,118(5):391-394
A homoeologous quantitative trait locus to that of eps5L on barley chromosome 5H was identified in a syntenic region of wheat chromosome 5A. Wheat single chromosome recombinant lines (SCRs) were developed from a cross between ‘Chinese Spring’(‘Cappelle-Desprez’ 5A) and ‘Chinese Spring’(Triticum spelta 5A), these were grown together with the parental controls under different vernalization and photoperiod regimes. The variation for ear emergence time accelerated heading induced by the T. spelta segment indicated an effect associated with the Xcdo412-Xbcd9 interval. Since no differences between the SCRs and controls in responses to vernalization and photoperiod treatments were detected, this effect was identified as an earliness per se gene, Q Eetocs-5 A.2, which may be homoeologous to the eps5L quantitative trait locus of barley. Xbcd926 has been found to be closely linked to the rice flowering time quantitative trait loci, QHd9a or FLTQ2, on chromosome 9, suggesting possible relationships among the quantitative trait loci across wheat, barley and rice genomes.  相似文献   

3.
In an earlier advanced‐backcross quantitative trait locus (QTL) analysis of an interspecific cross of Gossypium hirsutum cv. ‘Xinluzhong 36’(‘XLZH36’) and G. barbadense cv. ‘Xinhai 21’(‘XH21’), a QTL for fibre strength in the chromosome segment introgression line IL23‐09 was analysed. Single marker analysis revealed that the markers on chro.23 were associated with fibre strength. Using composite interval mapping with the F2 population (1296 plants), a QTL for fibre strength was detected on chro. 23. The QTL explained 8.9% and 15.9% of phenotypic variances in the F2 and F2 : 3 generations, respectively. Substitution mapping suggested that the QTL was located at a physical distance of 23.4 kb between the markers BNL1414 and the single nucleotide polymorphism (SNP) locus D09_43776813 C‐G. We designated this QTL as qFS‐chr.23 (quantitative trait locus for fibre strength on chro.23). This work provides a valuable genetic resource for the breeding of high fibre quality in cotton and will facilitate future efforts for map‐based cloning.  相似文献   

4.
Multi-environment trials represent a highly valuable tool for the identification of the genetic bases of crop yield potential and stress adaptation. A Diversity Array Technology®-based barley map has been developed in the ‘Nure’ × ‘Tremois’ biparental Doubled Haploid population, harbouring the genomic position of a gene set with a putative role in the regulation of flowering time and abiotic stress response in barley. The population has been evaluated in eighteen location-by-year combinations across the Mediterranean basin. QTL mapping identified several genomic regions responsible for barley adaptation to Mediterranean conditions in terms of phenology, grain yield and yield component traits. The most frequently detected yield QTL had the early flowering HvCEN_EPS2 locus (chromosome 2H) as peak marker, showing a positive effect from the early winter parent ‘Nure’ in eight field trials, and explaining up to 45.8 % of the observed variance for grain yield. The HvBM5A_VRN-H1 locus on chromosome 5H and the genomic region possibly corresponding to PPD-H2 on chromosome 1H were significantly associated to grain yield in five and three locations, respectively. Environment-specific QTLs for grain yield, and clusters of yield component QTLs not related to phenology and or developmental genes (e.g. on chromosome 4H, BIN_09) were observed as well. The results of this work provide a valuable source of knowledge and tools for both explaining the genetic bases of barley yield adaptation across the Mediterranean basin, and using QTL-associated markers for MAS pre-breeding and breeding programmes.  相似文献   

5.
Recombinant inbred lines (RILs) derived from a cross between Brassica rapa L. cv. ‘Sampad’, and an inbred line 3‐0026.027 was used to map the loci controlling silique length and petal colour. The RILs were evaluated under four environments. Variation for silique length in the RILs ranged from normal, such as ‘Sampad’, to short silique, such as 3‐0026.027. Three QTL, SLA3, SLA5 and SLA7, were detected on the linkage groups A3, A5 and A7, respectively. These QTL explained 36.0 to 42.3% total phenotypic variance in the individual environments and collectively 32.5% phenotypic variance. No additive × additive epistatic interaction was detected between the three QTL. Moreover, no QTL × environment interaction was detected in any of the four environments. The number of loci for silique length detected based on QTL mapping agrees well with the results from segregation analysis of the RILs. In case of petal colour, a single locus governing this trait was detected on the linkage group A2.  相似文献   

