首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The purpose of this study was to compare 3 methods for the reduction of aerosol transmission of Porcine reproductive and respiratory syndrome virus (PRRSV): high-efficiency particulate air (HEPA) filtration, low-cost filtration, and ultraviolet light (UV) irradiation. The HEPA-filtration system involved a pre-filter screen, a bag filter (EU8 rating), and a HEPA filter (EU13 rating). The low-cost-filtration system contained mosquito netting (pre-filter), a fiberglass furnace filter, and an electrostatic furnace filter. For UV irradiation, a lamp emitted UVC radiation at 253.7 nm. No form of intervention was used in the control group. The experimental facilities consisted of 2 chambers connected by a 1.3-m-long duct. Recipient pigs, housed in chamber 2, were exposed to artificial aerosols created by a mechanically operated mister containing modified live PRRSV vaccine located in chamber 1. Aerosol transmission of PRRSV occurred in 9 of the 10 control replicates, 8 of the 10 UVC-irradiation replicates, 4 of the 10 low-cost-filtration replicates, and 0 of the 10 HEPA-filtration replicates. When compared with no intervention, HEPA filtration and low-cost filtration significantly reduced PRRSV transmission (P < 0.0005 and = 0.0286, respectively), whereas UV irradiation had no effect (P = 0.5). However, low-cost filtration and UV irradiation were significantly less effective (P = 0.043 and P < 0.0005, respectively) than HEPA filtration. In conclusion, under the conditions of this study, HEPA filtration was significantly more effective at reducing aerosol transmission of PRRSV than the other methods evaluated.  相似文献   

2.
The purpose of this study was to compare 4 methods for the reduction of aerosol transmission of Porcine reproductive and respiratory syndrome virus (PRRSV): high-efficiency particulate air (HEPA) filtration, 2x-low-cost filtration, bag filtration, and use of a filter tested against particles derived from dioctylphthalate (DOP). The HEPA-filtration system used a prefilter screen, a bag filter (Eurovent [EU] 8 rating), and a HEPA filter (EU13 rating). The low-cost-filtration system contained mosquito netting (prefilter), 2 fiberglass furnace filters, and 2 electrostatic furnace filters. Bag filtration involved the use of a filter rated EU8 and a minimum efficiency reporting value (MERV) of 14. The 95%-DOP, 0.3-microm-filtration system involved a pleat-in-pleat V-bank disposable filter with a 95% efficiency rating for particles 0.3 microm or greater in diameter and ratings of EU9 and MERV 15. No form of intervention was used in the control group. The experimental facilities consisted of 2 chambers connected by a 1.3-m-long duct containing the treatments. Recipient pigs, housed in chamber 2, were exposed to artificial aerosols created by a mechanically operated mister containing modified live PRRSV vaccine located in chamber 1. Aerosol transmission of PRRSV occurred in 0 of the 10 HEPA-filtration replicates, 2 of the 10 bag-filtration replicates, 4 of the 10 low-cost-filtration replicates, 0 of the 10 95%-DOP, 0.3-microm-filtration replicates, and all 10 of the control replicates. Using a similar approach, we further evaluated the HEPA- and 95%-DOP, 0.3-microm-filtration systems. Infection was not observed in any of the 76 HEPA-filtration replicates but was observed in 2 of the 76 95%-DOP, 0.3-microm replicates and 42 of the 50 control replicates. Although the difference between the 95%-DOP, 0.3-microm and control replicates was significant (P < 0.0005), so was the level of failure of the 95%-DOP, 0.3-microm system (P = 0.02). In conclusion, under the conditions of this study, some methods of air filtration were significantly better than others in reducing aerosol transmission of PRRSV, and HEPA filtration was the only system that completely prevented transmission.  相似文献   

3.
4.
The current study was performed to determine if porcine reproductive and respiratory syndrome virus (PRRSV) could be transmitted to pigs by feeding muscle tissue obtained from recently infected pigs. Muscle obtained from pigs infected with either a European strain (EU donor pigs) or American strain (US donor pigs) of PRRSV was fed to PRRSV-free receiver pigs. The donor pigs were slaughtered 11 days post-infection (dpi). PRRSV was detected by conventional virus isolation in muscle at 11 dpi from 7 of 12 EU donor pigs and 5 of 12 US donor pigs. In contrast to conventional virus isolation, all muscle samples from infected pigs were positive for viral nucleic acid by PCR, except for muscle from one animal infected with the American strain of PRRSV. Five hundred grams of raw semimembranosus muscle from each of the donor pigs was fed over a 2 days period (250 g per day) to each of two receiver pigs (48 receiver pigs). The receiver pigs were housed separately in five groups. One of the five groups was fed muscle obtained from US donor pigs that was also spiked with the American strain of PRRSV. Sentinel pigs were placed in-contact with the group of receiver pigs fed spiked muscle. All receiver pigs became viraemic by 6 days post-feeding (dpf). There was evidence of horizontal transmission with sentinel pigs, in-contact with receiver pigs, becoming viraemic. The study demonstrates that PRRSV could be infectious through the oral route via the feeding of meat obtained from recently infected pigs.  相似文献   

