首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
为探明SO_2湿沉降对桑树(Morus alba)幼苗生长和叶片光系统Ⅱ(PSⅡ)的影响,本研究利用Na2SO3和NaHSO3的混合液(浓度比为3∶1)模拟SO_2湿沉降,连续处理两年龄的桑树幼苗28d。结果表明,经浓度为50和100mmol·L~(-1)的混合液处理后,桑树幼苗的叶片出现明显的灼烧伤斑,叶片光合能力显著低于对照(P0.05),株高、分枝数、叶片数也明显比对照低。而20mmol·L~(-1)模拟SO_2湿沉降显著提高了桑树幼苗叶片光合能力(P0.05),增加了株高、分枝数和叶片数(P0.05),促进了桑树的生长。快速叶绿素荧光动力学参数分析表明,50和100mmol·L~(-1)混合液处理桑树幼苗,PSⅡ单位反应中心吸收的能量(ABS/RC)、反应中心消耗的能量(DIo/RC)和反应中心用于还原QA的能量(TRo/RC)与对照差异不显著(P0.05),而反应中心用于电子传递的能量(ETo/RC)、照光2 ms时有活性反应中心的开放程度(Ψo)值和吸收光能用QA-以后的电子传递的量子产额(φEo)值均较对照略有下降(P0.05),同时非光化学淬灭的最大量子产额(φDo)值则上升(P0.05),说明50和100mmol·L~(-1) SO_2湿沉降并未影响PSⅡ反应中心对光能的吸收,过剩的光能用于非光化学淬灭,光合性能指数PIABS显著下降(P0.05),是因为PSⅡ中电子传递到受到了抑制。本研究结果证明,浓度≤20mmol·L~(-1)SO_2湿沉降有利于PSⅡ功能和活性提高,提高了桑树光合速率,促进了桑树生长。  相似文献   

2.
研究了桑树不同叶位的气体交换参数、叶绿素荧光参数、光合色素含量、磷含量的变化。结果表明:随着叶位的下降,净光合速率、气孔导度、蒸腾速率显著降低;在低光强下(800μmol·m^-2·s^-1以下),胞间CO2浓度随着光强增加而降低,在高光强下(800μmol·m^-2·s^-1以上),桑树基部叶片表现出强劲的上升趋势,说明叶片衰老时净光合速率下降的主要原因不是由气孔因素引起的;初始荧光的升高和光系统Ⅱ最大光化学量子产量的降低表明光系统Ⅱ中心遭受失活或破坏;光系统Ⅱ有效光化学量子产量、光系统Ⅱ实际光化学量子产量、光化学淬灭和表观电子传递速率的下降,说明无论是光能的吸收、还是光能的转化和传递均严重受抑,尽管非光化学淬灭和类胡萝卜素含量持续升高,但仍无法阻止叶绿素的降解和氮、磷含量的下降。  相似文献   

3.
以桑树(Morus alba)为试验材料,在室内以溶液培养的方法研究了增施NO_3~--N(7.5 mmol·L~(-1)增加到17.5mmol·L~(-1))对Na_2CO_3胁迫(50mmol·L~(-1))下桑树幼苗叶片PSⅡ功能的影响。结果表明,50mmol·L~(-1)的Na_2CO_3胁迫下桑树植株表现出明显的盐害症状,叶片的PSⅡ反应中心光化学活性明显降低,PSⅡ电子供体侧和受体侧均受到不同程度的影响。增施NO_3~--N显著提高了Na_2CO_3胁迫下桑树幼苗叶片的光合电子供应和传递能力,表现为PSⅡ电子供体侧放氧复合体OEC的功能增强,PSⅡ电子受体侧受体库接受电子能力增加。另外,增施NO_3~--N还可以相对提高桑树幼苗叶片类囊体膜结构的稳定性,促进Na_2CO_3胁迫下桑树幼苗叶片光能向光化学反应方向的分配,降低以无效热能形式耗散的比例。可见,增施NO_3~--N可显著增强Na_2CO_3胁迫下桑树幼苗叶片PSⅡ的功能,这为其光合作用的正常进行提供了保证。  相似文献   