6.
Seed storability in rice (Oryza sativa L.) is an important agronomic trait. We previously showed a quantitative trait locus of seed storability, qSS‐9, on chromosome 9 in a backcross population of ‘Koshihikari’ (japonica) / ‘Kasalath’ (indica) // ‘Koshihikari’. In this study, fine mapping of the chromosomal location of qSS‐9 was performed. Effect of ‘Kasalath’ allele of qSS‐9 was validated using a chromosome segment substitution line, SL36, which harboured the target quantitative trait loci (QTL) from ‘Kasalath’ in the genetic background of ‘Nipponbare’ under different ageing treatments in different environments. Subsequently, an F2 population from a cross between ‘Nipponbare’ and SL36 was used for fine mapping of qSS‐9. Simultaneously, four subnear isogenic lines (sub‐NILs) that represented different recombination breakpoints across the qSS‐9 region were developed from F3 progeny. Finally, the qSS‐9 locus was located between the Indel markers Y10 and Y13, which delimit a region of 147 kb in the ‘Nipponbare’ genome. These results provide a springboard for map‐based cloning of qSS‐9 and possibilities for breeding rice varieties with strong seed storability.  相似文献   

7.
Y. Turuspekov    N. Kawada    I. Honda    Y. Watanabe    T. Komatsuda 《Plant Breeding》2005,124(6):542-545
General knowledge of the closed flowering trait, or cleistogamy, of barley is still limited. The relationship between cleistogamy and spike morphology characters was studied and linkage of cleistogamy genes with a highly significant quantitative trait locus (QTL) for rachis internode length on the long arm of chromosome 2H was detected. The mapping populations consisted of 129 doubled haploid lines of ‘Mikamo Golden’ × ‘Harrington’ and 150 F2 plants of ‘Misato Golden’ × ‘Satsuki Nijo’. The phenotypic variance explained by this QTL accounted for 77.5% and 82.6% of the variance in rachis internode lengt, respectively, in these two populations. The peaks of the QTL coincided with the positions of the cleistogamy gene loci.  相似文献   

8.
Drought is one of the major factors limiting barley yields in many developing countries worldwide. The identification of molecular markers linked to genes controlling drought tolerance in barley is one way to improve breeding efficiency. In this study, we analyzed the quantitative trait loci (QTL) controlling chlorophyll content and chlorophyll fluorescence in 194 recombinant inbred lines (RILs) developed from the cross between the cultivar ‘Arta’ and Hordeum spontaneum 41-1. Five traits, chlorophyll content, and four chlorophyll fluorescence parameters, namely initial fluorescence (Fo), maximum fluorescence (Fm), variable fluorescence (Fv), and maximum quantum efficiency of PSII (Fv/Fm) which are related to the activity of the photosynthetic apparatus, were measured under well-watered and drought stress conditions at post-flowering stage. QTL analysis identified a total of nine and five genomic regions, under well-watered and drought stress conditions, respectively, that were significantly associated with the expression of the five target traits at post-flowering stage. No common QTL was detected except one for chlorophyll content, which was identified in both growth conditions, demonstrating that the genetic control of the expression of the traits related to photosynthesis differed under different water conditions. A QTL for Fv/Fm, which is related to the drought tolerance of photosynthesis was identified on chromosome 2H at 116 cM in the linkage map under drought stress. This QTL alone explained more than 15% of phenotypic variance of maximum quantum yield of PSII, and was also associated with the expression of four other traits. In addition, another QTL for Fv/Fm was also located on the same chromosome (2H) but at 135.7 cM explaining around 9% of the phenotypic variance under drought conditions. The result presented here suggest that two major loci, located on chromosome 2H, are involved in the development of functional chloroplast at post-flowering stage for drought tolerance of photosynthesis in barley under drought stress. If validated in other populations, chlorophyll fluorescence parameters could be used as selection criteria for drought tolerance.  相似文献   

9.
Heterosis, or hybrid vigour, has been used to improve seed yield in several important crops for decades and it has potential applications in soybean. The discovery of over‐dominant quantitative trait loci (QTL) underlying yield‐related traits, such as seed weight, will facilitate hybrid soybean breeding via marker‐assisted selection. In this study, F2 and F2 : 3 populations derived from the crosses of ‘Jidou 12’ (Glycine max) × ‘ZYD2738’ (Glycine soja) and ‘Jidou 9’ (G. max) × ‘ZYD2738’ were used to identify over‐dominant QTL associated with seed weight. A total of seven QTL were identified. Among them, qSWT_13_1, mapped on chromosome 13 and linked with Satt114, showed an over‐dominant effect in two populations for two successive generations. This over‐dominant effect was further examined by six subpopulations derived from ‘Jidou12’ × ‘ZYD2738’. The seed weight for heterozygous individuals was 1.1‐ to 1.6‐fold higher than that of homozygous individuals among the six validation populations examined in different locations and years. Therefore, qSWT_13_1 may be a useful locus to improve the yield of hybrid soybean and to understand the molecular mechanism of heterosis in soybean.  相似文献   