5.
The purpose of this study was to evaluate the potential for houseflies (Musca domestica) to mechanically transport and transmit porcine reproductive and respiratory syndrome virus (PRRSV) between pig populations under controlled field conditions. The study employed swine housed in commercial livestock facilities and a release-recapture protocol involving marked (ochre-eyed) houseflies. To assess whether transport of PRRSV by insects occurred, ochre-eyed houseflies were released and collected from a facility housing an experimentally PRRSV-inoculated population of pigs (facility A) and collected from a neighboring facility located 120 m to the northwest that housed a naïve pig population (facility B). All samples were tested for PRRSV RNA by polymerase chain reaction (PCR). To assess transmission between the 2 populations, blood samples were collected from naïve pigs in facility B at designated intervals and tested by PCR. A total of 7 replicates were conducted. During 2 of 7 replicates (1 and 5), PCR-positive ochre-eyed houseflies were recovered in facility B and pigs in this facility became infected with PRRSV. Chi-squared analysis indicated that the presence of PRRSV in an insect sample was significantly (P = 0.0004) associated with infection of facility B pigs. Porcine reproductive and respiratory syndrome virus was not recovered from other reported routes of transmission during the study period, including air, fomites, and personnel. In conclusion, while an insufficient number of replicates were conducted to predict the frequency of the event, houseflies may pose some level of risk for the transport and transmission of PRRSV between pig populations under field conditions.  相似文献   

6.
The aim of this study was to develop a model to evaluate the aerosol transmission of porcine reproductive and respiratory disease virus (PRRSV). PRRSV (MN 30-100 strain, total dose 3 x 10(6) virus particles) was aerosolised and transported up to 150 m and a portable air sampler was used to collect air samples at 1, 30, 60, 90, 120 and 150 m (five replicates at each distance) and the air samples were tested by TaqMan PCR and virus isolation. The infectivity of the aerosolised PRRSV was tested by exposing six PRRSV-naive pigs for three hours to aerosolised virus that had been transported 150 m. PRRSV RNA was detected in all five replicate air samples collected at 1, 30, 60 and 90 m, in four of the five collected at 120 m, and in three of the five collected at 150 m. Infectious PRRSV was detected by virus isolation at 1 and 30 m (all five replicates), 60, 90 and 120 m (three of the five) and 150 m (two of the five). There was a 50 per cent reduction in the log concentration of PRRSV RNA every 33 m. Three of the six pigs exposed to PRRSV-positive aerosols became infected, and PRRSV RNA was detected in air samples and on swab samples collected from the interior of the chambers that housed the infected pigs while they were being exposed.  相似文献   

7.
To evaluate the transmission of Mycoplasma hyopneumoniae and porcine reproductive and respiratory syndrome virus (PRRSV) by aerosol as either a single or mixed infection, 28 pigs were inoculated intratracheally with M hyopneumoniae on day 0 and infected intranasally with PRRSV on day 35; they were housed together in a barn. To assess the aerosol transmission of M hyopneumoniae as a single infection, one trailer (A) containing 10 five-week-old sentinel pigs was placed along the south side of the infected barn (1 m from the fans) on day 28. To assess the mixed infection, two trailers (B and C), each containing 10 five-week-old sentinel pigs, were placed along each side of the barn on day 42. The sentinel pigs in the three trailers were exposed to the exhaust from the fans for seven days. No M hyopneumoniae infection was detected in the sentinel pigs in trailer A, but it was detected in the sentinel pigs in trailers B and C. No PRRSV was detected in any of the sentinel pigs.  相似文献   