4.
采用水培试验,研究了不同施氮水平(0.05,0.5,1,2.5,5,10,20,40mmol·L~(-1))对‘Tifton85’牧草型狗牙根(Cynodon dactylon×C.nlemfuensis)光合特性的影响。结果表明,随氮浓度升高,叶干重和茎干重整体呈增加趋势,根干重整体呈相反趋势;植株干重整体呈增加趋势,在氮浓度高于5 mmol·L~(-1)时增加幅度减小。相关性分析表明,植株干重与净光合速率呈极显著正相关(P0.01),而净光合速率与叶片氮含量呈极显著正相关(P0.01)。在氮水平低于5mmol·L~(-1)时,随氮浓度降低,叶片氮含量降低,引起气孔导度降低,导致净光合速率降低。在氮水平高于5mmol·L~(-1)时,随氮浓度升高,胞间CO_2浓度反而降低,进而降低了PSⅡ最大光化学速率和PSⅡ潜在活性,从而减缓了净光合速率增加的幅度。所以,通过合理施氮可以有效提高净光合速率,从而提高‘Tifton85’狗牙根产量。  相似文献   

5.
以偏硅酸钠为外源物质,用25%聚乙二醇模拟干旱胁迫甜燕Ⅰ号燕麦,研究硅对干旱胁迫下燕麦幼苗光合和生理特性的影响。结果表明,10mmol/L Na_2SiO_3·9H_2O显著(P0.05)提高了干旱胁迫下燕麦幼苗叶片净光合速率、胞间二氧化碳浓度、气孔导度、蒸腾速率、叶绿素含量、最小初始荧光、暗适应下最大荧光、最大光化学效率、性能指数,显著(P0.05)降低了叶片和根系丙二醛含量、脯氨酸含量和过氧化物酶活性,显著(P0.05)降低了叶片可溶性蛋白含量、超氧化物歧化酶活性,显著(P0.05)提高了根系可溶性蛋白含量、超氧化物歧化酶活性;显著(P0.05)降低了叶中氮、钙含量,提高了叶中磷、钾、硅含量。总之,施用外源硅能提高干旱胁迫下燕麦幼苗光合作用,提高抗氧化和渗透调节能力,缓解干旱胁迫对燕麦幼苗的伤害。  相似文献   

6.
为探究钙(Ca~(2+))对玉米镉(Cd)胁迫的缓解作用,采用盆栽试验,研究了根部施加外源Ca~(2+)对Cd胁迫下玉米幼苗生长、光合特征及叶绿素荧光参数等生理指标的影响。结果显示,与对照(CK)相比,100mg/L的Cd处理显著降低了玉米幼苗株高、根、地上部生物量以及玉米叶片叶绿素a、叶绿素b和总叶绿素含量。同时,净光合速率(P_n)、气孔导度(G_s)、蒸腾速率(T_r)、PSⅡ最大光化学效率(F_v/F_m)、电子传递速率(ETR)、PSⅡ激发能捕获效率(F_v′/F_m′)、光化学淬灭系数(qP)和PSⅡ实际光化学效率(Φ_(PSⅡ))显著下降,而非光化学淬灭系数(NPQ)和胞间CO_2浓度(C_i)较CK显著上升。外源施加Ca~(2+)可以有效增加镉胁迫下幼苗生物量的积累,明显提高叶绿素a、叶绿素b和叶绿素总量,升高P_n,G_s,T_r,F_v/F_m,ETR,F_v′/F_m′,降低NPQ和C_i,增加幼苗生物量积累,Ca~(2+)浓度为7.5~10.0mmol/L时各指标变化幅度最明显,缓解胁迫的效果最佳。研究结果表明,Cd胁迫使玉米幼苗叶片PSⅡ原初光能转化效率降低,电子传递受到抑制,净光合速率降低。适宜浓度的外源Ca~(2+)能有效缓解Cd对光合机构的伤害,增强幼苗叶片对光的捕获能力,促进光合作用,增加幼苗的生物量,增强玉米幼苗对Cd胁迫的抗性。  相似文献   