10.
J. Jensen    G. Backes    H. Skinnes  H. Giese 《Plant Breeding》2002,121(2):124-128
Three quantitative trait loci (QTL) for scald resistance in barley were identified and mapped in relation to molecular markers using a population of chromosome doubled‐haploid lines produced from the F1 generation of a cross between the spring barley varieties ‘Alexis’ and ‘Regatta’. Two field experiments were conducted in Denmark and two in Norway to assess disease resistance. The percentage leaf area covered with scald (Rhynchosporium secalis) ranged from 0 to 40% in the 189 doubled‐haploid (DH) lines analysed. One quantitative trait locus was localized in the centromeric region of chromosome 3H, Qryn3, using the MAPQTL program. MAPQTL was unable to provide proper localization of the other two resistance genes and so a non‐interval QTL mapping method was used. One was found to be located distally to markers on chromosome 4H (Qryn4) and the other, Qryn6, was located distally to markers on chromosome 6H. The effects of differences between the Qryn3, Qryn4 and Qryn6 alleles in two barley genotypes for the QTL were estimated to be 8.8%, 7.3% and 7.0%, respectively, of leaf covered by scald. No interactions between the QTLs were found.  相似文献   

11.
Heterosis is a phenomenon whereby hybrids of inbred lines produce favourable phenotypes that exceed those of their parents. Traits of interest are higher yield and stronger stress tolerance. The two‐line super‐hybrid rice ‘Liangyoupei9’ (LYP9) shows superiority to both its elite inbred line ‘93‐11’ and ‘Pei'ai64s’ (‘PA64s’) parents and conventional hybrids. However, the genetic basis of its hybrid vigour, especially yield determination, remains elusive. In the present study, a set of 156 chromosome segment substitution lines (CSSLs) carrying overlapping segments from ‘PA64s’ in a genetic background of ‘93‐11’ were constructed and planted in six environments. Three major agronomic traits, viz. panicle length (PL), heading date (HD) and plant height (PH), and five yield‐related traits, viz. grain weight per panicle (GWP), number of grains per panicle (GPP), 1000‐grain weight (TGW), seed set (SS) and number of panicles of per plant (PPP), were evaluated over 3 years. Quantitative trait loci (QTL) analysis was conducted using a likelihood ratio test based on stepwise regression. Forty‐six putative QTL distributed on 11 chromosomes were detected in more than one year. Remarkably, GWP of four CSSLs carrying positive yield QTL outperformed the recurrent parent ‘93‐11’ by more than 15%, in at least two environments. These results indicate that CSSLs are effective in identifying yield‐associated traits, and lines harbouring such QTL will be rich in resources for future molecular breeding programmes.  相似文献   

12.
The objective was to study the genetic basis of adult plant resistance to powdery mildew of the winter wheat line RE714 by quantitative trait loci (QTL) analysis and to investigate the stability of the QTL detected in two different genetic backgrounds. Two DH populations from the crosses between RE714 and the susceptible parents ‘Festin’ and ‘Hardi’ were used. Reaction of the DH lines to powdery mildew was assessed in different environments in Belgium under natural disease infection. Considering both populations and according to the environment tested, one to seven QTL were detected. Among them, residual effects of the race‐specific resistance genes Pm4b and MIRE were found. Two major QTL were very stable (on chromosome 5D and at the MIRE locus), since they were detected in both populations and over all environments tested. The QTL detected varied according to the susceptible parent used, and a residual effect at the Pm4b gene was not observed with the genetic background of ‘Hardi’.  相似文献   