8.
This study was conducted to delineate potential sites of exit and duration of shedding of porcine reproductive and respiratory syndrome virus (PRRSV). Two experiments of 6 pigs each were conducted. Pigs were farrowed in isolation, weaned at 7 days of age, and housed in individual HEPA filtered isolation chambers. In each experiment, 3 pigs served as controls and 3 were inoculated intranasally with PRRSV (ATCC VR-2402) at 3 weeks of age. In a first experiment, on days 7, 14, 21, 28, 35, and 42 post inoculation (PI), pigs were anesthetized and intubated. The following samples were collected: serum, saliva, conjunctival swabs, urine by cystocentesis, and feces. Upon recovery from anesthesia, the endotracheal tube was removed, rinsed, and the rinse retained. In the second experiment, the sampling schedule was expanded and serum, saliva, and oropharyngeal samples were collected from day 55 to day 124 PI at 14 day intervals. Virus was isolated in porcine alveolar macrophages up to day 14 from urine, day 21 from serum, day 35 from endotracheal tube rinse, day 42 from saliva, and day 84 from oropharyngeal samples. No virus was recovered from conjunctival swabs, fecal samples, or negative control samples. This is the first report of isolation of PRRSV from saliva. Virus-contaminated saliva, especially when considered in the context of social dominance behavior among pigs, may play an important role in PRRSV transmission. These results support previous reports of persistent infection with PRRSV prolonged recovery of virus from tonsils of swine.  相似文献   

9.
The aim of this study was to determine whether porcine reproductive and respiratory syndrome virus (PRRSV) could be transmitted by aerosol under field conditions. A total of 210 five-month-old PRRSV-negative pigs were housed in a mechanically ventilated finishing facility containing 11 pens. Pen 1 contained 10 pigs (indirect contact controls) and pen 2 remained empty, providing a barrier of 2.5 m from the remaining pigs in pens 3 to 11. Fifteen or 16 of the pigs in each of pens 3 to 11 were infected experimentally with a field isolate of PRRSV and the other six or seven pigs served as direct contact controls. Five days after the pigs were infected, two trailers containing 10 five-week-old PRRSV-naive sentinel pigs were placed along each side of the building; one was placed 1 m from the exhaust fans on one side of the building, and the other was placed 30 m from the fans on the other side, and the sentinel pigs remained in the trailers for 72 hours. They were then moved to separate buildings on the same site, 30 and 80 m, respectively, from the infected barn, and their PRRSV status was monitored for 21 days. The direct and indirect contact control pigs became infected with PRRSV but the sentinel pigs did not.  相似文献   

10.
The objective of this study was to determine whether porcine reproductive and respiratory syndrome virus (PRRSV) could be transmitted to naïve pigs by mosquitoes following feeding on infected pigs. During each of 4 replicates, mosquito-to-pig contact took place on days 5, 6, and 7 after PRRSV infection of the donor pig. A total of 300 mosquitoes [Aedes vexans (Meigen)] were allowed to feed on each viremic donor pig, housed in an isolation room. After 30 to 60 s, feeding was interrupted, and the mosquitoes were manually transferred in small plastic vials and allowed to feed to repletion on a naïve recipient pig housed in another isolation room. Prior to contact with the recipient pig, the mosquitoes were transferred to clean vials. Swabs were collected from the exterior surface of all vials, pooled, and tested for PRRSV. Separate personnel handled the donor pig, the recipient pig, and the vial-transfer procedure. Transmission of PRRSV from the donor to the recipient pig occurred in 2 out of 4 replicates. The PRRSV isolated from the infected recipient pigs was nucleic-acid-sequenced and found to be 100% homologous with the virus used to infect the donor pigs. Homogenates of mosquito tissues collected in all replicates were positive by either polymerase chain reaction or swine bioassay. All control pigs remained PRRSV negative, and PRRSV was not detected on the surface of the vials. This study indicates that mosquitoes (A. vexans) can serve as mechanical vectors of PRRSV.  相似文献   

11.
A series of three experiments, differing primarily in airflow volume, were performed to evaluate the likelihood of airborne transmission of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) from infected to non-infected pigs. Pigs were housed in two units (unit A and unit B) located 1m apart and connected by pipes. The air pressure and diameter of the pipes, depending on experiments, were strictly controlled to allow desired airflow volumes from unit A to unit B. Either 25 (experiment 1 and experiment 3) or 26 (experiment 2) pigs infected recently with PRRSV, and either 25 (experiment 1 and experiment 3) or 17 (experiment 2) pigs from a PRRSV-free herd, were housed in unit A. Either 50 pigs (experiment 1 and experiment 3) or 43 pigs (experiment 2) from a PRRSV-free herd were housed in unit B. The amount of air transmitted from unit A to unit B, expressed as a percentage of ventilation intake, was approximately 70, 10, and 1% for experiment 1, experiment 2 and experiment 3, respectively. Blood samples were collected from all pigs once per week and analyzed for antibodies against PRRSV. Based on these methods, airborne transmission of PRRSV from infected to non-infected pigs was confirmed in each of the three experiments.  相似文献   