7.
为明确干旱胁迫下γ-氨基丁酸(GABA)保护玉米幼苗光合系统的生理响应,以郑单958为试验材料,依据玉米幼苗生长数据,选择1 mmol·L~(-1)为γ-氨基丁酸(GABA)供试浓度,设置空白对照(CK)、1 mmol·L~(-1) GABA(G)、20%聚乙二醇(PEG-6000)模拟干旱胁迫(D)、20%聚乙二醇(PEG-6000)模拟干旱胁迫和1 mmol·L~(-1) GABA(DG)4个处理开展玉米水培试验。结果表明:不同浓度GABA能缓解干旱胁迫的抑制作用,使玉米幼苗恢复生长,其中1 mmol·L~(-1) GABA效果最好。干旱胁迫下,外源施用1 mmol·L~(-1) GABA能显著提高叶片超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性,减少丙二醛(MDA)、超氧阴离子(O_2~-)和过氧化氢(H_2O_2)积累,降低叶片相对电导率。此外,外源GABA能显著提高干旱胁迫下叶片内可溶性蛋白、可溶性糖和脯氨酸含量,从而提高细胞保水能力。外源施用GABA能显著降低叶片干旱胁迫下初始荧光(F_0),提高暗适应下最大可变荧光(F_v)、最大荧光(F_m)和最大光量子效率(F_v/F_m),从而降低叶片光化学损伤。在干旱胁迫第5天,与D处理相比,DG处理SPAD数值、净光合速率(P_n)、蒸腾速率(T_r)和气孔导度(G_s)分别提高8.25%、7.69%、9.13%和7.38%,胞间CO_2浓度(C_i)降低2.93%。因此,外源GABA能通过降低叶片的氧化损伤和提高细胞保水能力来改善叶片对干旱胁迫的适应能力,从而保护玉米幼苗光合系统。  相似文献   

8.
通过袋栽试验,研究了淹水对番木瓜光合和叶绿素荧光特性的影响。结果表明,淹水降低番木瓜叶片的净光合速率、蒸腾速率、气孔导度、胞间CO2浓度和PSII有效光化学量子产量(YIELD)、光合电子传递速率 (ETR)和光化学荧光淬灭系数 (qP),提高其非光化学荧光淬灭(qN)值,同时影响其叶绿素荧光诱导曲线。淹水28 h和52 h后,番木瓜叶片的光合作用明显降低,对照和淹水处理之间的气体交换参数和叶绿素荧光参数差异极显著(P<0.01)。  相似文献   

9.
通过盆栽试验,研究缓释肥料对番木瓜叶片光合和叶绿素荧光特性的影响。结果表明,施用缓释肥料促进番木瓜叶片叶绿素的合成,提高番木瓜叶片的净光合速率、气孔导度、蒸腾速率、光化学量子产量、光合电子传递速率、光化学淬灭系数、非光化学淬灭系数,降低胞间二氧化碳浓度和非光化学淬灭系数,其中以缓释肥料SRF-4处理的效果优于SRF-3处理和复合肥CPF处理。  相似文献   

10.
为了研究大豆(Glycine max)根系分泌物中酚酸对桑树(Morus alba)生长的影响,以一年龄桑树品种“青龙桑”幼苗为试验材料,研究了3 硝基邻苯二甲酸和邻甲氧基苯甲酸对桑树幼苗的生长和叶片光合特性的影响。结果表明,两种外源酚酸对桑树的生长和光合特性的影响不同。当外源3 硝基邻苯二甲酸浓度低于10-5 mol·L-1时,桑树叶片的的叶绿素含量、净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)、胞间CO2浓度(Ci)升高,同化产物的积累量增加,其株高、根长和生物量增加,而当浓度高于10-2 mol·L-1时,叶绿素含量、Pn和Ci以及实际光化学效率(ФPSⅡ)、电子传递速率(ETR)均显著降低,株高、根长、叶片数和生物量也降低。外源邻甲氧基苯甲酸处理下,随着浓度的增加,桑树叶片的叶绿素含量Gs、Tr、Pn、ФPSⅡ、ETR和光化学淬灭系数(qP)均降低,光能以热耗散形式耗散的比例增加。说明3 硝基邻苯二甲酸对桑树的生长和光合具有低浓度促进、高浓度抑制的双重浓度效应,而邻甲氧基苯甲酸对桑树的光合机构产生不利效应。  相似文献   

11.
桑树叶片光合生理性状对土壤水分含量和光照强度的响应   总被引:2,自引:0,他引:2  
用CIRAS-2便携式光合仪测定不同土壤水分含量条件下2年生桑树叶片净光合速率(Pn)、蒸腾速率(Tr)、水分利用效率(WUE)、光能利用效率(LUE)等光合生理参数,分析桑叶光合生理特性对土壤水分含量和光照强度的响应规律,为建立桑树的节水高产栽培技术提供理论依据。结果表明:随着土壤相对含水量(RWC)的降低(由94.3%梯度降至28.7%),桑叶的Pn、表观量子效率(Φ)、LUE先升高后降低,暗呼吸速率(Rd)、光补偿点(LCP)先降低后升高,Tr、光饱和点(LSP)一直呈降低趋势。综上认为,桑树叶片的光合生理参数对光照强度、土壤水分含量的变化具有明显的阈值响应,有利于桑树进行高光合作用和维持高水分利用效率的适宜土壤相对含水量为44.8%~77.8%,最适土壤相对含水量为52.0%左右,适宜的光照强度为800~2 000μmol/(m2·s)。  相似文献   