13.
A major quantitative trait locus (QTL) influencing seed fibre and colour in Brassica napus was dissected by marker saturation in a doubled haploid (DH) population from the black‐seeded oilseed rape line ‘Express 617’ crossed with a yellow‐seeded B. napus line, ‘1012–98’. The marker at the peak of a sub‐QTL with a strong effect on both seed colour and acid detergent lignin content lay only 4 kb away from a Brassica (H+)‐ATPase gene orthologous to the transparent testa gene AHA10. Near the peak of a second sub‐QTL, we mapped a copy of the key phenylpropanoid biosynthesis gene cinnamyl alcohol dehydrogenase, while another key phenylpropanoid biosynthesis gene, cinnamoyl co‐a reductase 1, was found nearby. In a cross between ‘Express 617’ and another dark‐seeded parent, ‘V8’, Bna.CCR1 was localized in silico near the peak of a corresponding seed fibre QTL, whereas in this case Bna.CAD2/CAD3 lay nearby. Re‐sequencing of the two phenylpropanoid genes via next‐generation amplicon sequencing revealed intragenic rearrangements and functionally relevant allelic variation in the three parents.  相似文献   

14.
Salinity is a major abiotic stress to barley (Hordum vulgare L.) growth and yield. In the current study, quantitative trait loci (QTL) for yield and physiological components at the late growth stage under salt stress and non-stress environments were determined in barley using a double haploid population derived from a cross between CM72 (salt-tolerant) and Gairdner (salt-sensitive). A total of 30 QTLs for 10 traits, including tiller numbers (TN), plant height, spikes per line (SPL), spikes per plant (SPP), dry weight per plant, grains per plant, grain yield, shoot Na+ (NA) and K+ concentraitions (K) in shoot, and Na+/K+ ratio (NAK), were detected, with 17 and 13 QTLs under non-stress and salt stress, respectively. The phenotypic variation explained by individual QTL ranged from 3.25 to 29.81%. QTL flanked by markers bPb-1278 and bPb-8437 on chromosomes 4H was associated with TN, SPL, and SPP under salt stress. This locus may be useful in the breeding program of marker-assisted selection for improving salt tolerance of barley. However, QTLs associated with NA, K, and NAK differed greatly between non-stress and salt stress environments. It may be suggested that only the QTLs detected under salt stress are really associated with salt tolerance in barley. D. Xue and Y. Huang contributed equally to the article.  相似文献   

15.
A genetic map was constructed with 353 sequence-related amplified polymorphism and 34 simple sequence repeat markers in oilseed rape (Brassica napus L.). The map consists of 19 linkage groups and covers 1,868 cM of the rapeseed genome. A recombinant doubled haploid (DH) population consisting of 150 lines segregating for oil content and other agronomic traits was produced using standard microspore culture techniques. The DH lines were phenotyped for days to flowering, oil content in the seed, and seed yield at three locations for 3 years, generating nine environments. Data from each of the environments were analyzed separately to detect quantitative trait loci (QTL) for these three phenotypic traits. For oil content, 27 QTL were identified on 14 linkage groups; individual QTL for oil content explained 4.20–30.20% of the total phenotypic variance. For seed yield, 18 QTL on 11 linkage groups were identified, and the phenotypic variance for seed yield, as explained by a single locus, ranged from 4.61 to 24.44%. Twenty-two QTL were also detected for days to flowering, and individual loci explained 4.41–48.28% of the total phenotypic variance.  相似文献   

16.
N. Hirota    T. Kaneko    K. Ito    K. Takeda 《Plant Breeding》2006,125(3):231-235
Barley lipoxygenase (LOX)‐1 is believed to affect the stability of flavour and the foam of beer. The purpose of this study was to investigate the genetic variation of the LOX‐1 thermostability, and to analyse the mode of inheritance of this trait. A simple method was established to evaluate the LOX‐1 relative thermostability (LOX‐RTS). With this method, 153 barley cultivars were screened for LOX‐RTS. The frequency of the LOX‐RTS values was distributed in a bimodal manner. Based on these values, the barley lines were categorized into two groups: an H‐type with relatively thermostable LOX‐1 and an L‐type with relatively thermolabile LOX‐1. Using a ‘Steptoe’/‘Morex’ doubled haploid population, a major quantitative trait locus (QTL) associated with LOX‐RTS was identified on chromosome 4H of barley, explaining 82% of the variance. Mapping of a CAPS marker specific for the LoxA locus revealed co‐segregation with this QTL. In this study, the existence of the thermostability types of barley seed LOX‐1 and the locus controlling the thermostability were made clearer.  相似文献   