12.
OBJECTIVE: To determine whether flies can acquire porcine reproductive and respiratory syndrome virus (PRRSV) and disperse the virus throughout a designated area. ANIMALS: 60 four-month-old pigs. PROCEDURE: On day 0, 28 of 60 pigs were inoculated with PRRSV MN 30-100 (index variant). On the same day, 100,000 pupae of ochre-eyed houseflies and 100,000 pupae of red-eyed (wild-type) houseflies were placed in the swine facility for a release-recapture study. Flies were recaptured at 2 locations within the swine facility, 6 locations immediately outside the facility, and 30 locations 0.4, 0.8, 1.3, 1.7, 1.9, and 2.3 km from the facility. Traps were emptied on days 2, 7, 8, 10, and 14. Samples derived from flies were tested by use of a polymerase chain reaction assay, virus DNA was sequenced, and viruses were tested for infectivity by means of a swine bioassay. RESULTS: PRRSV RNA homologous to the index PRRSV was detected in trapped flies collected inside and immediately outside the facility and from 9 of 48 samples collected at 0.4 km, 8 of 24 samples collected at 0.8 km, 5 of 24 samples collected at 1.3 km, and 3 of 84 samples collected at > 1.7 km from the facility. Two samples collected at 0.8 km contained genetically diverse variants of PRRSV. Swine bioassays revealed the virus in flies was infectious. CONCLUSIONS AND CLINICAL RELEVANCE: Flies appeared to become contaminated with PRRSV from infected pigs and transported the virus > or = 1.7 km. Fly-born transmission may explain how PRRSV is seasonally transported between farms.  相似文献   

13.
To assess the transmission of porcine reproductive and respiratory syndrome virus (PRRSV) from pigs to mallard ducks, 10 adult (one-year-old) female mallard ducks were housed with pigs infected experimentally with PRRSV, and allowed to be in close contact with them for 21 days. To evaluate the transmission of PRRSV from mallard ducks to pigs, two adult ducks were inoculated orally with PRRSV (total dose 10(6.0) TCID50) and allowed to drink PRRsv-infected water; 24 hours later, two four-week-old PRRsv-naive sentinel pigs were housed in pens below the cages housing the ducks for 14 days. In both experiments, cloacal and faecal samples were collected three times a week from the ducks and tested by PCR, virus isolation and a pig bioassay. Blood samples from the pigs were tested by ELISA, PCR and virus isolation. Sera from the ducks were tested by serum neutralisation. The ducks were examined postmortem and selected tissues were tested by PCR, virus isolation, histopathology and pig bioassay. In both experiments all the cloacal swabs, faecal samples, tissues and sera from the ducks were negative by all the tests. The sera from the pigs in the first experiment were PCR positive at three, seven, 14 and 21 days after infection and ELISA positive at 14 and 21 days. Sera from the pigs in the second experiment were negative by all the tests. The virus was isolated from the oral inoculum and the drinking water provided for the ducks in the second experiment. Under the conditions of this study, it was not possible to demonstrate the transmission of PRRSV either from the pigs to the ducks or from the ducks to the pigs.  相似文献   

14.
The objective of this study was to evaluate if spray dried porcine plasma (SDPP) containing porcine circovirus type 2 (PCV2) genome supplemented in feed could transmit PCV2 to pigs challenged with porcine reproductive and respiratory syndrome virus (PRRSV). Twenty-three PRRSV-free pigs, non-viraemic for PCV2, were housed in bio-safety level 3 facilities and assigned to four groups in a 2×2 factorial design consisting of PRRSV challenge and a negative control. The diet contained 0 or 8kg SDPP per 100kg of feed. PRRSV challenge groups were inoculated intranasally with 2mL of a suspension containing 10(6) TCID(50)/mL PRRSV. The SDPP used in the study contained 7.56×10(5) PCV2 genome copies per gram. Dietary treatments were fed from 4days prior to PRRSV inoculation until 28days post-inoculation (PI). All challenged pigs developed PRRSV viraemia by day 3PI and PRRSV antibodies were detected in sera by day 14PI, with no difference between diet treatments. Neither PRRSV viraemia nor seroconversion was observed in non-challenged pigs. PCV2 was not detected in the serum of any pigs throughout the experimental period. SDPP containing the PCV2 genome supplemented in feed did not result in PCV2 transmission to either healthy or PRRSV-infected pigs under these experimental conditions.  相似文献   