12.
盐碱互作胁迫对高丹草叶片叶绿素荧光参数的影响   总被引:1,自引:0,他引:1  
为明确高丹草Sorghum bicolor×S.sudanense在盐碱互作胁迫下的生理响应及耐受特点,以两种中性盐NaCl和Na_2SO_4以及两种碱性盐Na_2CO_3和NaHCO_3按不同比例配成50、100、150和200mmol·L~(-1) 4个盐浓度,并且每个盐浓度分别设7.0、8.0、9.0和10.0共4个pH梯度的盐碱互作组合,研究了在盐碱互作胁迫对高丹草叶片的叶绿素荧光参数的影响。结果表明,高丹草叶片的各生理参数受高盐浓度以及溶液中各离子浓度的影响较大,其中影响较大的为CO_3~(2-)浓度和总盐浓度。低盐浓度下,不同pH对高丹草叶片叶绿素荧光参数的影响相对较小,并且低于100mmol·L~(-1)的盐浓度下高丹草叶片PSⅡ反应中心的光化学活性无明显影响,即高丹草具有一定的抗盐碱性能力。但在高盐高pH条件下,高丹草叶片PSⅡ光化学效率的降低,并且此时随着pH的增加,高丹草叶片的PSⅡ反应中心活性降低幅度增大。高丹草在一定碱性盐浓度范围内可以通过提高非化学淬灭系数(NPQ)及时耗散过剩的光能,但在高盐浓度下高丹草叶片通过NPQ来耗散过剩光能的保护能力下降,并且高pH下降低幅度更为显著。盐和pH对高丹草叶片的各生理参数影响过程中存在明显的交互作用,并且随着盐浓度的增加,交互作用逐渐变大,即低盐浓度下,受pH的影响相对较小,但随着盐浓度的增加,pH的影响变大。高丹草叶片具有一定的耐盐碱能力,但在盐浓度较高地区推广高丹草要注意碱化度的影响。  相似文献   

13.
为研究干旱及旱后复水对桑树叶片光合能力的影响,揭示其对干旱的适应性及复水后的修复机制,以秋雨桑(Morus alba‘Qiuyu')为试验材料,采用盆栽控水法探究了桑树叶片生长及光合荧光特性。结果表明:土壤含水量为26.7%时,叶片含水量显著降低,萎蔫下垂,卷曲度、叶基角增大;桑树叶片的净光合速率、蒸腾速率以及气孔导度等主要光合气体交换参数近于0,而胞间CO_2浓度和气孔限制值升高。初始荧光、过剩光能、失活PSⅡ反应中心的热耗散量子产额、维持类囊体膜两侧质子梯度和叶黄素循环的比例、荧光量子产额和热耗散的量子产额值均升高,而最大荧光、电子传递效率和吸收光能用于光化学反应量子产额下降;复水后,叶片长势指标、主要光合气体交换参数和荧光参数值迅速恢复。这表明干旱下桑树叶片净光合速率由气孔和非气孔因素共同限制,PSⅡ反应中心部分失活,叶片通过增加叶黄素循环,荧光量子产额和热耗散来消耗过剩光能。且复水后,桑树叶片光合机构具有完善的调节修复机制,可在较短的时间内修复干旱胁迫引起的损伤。  相似文献   

14.
为明确党参(Codonpsis pliosula)被尖孢镰孢菌(Fusarium oxysporiums)侵染后其叶片细胞结构和生理特性的变化,本试验以‘渭党1号’为研究材料,通过田间自然发病测定病原菌侵染后党参根部细胞结构以及生理特性的变化特征。叶片显微镜观察结果表明,健康党参叶片呈深绿色,发病叶片呈黄绿或黄白交替症状,透光性增强;根部徒手切片光学显微镜观察结果表明,发病部位细胞受到严重破坏;发病党参叶片叶绿素含量降低,电解质渗漏电导率升高。镰孢菌侵染后,发病党参叶片的净光合速率、气孔导度、胞间CO2浓度和蒸腾速率降低;发病党参的最大净光合速率、光饱和点和暗呼吸速率均降低,而光补偿点升高;发病党参CO2饱和点降低,而CO2补偿点和光呼吸速率升高。发病党参植株叶片氮、磷、钾和锌、锰、铜、铁、钙、镁等一些微量元素的含量也降低。本研究从宏观和微观角度分析了镰孢菌侵染后党参细胞结构和生理特性的变化,为阐明党参根腐病的发病机制提供了理论依据。  相似文献   