17.
‘Drought avoidance’ and ‘drought tolerance’ are two mechanisms by which plants adapt under water stress. These mechanisms are difficult to evaluate separately in field experiments. Using hydroponic culture, we studied the genetic control of drought tolerance in rice (Oryza sativa L.) without the effect of drought avoidance. A backcross inbred population of ‘Akihikari’ (lowland cultivar) × ‘IRAT109’ (upland cultivar) with 106 lines was cultured with (stressed condition) and without (non-stressed condition) polyethylene glycol (PEG) at seedling stage. The relative growth rate (RGR), specific water use (SWU), and water use efficiency (WUE) showed significant genotype × environment interactions with or without PEG, indicating that each line responded differently to water stress. A quantitative trait locus (QTL) analysis revealed that these interactions were QTL specific. A total of three QTLs on chromosomes 2, 4, and 7 were detected for RGR. The QTL on chromosome 7 had a constant effect across environments, while the QTL on chromosome 4 had an effect only under non-stressed condition and that on chromosome 2 only under stressed condition. The stress-specific QTL on chromosome 2 was not co-located with any QTLs for root system depth previously reported from the same mapping population. However, this QTL was co-located with a stress-specific QTL for SWU, suggesting that the control of transpiration was relevant to dry matter production under drought. We concluded that PEG-treated hydroponic culture is very effective for use in genetic analyses of drought tolerance at seedling stage.  相似文献   

18.
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is a devastating fungal disease in common wheat (Triticum aestivum L.) worldwide. Chinese wheat cultivars ‘Lumai 21’ and ‘Jingshuang 16’ show moderate levels of adult‐plant resistance (APR) to stripe rust in the field, and they showed a mean maximum disease severity (MDS) ranging from 24 to 56.7% and 26 to 59%, respectively, across different environments. The aim of this study was to identify quantitative trait loci (QTL) for resistance to stripe rust in an F3 population of 199 lines derived from ‘Lumai 21’ × ‘Jingshuang 16’. The F3 lines were evaluated for MDS in Qingshui, Gansu province, and Chengdu, Sichuan province, in the 2009–2010 and 2010–2011 cropping seasons. Five QTL for APR were detected on chromosomes 2B (2 QTL), 2DS, 4DL and 5DS based on mean MDS in each environment and averaged values from all three environments. These QTL were designated QYr.caas‐2BS.2, QYr.caas‐2BL.2, QYr.caas‐2DS.2, QYr.caas‐4DL.2 and QYr.caas‐5DS, respectively. QYr.caas‐2DS.2 and QYr.caas‐5DS were detected in all three environments, explaining 2.3–18.2% and 5.1–18.0% of the phenotypic variance, respectively. In addition, QYr.caas‐2BS.2 and QYr.caas‐2BL.2 colocated with QTL for powdery mildew resistance reported in a previous study. These APR genes and their linked molecular markers are potentially useful for improving stripe rust and powdery mildew resistances in wheat breeding.  相似文献   

19.
Barley—Pyrenophora graminea interaction: QTL analysis and gene mapping   总被引:2,自引:0,他引:2  
Pyrenophora graminea is a seed-borne pathogen and is the causal agent of the barley leaf stripe disease. Our aim is to study the genetic basis of barley resistance to leaf stripe. A qualitatively acting resistance factor has been identified in the cultivar ‘Vada’ and the partial resistance of the cultivar ‘Proctor’ to a P. graminea isolate has been demonstrated to be dominated by a major quantitative trait locus (QTL), mapped on barley chromosome 1. Map colinearity between the leaf stripe ‘Proctor’ resistance QTLs,‘Vada’ resistance to leaf stripe, and other disease resistance loci have been investigated in this work using molecular markers. Moreover, since inoculation of barley rootlets by the fungus had been shown to induce the accumulation of several PR (pathogen-related) mRNA families, seven barley PR genes have been mapped as RFLPs, and one assigned to a chromosome arm via ditelosomic analysis to verify possible map associations with resistance QTLs. This work discusses the genetic relationships between the known leaf stripe resistance loci, resistance loci towards other seed-borne pathogens and defence gene loci.  相似文献   

20.
Cold tolerance is a complex trait, and QTL pyramiding is required for rice breeding. In this study, a total of seven QTLs for cold tolerance in the Japonica rice variety ‘Nipponbare’ were identified in an F2:3 population. A stably inherited major QTL, called qCTS11, was detected in the region adjacent to the centromere of chromosome 11. In a near‐isogenic line population, the QTL was further dissected into two linked loci, qCTS11.1 and qCTS11.2. Both of the homozygous alleles of qCTS11.1 and qCTS11.2 from ‘Nipponbare’ showed major positive effects on cold tolerance. Through pyramiding the linked QTLs in the cold‐sensitive Indica rice cultivar ‘93‐11’, we have developed a new elite, high‐yielding Indica variety with cold tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号