15.
Blood samples from sarcoptic mite-infested pigs were evaluated for effects of mite infestation and cold and ambient temperatures on lymphocyte blastogenic responses and for effects of mite infestation on serum cortisol concentrations. In experiment 1, sarcoptic mite-infested and noninfested pigs were housed in cold (5 to 15 C fluctuating) and thermoneural (25 C) environmental chambers for 5 weeks. Differences were not observed (P greater than 0.10) in blastogenic responses to phytohemagglutin or pokeweed mitogen between lymphocytes from infested and noninfested pigs on postinfestation days (PID) 7, 21, 28, and 35 in either environmental chamber. When lymphocytes from noninfested pigs were cultured with sera from infested pigs, alterations of blastogenic responses were not detected. Cortisol values were higher (P less than 0.05) in sera from sarcoptic mite-infested pigs, compared with those from noninfested pigs, at 4 PM on PID 14 and 4 AM and 10 AM on PID 15. Cortisol values were higher (P less than 0.05) in sera obtained at 10 AM on PID 14 and at 10 AM on PID 15 from pigs housed in cold chambers, compared with those from pigs housed in thermoneutral chambers. Interactive effects between sarcoptic mite infestation and cold ambient temperatures were not observed. At 4 AM on PID 15 (experiment 2), cortisol values were higher (P less than 0.05) in sera of infested pigs, compared with those in noninfested pigs. Seemingly, sarcoptic mange in pigs did not alter mitogen-induced lymphocyte blastogenic responses, but did increase serum cortisol concentrations, indicating that sarcoptic mange may be a stressor in pigs.  相似文献   

16.
An experimental infection with porcine reproductive and respiratory syndrome virus (PRRSV) was established in 150 five-month-old pigs housed in a fan-ventilated finishing facility, the infected barn. To determine whether air exhausted from the wall fans contained infectious PRRSV, a trailer containing 10 four-week-old PRRSV-naive sentinel pigs was placed 10 m from the building from day 3 after the 150 pigs were infected until day 10. To connect the two airspaces, one end of an opaque plastic tube, 15 m in length and 5 cm in diameter, was fastened to the wall fan of the infected barn, and the other end was placed inside the trailer. Air from the building was exhausted into the trailer 24 hours a day for seven consecutive days and PRRSV infection was monitored in the infected pigs and the sentinel pigs. Air samples were collected from the infected barn and the trailer. PRRSV infection was detected in the infected pigs three and seven days after they were infected, but not in the sentinel pigs. All the air samples were negative for PRRSV by PCR, virus isolation and a pig bioassay.  相似文献   

17.
A study was performed to evaluate the presence of porcine reproductive and respiratory syndrome virus (PRRSV) in pig meat collected at slaughterhouses and its potential transmission to pigs via pig meat. A total of 1039 blood samples were collected from pigs upon their arrival at the abattoir. The following day, meat samples (n = 1027) were collected from the carcasses of these same pigs. Samples originated from 2 Canadian slaughterhouses, 1 situated in the province of Quebec and the other situated in the province of Manitoba. Serum samples were tested for antibodies to PRRSV and both serum and meat samples were also tested for PRRSV nucleic acid by polymerase chain reaction (PCR). Seropositivity to PRRSV for all serum samples was 74.3%. Furthermore 45 (4.3%) of the total serum samples and 19 (1.9%) of the 1027 meat samples were positive for PRRSV by PCR. Sequence analysis of open reading frame (ORF) 5 performed on 15 of the 19 PRRSV strains identified in pig meat indicated that 9 were field strains and 6 were vaccine-like (98% to 99.7% nucleotide homology with the Ingelvac RespPRRS/Repro vaccine). One of these 6 strains presented an intermediate 2-6-2 restriction fragment length polymorphism (RFLP) cut pattern and the others showed the characteristic 2-5-2 RFLP pattern of the vaccine strain. All strains sequenced were determined to be North American strains. In only 1 of the 19 PRRSV-positive meat samples could PRRSV be isolated. To test the potential infectivity of meat samples containing residual PRRSV, 11 of the PCR-positive meat samples (weighing 1.05 to 1.8 kg) were each used in feeding experiments of 2 PRRSV antibody-negative specific pathogen-free pigs of 9 wk of age. Samples were cut into several pieces and fed to each pair of pigs on 2 consecutive days. Each pig pair was housed in a separate cubicle and serum samples were collected at -7, 0, 7, 14, and 20 to 21 days post exposure. Seven pig pairs were found to be infected by PRRSV following ingestion of meat samples, including meat samples containing vaccine-like virus, as judged by the demonstration of PRRSV antibodies and/or PRRSV nucleic acid in the serum. In summary, the present study indicated that low residual quantities of PRRSV may be found in a small percentage of pig meat collected at slaugtherhouses. Furthermore, when this meat was fed raw to pigs in the experimental setting designed, pigs could be infected by PRRSV.  相似文献   