15.
以一串红、大10、红果2号3个果桑品种的3年生嫁接苗为材料,采用盆栽控水试验方法,分别在适宜水分、中度干旱胁迫、重度干旱胁迫及复水(土壤水分分别为田间最大持水量的70%~75%、45%~50%、25%~30%、75%~80%)条件下测试分析3个果桑品种的光合作用、光响应和CO2响应特征,评价果桑品种的抗旱能力。结果表明:干旱胁迫显著降低3个果桑品种的净光合速率、气孔导度、蒸腾速率、水分利用效率、瞬时光能利用效率和瞬时羧化效率,增加了胞间CO2浓度;3个果桑品种在不同土壤水分条件下对光强度和CO2浓度的响应曲线变化趋势基本一致,即在干旱胁迫下,3个果桑品种的最大净光合速率、表观量子效率、暗呼吸速率、瞬时羧化效率、光呼吸速率等均较适宜水分下降,复水处理后,各项响应值均有所回升。根据3个果桑品种在中度、重度干旱胁迫及复水条件下上述各项指标的变幅,比较品种的抗旱能力为:红果2号>大10>一串红。红果2号可在干旱缺水、光照较强的地区栽植。  相似文献   

16.
樊秦  李彦忠 《草业学报》2017,26(1):112-121
苜蓿茎点霉侵染紫花苜蓿后严重影响其产量和质量。本研究采用植物生长室盆栽法,利用光合作用测量系统研究苜蓿茎点霉对紫花苜蓿叶片光合生理的影响。结果表明, 除侵染第27天外,苜蓿茎点霉使紫花苜蓿叶片净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr)降低,对胞间二氧化碳浓度(Ci)在侵染前期影响不大。在侵染至23 d,紫花苜蓿叶片光化学量子效率(Fv/Fm)、PSⅡ反应中心激发能捕获效率(Fv'/Fm')、PSⅡ反应中心电荷分离实际量子效率(ΦPSⅡ)、电子传递速率(ETR)、光化学猝灭系数(qP)和非光化学淬灭系数(qN)显著降低。光补偿点 (LCP)、CO2补偿点(CCP)和羧化效率(CE)降低。表明苜蓿茎点霉通过降低紫花苜蓿叶片中光合电子传递率捕获效率、非光化学猝灭系数(qN)和羧化效率(CE),而产生光抑制,使CO2的同化作用降低,影响紫花苜蓿的生长发育。  相似文献   

17.
本研究以一年生裸果木幼苗为材料,采用盆栽育苗方式,设计7个不同浓度NaCl溶液(CK、0.2%、0.4%、0.6%、0.8%、1.0% 和1.2%)模拟盐分胁迫,测定分析了其叶片气体交换参数、光响应曲线及叶绿素荧光参数的变化规律。结果表明:随着盐浓度的增加,叶片净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr)均呈下降趋势,NaCl浓度≥0.4%时,各处理PnGsTr均显著低于CK;气孔限制值(Ls)和瞬时水分利用效率(WUE)随盐浓度增加呈先升后降趋势,胞间CO2浓度(Ci)呈相反趋势,NaCl浓度为0.4%时,Ls达到最大值,而Ci达到最小值,说明Pn下降以气孔限制因素为主,而当NaCl浓度≥0.6%时,以非气孔限制为主要因素。随着盐胁迫程度的增大,最大净光合速率(Pnmax)、暗呼吸速率(Rd)、光饱和点(LSP)、表观量子效率(AQY)逐渐降低,光补偿点(LCP)逐渐增加,表明盐分抑制了幼苗对光的吸收、利用和转换能力。叶片PSII潜在活性(Fv/F0)、原初光能转化效率(Fv/Fm)、实际光化学效率(ΦPSII)、电子传递速率(ETR)和光化学猝灭系数(qp)随着盐浓度的增加呈下降趋势;非光化学猝灭系数(NPQ)在≤0.4%NaCl处理下较CK显著增加,盐浓度≥0.8%时,NPQ显著下降。基质的NaCl浓度在0.2%和0.4%时,裸果木叶片PnFv/F0Fv/Fm下降不显著,WUE有所提高,PSII系统可以通过耗散过剩的光能保护光合机构,表现出一定的耐盐性;但盐浓度超过0.6%时,光合生态幅变窄,光合机构受到明显破坏,显著抑制了光合作用能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号