18.
19.
OBJECTIVE: To evaluate retention of porcine reproductive and respiratory syndrome virus (PRRSV) in houseflies for various time frames and temperatures. SAMPLE POPULATION: Fifteen 2-week-old pigs, two 10-week-old pigs, and laboratory-cultivated houseflies. PROCEDURE: In an initial experiment, houseflies were exposed to PRRSV; housed at 15 degrees, 20 degrees, 25 degrees, and 30 degrees C; and tested at various time points. In a second experiment to determine dynamics of virus retention, houseflies were exposed to PRRSV and housed under controlled field conditions for 48 hours. Changes in the percentage of PRRSV-positive flies and virus load per fly were assessed over time, and detection of infective virus at 48 hours after exposure was measured. Finally, in a third experiment, virus loads were measured in houseflies allowed to feed on blood, oropharyngeal washings, and nasal washings obtained from experimentally infected pigs. RESULTS: In experiment 1, PRRSV retention in houseflies was proportional to temperature. In the second experiment, the percentage of PRRSV-positive houseflies and virus load per fly decreased over time; however, infective PRRSV was found in houseflies 48 hours after exposure. In experiment 3, PRRSV was detected in houseflies allowed to feed on all 3 porcine body fluids. CONCLUSIONS AND CLINICAL RELEVANCE: For the conditions of this study, houseflies did not support PRRSV replication. Therefore, retention of PRRSV in houseflies appears to be a function of initial virus load after ingestion and environmental temperature. These factors may impact the risk of insect-borne spread of PRRSV among farms.  相似文献   

20.
The purpose of this report is to validate a new protocol, the thermo-assisted drying and decontamination (TADD) system, for eliminating porcine reproductive and respiratory syndrome virus (PRRSV) from contaminated transport vehicles. Scale models of weaned pig trailers were used. The principle of TADD is to raise the interior temperature of trailers to 71 degrees C for 30 min to promote drying and degradation of PRRSV. Trailer interiors were artificially contaminated with 5 x 10(5) TCID50 of PRRSV strain MN 30-100, then treated with 1 of 4 treatments: 1) TADD; 2) air only (no supplemental heat); 3) overnight (8 h) drying; and 4) washing only. Following treatment, swabs were collected from the trailer interiors at 0, 10, 20, and 30 min post-treatment and from the overnight group after 8 h. Swabs were tested for PRRSV-RNA by polymerase chain reaction (PCR). As a measure of the presence of infectious PRRSV, sentinel pigs were housed in treated trailers for 2 h post-treatment and supernatants from swabs were injected IM into naive pigs (bioassay), the recipient pigs were then tested for PRRSV infection. All trailers were PRRSV positive by PCR immediately after washing, prior to treatment (pt). At 10 min pt, 7/10 swabs were positive from the TADD trailers; however, all swabs collected at 20 and 30 min pt were PRRSV negative by PCR, and trailer interiors were visibly dry. In contrast, 9/19, 6/10, and 6/10 swabs collected at 10, 20, and 30 min, respectively, from trailers treated with air only were positive and visibly wet. All swabs (10/10) collected from trailers treated with washing only were PRRSV positive by PCR and all swabs collected at 8 h of drying were PRRSV negative by PCR. All tests for the presence of infectious PRRSV were negative for trailers treated with TADD and overnight drying, while infectious PRRSV was detected in sentinel pigs and bioassay pigs in the other groups. Under the conditions of this study, the efficacy of the TADD system was equal to that of the overnight drying treatment, and it required a shorter period of time to complete its objective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号